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Abstract  

In order to accurately localize epileptic foci and predict the prognosis of drug-refractory epilepsy, high-frequency 

oscillation (HFO) detection is crucial. Clinicians may save time and effort by investigating a high-performance 

automated detection approach for HFOs. Existing approaches struggle to fulfill the needs of clinical application 

because of their narrow analytical viewpoint and straightforward model creation. To achieve full-stack automated 

detection of HFOs, the results from two separate branches are combined.  We have validated our technique on five 

people with intractable epilepsy. High sensitivity (94.62%), specificity (92.7%), and F1-score (93.33%) were 

obtained using the suggested technique during intravalidation; high sensitivity (92.00%), specificity (88.26%), and 

F1-score (89.11%) were obtained during cross-validation. Based on the obtained data, it can be concluded that the 

suggested approach is superior to the two conventional detection paradigms, namely the single signal strategy and 

the single time frequency diagram strategy. In addition, when it comes to visual analysis vs. automated detection, the 

kappa value is a solid 0.795 on average. Meanwhile, /e approach has impressive generalization ability and excellent 

consistency with the benchmark.  

Introduction 

Preoperative evaluation of patients with drug-

refractory epilepsy relies on precise localization of 

the epileptogenic zone (EZ) [1-3]. A high prognosis 

is strongly connected with surgical excision of the 

channel with a high incidence of high frequency 

oscillations (HFOs) [4, 8], making the detection of an  

HFO signal with a frequency of 80-500 Hz of major 

value for correct localization of EZ. The 

synchronized transient of neurons is reflected in 

HFOs, which are a kind of spontaneous 

electroencephalogram gram pattern [9]. Rs (Ripples, 

80-250 Hz), FRs (Fast Ripples, 250-500 Hz), and 

VHFOs (very high frequency oscillations, 1000-2500 

Hz) are the three categories into which /eye fall 

according to frequency [10, 11]. Currently, the gold 

standard in clinical diagnosis is the visual 

interpretation of HFOs by physicians using long-term 

stereo electroencephalography (SEEG) and video 

recordings [12-15]. Nonetheless, one patient since 

continuous monitoring is often required for many 

days to a week, manual processing of such a massive 

quantity of data is beyond the reach of clinical staff

.  
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There have been several reports of automated HFO 

detectors from a variety of investigations. Both the 

band-pass signal and the time-frequency diagram 

have been used traditionally for HFO detection. Over 

the last decade [17–24], researchers have examined 

single-step detection techniques with varied signal 

characteristics, such as the Teaser energy operator, 

wavelet entropy, fuzzy entropy, short-time energy, 

and so on. While these techniques can identify HFOs, 

they have trouble distinguishing them from other 

abnormalities such spikes, pulse-like artifacts, and 

harmonically rich signals [20]. Two-stage approaches 

[25-29] are presented as a solution to this issue, with 

the first stage consisting of a detector, and the second 

stage consisting of either a supervised classifier or an 

unsupervised clustering to further investigate the 

signal's features. To be more specific, the two-stage 

automatic de section paradigm has always been used 

in terms of the time-frequency diagram, and a stacked 

convolution neural network (CNN) [28] or a stacked 

demising auto encoder [29] can identify genuine 

HFOs from candidate events isolated from 

background activities. In instance, following an 

initial detector [25, 30-32], the basic 2d-CNN 

structure is typically employed to extract time-

frequency picture features. Yet, it remains difficult to 

properly understand information that is worth paying 

attention to in signals or temporal frequency pictures. 

Substances and Techniques 

Materials 

Acquisition of Data. Information on the five patients 

with drug-resistant epilepsy who participated in the 

trial is provided in Table 1 below. Prior to surgery, 

all patients have had regular scalp EEGs and other 

imaging studies (including MRI and PET). 

Simultaneously, physicians from various 

backgrounds discussed each case. When considered 

with preoperative diagnostic assessment, 

Table 1: Clinical characteristics of five patients 

 

Hippocampus sclerosis, anatomically speaking, is a 

term used in the field of surgical pathology. Left 

hippocampus, left amygdale, left basis frontal, left 

inferior frontal, left front parietal operculum, left 

anterior temporal, left orbit frontal, right 

hippocampus, right amygdale, right basis frontal, 

right orbit frontal. Number of channels with epileptic 

activity as a percentage of all recorded channels (n). 

Stereotactic EEG and electrode planning have 

demonstrated promise in locating epileptic hotspots 

[37]. A robotic stereotactic surgery assistant 

workstation (robotied stereotactic assistant, ROSA, 

from a French company named ManTech) was used 

to import enhanced thin-scan MRI and thin-scan CT 

(layer thickness 1 mm, interval 1 mm) for data 

fusion, and subsequently, an electrode implantation 

plan was developed. We utilized 0.8 mm SEEG 

electrodes with 5-18 connections (2 mm long, 1.5 

mm apart) as illustrated in Figure 1. (A). Figure 1 

displays a typical electrode reconstruction of the 

medial temporal lobe (b). Distance, or range, All of 

the patients' SEEG data is recorded at 2048 Hz and 

saved as.eeg files; the Nat us Neuroworks program is 

used to examine the patients' videos. We randomly 

choose the SEEG data of each patient's waking and 

sleeping periods for 2 hours from their corresponding 

video records. There is at least one hour between the 

time of the chosen record and the patient's onset. /e 

EDF format and the channel distribution for each 

patient are also stored. Please take note that no 

preprocessing steps were taken prior to exporting this 

data. 

Preparing the Data. 

incipient pauses Segmenting the data, reversing the 

polarity, removing defective channels, applying 

filters (such as band-pass and notch), and so on are 

all necessary steps in preparing the SEEG data of 

each subject. Figure 2 depicts the whole procedure. 

For the most part, the acquired SEEG were large-

scale long-term recordings; 2 hours of data takes up 

around 8 G of memory, but the computer and 

software can work with only so much space. Since 

the segmenting signals may provide the same data as 

the lengthier recordings, a portion of them had to be 

intercepted for the experiment; typically, 30-minute 

signal segments were acquired for processing. Since 

the original SEEG requires a polarity conversion 

procedure, the bipolar data, whose waveforms and 

amplitudes are often less distorted, may now be used. 

We eliminated obviously disrupted channels and 

empty electrodes before to utilizing them since 

interference is a common occurrence during EEG 

recording and because empty electrodes are often 

used in clinical practice. Additionally, signal 

acquisition gear operates on a 50 Hz mains power 

supply, necessitating the adoption of a 50 Hz 

frequency-doubling notch filter to eliminate power-

frequency interference and frequency-doubling noise. 
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Finally, the band-pass filter keeps the signals 

between 80 and 500 Hz because, relative to the 

lower-frequency background noise, the HFOs are 

more energetic in this range. The preprocessing uses 

a number of programs, including Any Wave, 

EDFBrowser, and others. In particular, we utilize 

EDFBrowser to segment the original, discontinuous 

EEG data into continuous signal fragments; we then 

use AnyWave to conduct polarity conversion, poor 

channels elimination, band-pass filtering, and notch 

filtering on these signals. 

Robotic Visual Labeling 

The first detector in the two-stage automated 

detection process performs a preliminary screening of 

the data acquired and preprocessed in the 

aforementioned procedure to get the HFO candidate 

event set. A certain percentage of the samples in this 

pool were likely to be erroneous, meaning they were 

not HFOS. In light of this, we enlisted the aid of 

clinical specialists in determining which HFOs were 

legitimate and which were not, using their judgment 

as the benchmark in this research. Two licensed 

medical experts perform the /e marking process. Our 

database contains actual HFOs with frequencies 

between 80 and 500 Hz; their ripple frequency varies 

from 80 to 250 Hz, and their fast ripple frequency 

spans from 250 to 500 Hz. There is also a variety of 

non-HFO artifacts in the HFO database. The original 

EEG data, a band-pass signal spanning 80–500 Hz, 

and a time–frequency diagram generated using the 

wavelet transform are all used as references in the /e 

marking procedure. After filtering, if the signal's 

amplitude is much greater than the baseline and there 

is an islanding effect in the time-frequency diagram, 

it is determined to have met the HFO signal standard 

and is filed away accordingly. However, the negative 

samples that do not fit the standard will also be la 

bleed and stored. In /us, we have established both the 

positive and negative sample data sets. Waveforms of 

various common signals are seen in Figure 3. We 

classify items (a) and (b) as genuine HFOs, whereas 

items (c), (d), and (e) are examples of three distinct 

kinds of artifacts that make up the non HFOs 

collection. As can be seen in the center row, filtering 

transient signals (such epileptic spikes, sharp waves, 

and sharp artifacts) or signals with harmonics may 

result in "fake" high-frequency oscillation events, 

with waveforms in the filtered signal that seem 

similar to those of the true HFOs. 

 

Figure 1: SEEG deep brain electrode. (a) SEEG 

electrode. (b) Schematic diagram of typical medial 

temporal lobe electrode reconstruction. 

 

Preparing the Data, Fig. 2. Preprocessing, in this 

context, refers to (a) the procedure through which 

data is prepared. (b) The preprocessed data results; 

the original waveform is shown in the top row, and 

the processed version is shown in the bottom row. 

The right column displays information from the red 

box. 

Initial detector mistake, etc. However, as shown in 

the bottom row, the temporal frequency diagram for 

these fake events is considerably different from that 

of genuine HFO events. The time-frequency plot of 

spike-type artifacts, often created by a band-pass 

filter, typically displays a "island-" like increasing 

trend, whereas the time-frequency plot of harmonic-

type abnormalities displays dispersed high energy 

over the whole frequency range [38]. In order to 

guarantee impartiality and efficiency, two physicians 

independently labeled a sufficient number of 

samples, compared their findings, and settled on a 

single labeling principle. Everyone who applied for a 

position was given a label at last. There were 16167 

records created, of which 7754 were considered 
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positive samples and 8413 were considered negative 

samples. The data is shown in Table 2. 

 

 

Fig. 3 is an example of visual marking. The raw data 

may be found in the top row, the filtered signal (80-

500 Hz) in the center, and the time-frequency 

representation in the bottom row. Ripple (a), rapid 

ripple (b), artifact 1 (band-pass filter-induced high-

frequency transients), artifact 2 (amplitude greater 

than global background but not statistically different 

from local activity), and artifact 3 (harmonics of low 

frequency no sinusoidal signals) are all examples of 

artifacts. 

 

 Synopsis of the Whole System. 

Figure 4 depicts the whole procedure of our study's 

recommended technique. At first, the raw SEEG 

signals of patients were gathered and preprocessed in 

various ways (segmentation, filtering, etc.), and a 

threshold detector was used to establish a preliminary 

candidate event set of clinical high-frequency 

oscillation. To create 2d time-frequency pictures, the 

data were processed using continuous wavelet 

transforms (CWT). We built our own private data set 

by combining the time-frequency diagram, the raw 

signal, and the filtered signal with the neuroscientists' 

visual markings distinguishing genuine from spurious 

HFOs. Finally, a bi-branch fusion model for 

automated HFO identification was developed. The 

model's input data was split between the two 

modalities, and from there, a 1d-ResNet-LSTM 

hybrid network was built for the signal branch and a 

2d-ResNet-CBAM hybrid network was built for the 

Topic branch. First, we fused the output of the two 

portions by building a fusion module, in which the 

mull delayer perception (MLP) classifier is used to 

identify the results from the feature learning of the 

two modals' data. In order to make the training as 

efficient as possible, we decided to use a synchronous 

approach. After the model was trained, it was put 

through its paces with some test data to see how well 

it did at making classifications. 

Nine-Threshold Detector-Based Primary Detector. As 

a first step in our automated detection technique, we 

developed a detector that is as good as possible at 

picking up HFOs in a distant recording, which means 

that our underlying algorithm must exhibit both high 

sensitivity and low specificity. When the band-pass 

filtered signal exhibits at least three continuous peaks 

greater than 3-5 standard deviations, the signal is 

regarded to be an authentic HFO [39]. Clinicians 

should just visually designate the signal inside the 

suspected event set based on the first detection. The 

effectiveness of HFO labeling may be enhanced by 

using /is technique. 

This is the basic threshold-based detection 

algorithm: 

(1) Using the filtered signals, we determined the 

subject's standard deviation (SD) for each 

channel, set the threshold at 2.5 times the 

peak value, and tallied the number of times 

each signal's peak value was over the 

threshold. 

 
 

Figure 4: Flowchart of the Suggested 

Procedure To begin with, we must collect 
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and prepare the data. b) The preliminary 

detection and CWT. Extraction of features 

from deep neural networks (c). 

Classification and fusion module every one 

of the 128 sampled locations had the 

number of times it took to cross over from 

the threshold to the peak value recorded, 

along with the coordinates of the sites 

where this number was larger than three 

did. A Hilbert transform was used to extract 

the envelope of the /e signal, and a 

threshold value of three times the median of 

the background signal was used to record 

any positions that exceeded the threshold. 

For the location that satisfies all three 

criteria at once, a total of 0.5 seconds of 

signal is retrieved as a possible HFO: 0.1 

seconds before the location and 0.4 seconds 

after it. Case in point of applying this 

preliminary detection is shown in Figure 5. 

 

It is a fusion model with two 

branches. 
 

A pool of HFO suspicious events was 

established after the first detector was run. 

Overall, the model is fed data from the 80-

500 Hz band-pass signal and the 2d time-

frequency plot. In order to extract the high-

order characteristics of separate modal data, 

two deep backbone networks were 

constructed (1d Resent + LSTM and 2d-

ResNet CBAM) for the two inputs, 

respectively. To be more precise, the Topic 

branch is implemented using a 2d-ResNet 

that has a CBAM module implanted behind 

each convolution block, while the signal 

branch is constructed as a hybrid network 

with a 1d-ResNet and an LSTM linked in 

parallel. Both branches' output vectors were 

combined into one. In the end, a multilayer 

perception was employed to distinguish 

between genuine and fake HFOs. Figure 6: 

2.4.1. Signal Branch, showing the general 

design of the bi-branch model. We employ 

band-pass filtered sounds between 80 and 

500 Hz as the model's input data to 

eliminate low frequency in dereference [25] 

and the influence of a small quantity of 

irrelevant frequency bands greater than 500 

Hz on HFO identification [40, 41]. See 

Figure 7 for a visual representation of the 

signal trunk's overall architecture. To 

achieve deep feature learning from each 

signal branch, we used a hybrid network 

based on a 1d-ResNet34 and LSTM, with 

the two networks being linked in 

simultaneously. 

 

First, the morphological features of the 

signal are modeled with the help of the 1d-

ResNet34. To accomplish this goal, we use 

a specific sort of convolution neural 

network (Resent) that relies on a residual 

link. Assuming that the mapping relation to 

be solved is H (x), the residual network 

decomposes it into two components, as 

follows: 

 
In addition, F denotes the residual function 

(•) [42]. Learning an identity mapping H(x) 

x at the top level of the network is the same 

as reducing the residual component to zero, 

or F(x) 0. In this configuration, the 

element's input is simply added to its 

output, bypassing any intermediate stages. 

To be more specific, we adapted the 2d-

ResNet model presented by The et al. [42] 

and recast it as a 1d model. /e the 1d-

ResNet model has five steps. After the first 

stage of a 7x7 convolution with a 2x2 

stride, the feature map is just a quarter the 

size of the input. The last four steps include 

stacking the remaining four bricks. For 

ResNet34, the fundamental residual block 

specified by The et al. [42] is used. Two 33 

convolutions are placed on top of one 

another to form each block. Block stacks 

number [3, 4, 6, and 3]. 

 
Fig. 5 is an unprocessed example of a first 

detection. B. signal using a band-pass filter 

(80–500 Hz). (c) A Hilbert transform 

envelope plot, where the red line indicates 

the median value of background activity 

and the black box indicates an excess. Black 
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box at (d)/ displays first detection findings 

(e). 

 

 
 

An overview of the bi-branch feature fusion 

model is provided in Figure 6. A flood of 

data from several places. This is because (b) 

deep backbone networks. Module for fusing 

features and categorizing them. 

 

To understand temporal correlation, 

however, (b) the network design 

incorporates a variation of RNN (LSTM). 

For feature extraction, we employ a multi-

layer long short-term memory (LSTM) 

block with 100 hidden units. 

 

 

(c) On the basis of the spatial modeling of 

signals by CNN (1d-ResNet), 

complemented by the temporal modeling by 

RNN (LSTM), a hybrid network is 

developed to represent signal attributes 

from multiple angles. The signal's higher-

order features are captured faithfully. Two-

dimensional output vectors are fused and 

spliced to produce the multiperspective 

fusion features of the filtered signals. 

 

In the Topic Department. The model can 

distinguish between noise and true HFOs in 

the time-frequency image if a Topic branch 

is created. Time-frequency transformation 

must be performed first on the filtered 

SEEG signal from the patient. Epilepsy 

telltale EEG signs. 

 
Illustration of the model's signal-branch 

structure (Figure 7). Band-pass filtered 

signal (a). Specifically, (b) 1d-ResNet + 

LSTM's /e-centric architecture. 

 

A stochastic signal that fluctuates both 

temporally and spatially. Multiresolution 

analysis of random no stationary EEG data 

is ideally performed using the /e wavelet 

transform. The signal is transformed using a 

Morley wavelet, and its wavelet basis 

function looks like this: 

 
Where zero is the fundamental frequency, 

and is the wavelet basis stretching amount 

and b is the wavelet basis translation 

amount. The formula of the wavelet 

transform may be obtained from the 

characteristics of the Fourier transform as 

 
As can be seen in Figure 8, we also 

constructed a deep backbone network for 

the Topic branch. Overall, this fork takes 

2d-ResNet as its foundational framework 

and integrates a CBAM component into it. 

In the field of image classification, Resent 

is a popular foundational network. 

According to the previous description, it 

supplements the traditional CNN with a 

residual block. Based on these findings, the 

research presents the CBAM module to 

enhance the model's performance even 

more. Features are extracted from the whole 

branch using a 2d-ResNet50, and the model 

as a whole consists of five steps. Resnet50, 

in contrast to signal branch, employs the 

unique residual blocks described by The et 

al. [42]. Each unit employs dimension 

reduction, convolution processing, and 

dimension restoration across three 
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convolution layers (1 1, 3 3, 1 1). A proper 

stacking of blocks would l 

 

Ook like this: [three, 4, 6, 3]. as an added 

bonus, the 2d-ResNet incorporates CBAM 

after every single block. The input feature 

graphs are placed via MLP after being 

processed by global maximum pooling, 

global average pooling based on width, and 

global maximum pooling based on height. 

The final CA feature map was created by 

combining the element wise added MLP 

output features with sigmoid activation. 

Woo et al. [43] provide the following 

formula for 

Computing it. 

 

 
When the sigmoid function is, The Rely 

activation function, W0, determines the 

common MLP weights, W0 RC/arc and W1 

RC/arc/r. The spatial attention (SA) module 

may perform either global maximum 

pooling or global average pooling of input 

before summing the values along the 

channel dimension. We utilize a 

convolution procedure to reduce the 

dimension to 1. When everything is said 

and done, the sigmoid is what is employed 

to generate the SA characteristic graph. 

Woo et al. [43] provide the following 

formula for determining it. 

 

 
 

The CA module and SA module are then 

embedded in the back of each block of 2d 

ResNet50, creating a series-connected 

embedded network (2d-ResNet CBAM) that 

efficiently learns the information that is 

helpful to classification from the input 

image while simultaneously suppressing 

some unnecessary information. 

 

Fusion-related components. 
 

The primary contribution of this work is a 

suggestion for integrating filtered SEEG 

signals with features of temporal frequency 

maps. The feature fusion module's overall 

structure is shown in Figure 9. A candidate 

event's deep features in the 80-500 Hz 

band-pass signal may be obtained through 

the signal branch, and the event's deep 

features in the time-frequency image can be 

obtained via the Topic branch. We combine 

features from two routes into one cohesive 

whole. 

 

 
 

Internal structure of the Topic tree model 

(Figure 8). In particular, (b) /e 2d-structure 

time-frequency plots. For Resent’s CBAMs 

The sigmoid function (S) is indicated in (c) 

CBAM, where the channel attention (CA) 

module and the spatial attention (SA) 

module are shown in the top and bottom 

rows, respectively. 

 
Vector for the proposed occurrence. The 

output of the signal branch has a size of 

1612, the Topic branch's output has a 

dimension of 12048, and the combined 

output vector's dimension is 12660. After 

that, a half-sampling was used to get a 

single candidate event's fusion output vector 

in 1 1330 dimensions. Finally, all potential 

HFO events are used to train a multi-layer 

perception, which then determines whether 

each event is an HFO. The following 

formula may be used to calculate the 

combined output of the H and O layers: 
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Where bah and boo represent the bias of the 

hidden layer and output layer weight 

matrices, respectively, and X represents the 

input vector. Additionally, the following 

specification of the binary cross entropy 

loss function is utilized during training: 

 

 
 

In this equation, y represents the target 

value, y the margin of error, and y the 

actual data point. 

 

Results 

 

Measurements against which 

outcomes may be evaluated. 

 
Accuracy (ACC), sensitivity (SEN), 

specificity (SPE), precision (PRE), false 

discovery rate (FDR), and F1-score were 

used as measures to evaluate the suggested 

model's performance in this research. We 

also developed the SEN SPE-score to show 

that the proposed method achieves a better 

balance of sensitivity and specificity. Most 

indicators are computed using the confusion 

matrix. In the confusion matrix, a TP 

indicates that the predicted category and the 

true category are both P, whereas a TN 

shows that the predicted and true categories 

are conflicting with one another and are 

both N. A false positive (FP) happens when 

the predicted category is P when the true 

category is P, as opposed to a false negative 

(FN), which occurs when the anticipated 

category is N when it should have been P. 

To exactly calculate these metrics, use this 

algorithm: 

 
 

To assess how well a model strikes a 

compromise between these two indications, 

we also compute their harmonic mean (SEN 

SPE-score) using the formula: 

 

 
Table 3 displays the optimum values for all 

factors utilized in the experiment, including 

the parameter settings, training strategy, and 

experimental environment. The LSTM 

hidden size was set experimentally to 100, 

the LSTM layer count was set to 2, and the 

number of hidden layer neurons in the 

fusion module was set to 500 in order to 

provide enough model capacity and avoid 

overfitting simultaneously. Additionally, in 

both cases, the number of stacked Resent 

blocks was determined to be [3, 4, 6, 3]. 

 
Signal branch and Topic branch that adhere 

to resent is traditional design tenets. We set 

the network training hyper parameters to an 

initial learning rate of 0.01, a batch size of 

32, and a total number of training epochs of 

60. In particular, the values of each 

parameter were recorded at the time the 

model produced the best result in the 

validation set; this served as the basis for 

selecting the hyperactive parameters. As 

will be shown in the following section, we 

split up the experimental data into a training 

set, validation set, and test set. The model 
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was trained on the training set, validation 

set results were used to inform parameter 

selection, and the test set was used to verify 

our hypotheses. We used a bi-branch 

synchronous training strategy, which 

requires a one-to-one correspondence 

between the input data of the bi-branch and 

the output data of the model, to feed the 

band-pass filtered signal and time-

frequency diagram into the model. When 

errors are produced at the output, the weight 

matrix is updated by cycling back through 

the input data of the two modes until the 

process is complete. The following details 

the conditions of our experiments. All of 

our training and testing was done on an HP 

Z8G4 graphics workstation outfitted with a 

single Nvidia George RTX 2080Ti and 12G 

of dedicated video memory. 

Pairs of Exercises for Practice and 

Evaluation. 

To make the most of our database, we 

employ two validation strategies, 

intrasubject validation and cross-subject 

validation, and we divide the data set into 

five folds to generate five groups of 

experimental data, one for each patient 

record. 

 

Validation within a single subject. 
 

Figure 10 depicts the data partitioning and 

intrasubject validation implementation. To 

be more specific, we took 80% of the data, 

randomly shuffled it, and then used that as 

the training set, 10% of the data as the 

validation set, and the remaining 10% as the 

test set. 

 

Validation across Subjects. 
 

The study presented here marks a 

significant advance in the field by 

successfully applying the model to cross-

patient testing. In what follows, we will 

demonstrate the findings with particular 

emphasis on /e. 

 
Figure 10: Intrasubject validation 

 

Figure 11 displayed the specific data 

distribution and application. In particular, 

we employed the leave-one-out cross-

validation technique, wherein 80% of the 

subsets served as training set and 20% as 

validation set and each of the 5 subsets 

served as test set in turn. After obtaining 

five retrains models using five distinct 

training sets, the models' respective 

performance was evaluated using test sets. 

At last, we took an average across all five 

data sets to see how well they performed. 

 

The Results of Our Approach 
 

Validation performed within the subject. 

Based on the data from 5 clinical patients' 

SEEG recordings, we used intrasubject 

validation to determine an average 

sensitivity of 94.62%, specificity of 

92.70%, precision of 92.12%, accuracy of 

93.62%, FDR of 7.88%, F1-score of 

93.33%, and SEN SPE-score of 93.63% 

(Table 4). 

 

Carrying out a Validation across 

Subjects. 
 

Five sets of experiments were conducted to 

validate the results from one set of subjects 

on another. /e results showed that the 

average sensitivity was 92.00%, the average 

specificity was 88.26%, the average 

precision was 86.86%, the average accuracy 

was 89.76%, the average FDR was 13.14%, 

the average F1-score was 89.11%, and the 

avg enrage of SEN SPE-score was 89.87%, 

as shown in Table 

 

Talking About 

 

Important Findings from Our 

Research. 
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Clinical analysis of HFOs still relies mostly 

on visual assessment. Patients' EEGs may 

exhibit a high-frequency oscillating rhythm, 

which can be visually identified by experts. 

However, a new automatic detection 

method is required because of the difficulty 

of visual labeling and the high subjectivity 

and inconsistency among experts. Since 

2002, different HFO automatic detection 

methods have been reported in different 

studies. Our work has made further 

improvement and innovation on the basis of 

predecessors. Its main contribution lies in 

the following three aspects. 

 

Bi-Branch Fusion Model Realizes 

Complementary Advantages. 
 

Most early proposed detectors extract 

features from waveforms of EEG signals to 

enable automatic classification. This leaves 

the problem of poor specificity and is prone 

to misdiagnosis in clinical practice because 

there are many artifacts and other signals in 

the band-pass filtered signals that cannot be 

distinguished from the real HFOS. Time-

frequency diagrams can help with this, but 

they are not good enough for use in the 

clinic because signal classification based 

solely on visuals has low sensitivity and is 

prone to missed diagnoses. To address this 

problem, we proposed a novel approach 

wherein the filtered band-pass signal and 

time-frequency image are used as input data 

to a model, the model is established as a bi-

branch deep learning model, the model's 

output is fused from the two branches, and 

HFOs and non-HFOs are automatically 

classified. The advantages of CNN and 

RNN are combined in the hybrid network 

(1d Resent + LSTM) used in the signal 

subfield. While convolution neural 

networks (CNNs) are responsible for 

feature extraction in the morphological 

space of signals, recurrent neural networks 

(RNNs) are responsible for feature 

extraction in the temporal dimension of 

signals. The 2d-ResNet CBAM model, 

trained on the Topic dataset, paid more 

attention to the informative features of the 

time-frequency image, allowing it to 

distinguish between HFOs and other 

sources of noise in the Topic frequency 

spectrum. 

 

Strong generalization results can 

be attributed to thorough cross-

validation. 
 

Because of this early emphasis on signal 

detection performance, most experiments 

split the candidate pool into a training set 

and a test set through a random process [21, 

27, 43, 45, and 46]. To make the best 

decision for a new patient, it is helpful to 

apply the a priori knowledge gained from 

previous cases. Therefore, it is essential that 

the model account for 

 

 
Average results from classifying three 

different building types are shown in Figure 

12. SEN, SPE, PRE, ACC, and F1; b) FDR. 

 

Capacity for extrapolation to other patients. 

It is impossible to prevent data leakage in 

intrasubject validation since the same 

patient's data will appear in both the 

training set and the test set. Since the data is 

not fully "unseen," the model's performance 

is unlikely to improve enough when applied 

to a new patient to fulfill clinical demands, 

even if /is technique is used to verify the 

model's accuracy. Taking into account the 
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reality of the case, we used the leave-one-

out (LOI) technique of cross-validation, 

which involves partitioning data sets into 

two groups—a training set and a testing 

set—that are kept secret from one another. 

Whether or whether we use cross-

validation, our detector outperforms similar 

methods in every metric [28]. With such 

high generalization performance, our 

technique is better suited as a diagnostic aid 

in clinical settings. 

 

 

 

 

 

Table 9: /e range of gains and losses in 

various indicators. 

 

 
 

 

Validation of Visual and Robotic 

Desections for Agreement. 

 

he study's gold standard for clinical usage is 

physicians' visual marking of HFOs. For 

this reason, it is essential that the suggested 

detection technique shows excellent 

consistency with the reference approach. It 

is possible to compare the reliability of 

various approaches using Cohen's kappa 

coefficient. The confusion matrix is used in 

its calculation, with the precise formula 

being as follows: 

 
Where p0 is the overall accuracy predicted 

by the model, given (a0 b0 + a1 b1)/n n, 

where a0 and a1 are the quantities predicted 

by the model to be 0/1, and b0 and b1 are 

the actual quantities of the two classes 0/1. 

Its values might be anything from -1 to 1, 

however they are often between 0 and 1. 

Consistency levels range from 0.0 to 0.20, 

with 0.21 to 0.40 indicating a low level of 

consistency, 0.41 to 0.60 indicating a 

medium level, 0.61 to 0.80 indicating a high 

level of consistency, and 0.81 to 1 

indicating an almost perfect level of 

consistency. We compared the novel 

detection approach to the gold standard and 

computed Cohen's kappa coefficient. The 

coefficients ranged from 0.784 to 0.765 to 

0.708 to 0.957 to 0.762 to 0.762, with an 

overall average of 0.795. The results of the 

tests conducted on the approach provided in 

this study show remarkable congruence 

with the opinions of medical professionals. 

 

Conclusions 
Our results demonstrate that the two-modal 

data-based bi-branch model may be 

employed as a reliable automated HFO 

identification method, with strong 

generalization performance across a variety 

of patients. Hence, the suggested approach 

is excellent for use in the clinic. The 

following benefits are most common: (1) 

The proposed bi-branch model, in terms of 

model architecture, combines the benefits of 

SEEG signal and time-frequency image for 

HFOs detection, and it employs two 

separate backbone networks (1d-ResNet + 

LSTM and 2dResNet CBAM) to 

automatically and concurrently extract the 

features of the two modes. High 

classification accuracy, sensitivity, and 

specificity are achieved by combining the 

results of two branches; (2) the approach 

has been clinically validated in terms of 

both intrasubject and cross-subject 

validation. Our suggested technique 

achieved an excellent performance with 

high accuracy, sensitivity, specificity, etc., 

particularly for study employing the cross-

subject validation, which is adequate for 

practical clinical applications. 
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