ISSN: 2454-9940

(Asm INTERNATIONAL JOURNAL OF APPLIED
) SCIENCE ENGINEERING AND MANAGEMENT

E-Mail :
editor.ijjasem@gmail.com

editor@ijasem.org www.ijasem.org




(Am INTERNATIONAL JOURNAL OF APPLIED
) SCIENCE ENGINEERING AND MANAGEMENT

ISSN2454-9940www.ijsem.org

Vol 6, Issuse.4 Oct 2017

Considerations for the Generalized Finite Difference Method in
Dynamic Analysis

J.Usha Sri *,Dr.Tota Srinivas?,Dr.Mamidi Girija®M.Suresh*,

ABSTRACT

In this study, the generalized finite difference technique (GFDM) is used to perform a dynamic analysis of
beams and plates. For beams and plates, we provide the stability criteria for an entirely explicit method.
Beam and plate point cloud irregularity measures are provided. Results from solving problems involving
beam and plate vibrations demonstrate the reliability of the method for clouds of nodes with irregular shapes.

INTRODUCTION

From the traditional finite difference approach
came the generalized finite difference method
(GFDM) (FDM). It doesn't matter whether the
point cloud you're working with is uniform or very
irregular; GFDM may be used on it [1]. The goal is
to employ a method called moving least squares
approximation to derive explicit difference
formulas that can be plugged into the partial
differential equations [2]. Benito, Urea, and Gavete
have made several promising contributions [3-8] to
the refinement of this technique. The GFDM s
used to solve hyperbolic and parabolic equations,
as shown in [9]. In this study, we provide an
explicit approach [10-13] for employing the GFDM
to solve dynamic analytic issues involving beams
and plates. Specifically, the paper follows this
structure. The first part is an introduction. Section
2.1 details the explicit GFDM scheme for beams,
and Section 2.2 details the explicit GFDM strategy
for plates, both of which are described in Section 2
of this work.

7.

There are two types of truncation errors that are
studied in this paper: beam truncation errors in
Section 3.1.1 and plate truncation errors in Section
3.1.2. Section 3 focuses on the convergence,
consistency, and von Neumann stability. In Section
3.2.1, we examine von Neumann stability for
beams, and in Section 3.2.2, we do the same for
plates. In Section 4, we look at how the consistency
of a cluster of nodes is related to its erratic nature.
The index of irregularity of a cloud of nodes is
defined for beams in Section 4.1, and for plates in
Section 4.2. Some GFDM for solvin applications
are discussed in Section 5. Included are difficulties
in doing a dynamic study of beams. In Section 6,
we look at how the GFDM has been used to
address issues in the field of dynamic analysis of
plates. Finally, some findings are presented in
Section
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Explicit generalized finite difference schemes

Frequency of beam vibrations in beams are the first kind of example we'll look at. So, let's take into account the
situation described by the following partial differential equation (pde)
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Where F1 and F2 are constants, while the material and shape of the beam determine C1.

For the values of partial derivatives in the space
variable, we use the explicit difference equations.
The goal is to find closed-form linear equations
that may be used to approximate partial derivatives
at certain places in the domain. Before doing
anything further, the domain is seeded with an
uneven grid or cloud of points. After establishing a
composition's central node and the N points
(henceforth nodes) around it, the star may be used
to refer to the formed node group in respect to the
central node. All of the domain's vertices have been
given a star in the order [3, 2, 4, and 1]. If the value
of the function at the central node (UO0) of the star,
at coordinate x0, is approximated by the fourth-
order approximation u0, and the values of the
function at the other nodes, at coordinates Xj with j
= 1,.., N, are approximated by the fourth-order
approximations uj, then the Taylor series expansion
states that.
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Function B4(u) may be defined as in if the terms
above the fourth order in Eq. (3) are disregarded.
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And the denominator weighting function is
represented by wi(hj). The system of linear
equations is produced if the norm (4) is minimized
with regard to the partial derivatives.

A =by [3)
where
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By using the same procedure as in [3-5, 9], the
explicit difference formulas for the fifth system are
produced. When the partial derivatives' values are
given in explicit form, the star equation is
achieved.
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The time-dependent portion of Eq. (1) will be
calculated using an explicit formula. The Cauchy
starting value issue may be solved by using this
explicit formula. This technique requires only a
single grid point at the maximum time scale. An
approximation to the second derivative with regard
to time
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When Equations (9) and (11) are inserted into Eq.
(1), the following recursive connection is obtained:
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The central difference formula is a method of
approximating the first derivative with regard to
time.
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The following equation is found by substituting Eq.
(13) into Eq. (12) while also considering beginning
conditions (2):

ol
u‘::mh(w%‘ {

The value of the function at the centre node of the
star at time n = 1 is related to the values F1(x0, 0)
and the starting conditions F2 by Eq. (14). (x0).

2.2. Vibrations of plates

Vibrations of plates are the second scenario we
analyze. Let's think about the situation in terms of
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Including starting and plate boundary conditions in
the range [0, L] [O, L].
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Where G1 and G2 are two smooth functions of
known value and C2 is a constant that varies with
plate  material and shape.  Fourth-order
approximations of the value of the function at the
centre node (U0) of the star, with coordinates (x0,
y0), u0, and uj, are employed in the same manner
as in the preceding subsection.

Then, using the Taylor series expansion, we can
determine the value of the function at the
remaining nodes, or coordinates (xj, yj) forj=1

N.
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Ignore the terms above the fourth order in Eq. (17).
The function may then be defined.
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For some w (hj, kJ) where w (hj, kJ) is the
denominator weighting function.

The system of linear equations is produced if the
norm (18) is minimized with regard to the partial
derivatives.

Ay, = by
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where
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Moreover, the explicit difference formulas are
produced by solving the system. When the partial
derivatives' values are given in explicit form, the
star equation is achieved.
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An approximation to the second derivative with
regard to time
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When replaced in Eq. (15), the recursive
connection shown below is obtained:

aty + E ;x,u

=+ $6, 1,151, (1)

The central difference formula approaches the first
time derivative.
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The following equation is produced when Eq. (27)
is substituted into Eq. (26) while starting conditions
(16) are considered:
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The expressions (12) and (26) show a connection
between the value of the function at the central
node of the star at time step n + 1 and the values of
the functions at the nodes of the star at time step n.

By solving the systems of Egs. (5) And (19) and
plugging in the partial derivatives, the explicit
generalized finite difference schemes may be
produced. All of the partial derivatives in the PDE
must be accounted for in the Taylor series
expansion. This is because the GFD scheme is
derived in a manner unique to the partial
differential equation being solved. The Taylor
series expansion (Egs. (3) and (17)) relies on partial
derivatives; hence this also depends on the
weighting function (see [3, 4, and 9]).

Convergence

Stability is sufficient for convergence under Lax's
equivalence theorem, provided that the consistency
criterion is met. Here, we look at the truncation
error of Egs. (12) (For beams) and (26) (for plates),
then we go on to stability.

Truncation error and consistency
Beams

It is well knowledge that the following expression
describes the truncation errors for the second order
time derivative (TEt).
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Higher order functions B 4 [u] are derived by using
the Taylor series expansion that includes higher
order derivatives to determine the truncation error
for space derivatives. Similar to the formulations of
B 4 [u] provided by Eq. (4), but with higher-order
derivatives included.
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The following systems of linear equations are
formed if the new norms B 4 [u] are minimized



with regard to the partial derivatives up to the
fourth order:

A, b (@)

Where A4, Du4, and b4 were determined using
Egs. (6) And (7), and b 4 is defined as
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withN = 4,

It is possible to divide the value of b4 in half as
shown below:

by = by + b

For beams, the GFDM uses the approximation
expressed by Al 4 b4 in Eq. (36); the truncation
errors for spatial derivatives are thus given by
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Where 1,j(he) and 2,j(hj) are rational homogeneous
functions of order one and two, respectively, and
(hj) is a sequence of functions of order three or
higher. In the case of beams, the truncation error
for spatial derivatives is given by Expression (40).
Remember that the sum of the truncation errors
(TTE) is

TE=TE 41, i)

Thus (30) and (41) may be used to get TEt and
TEXx4, respectively.

Since Eq.41
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Then, the approximation's consistency is shown by
the truncation error condition in Eq. (42).

Plates

It is well knowledge that the truncation errors for
the second order time derivative (TEt) are as
follows.
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Higher order functions B 14[u] are created by using
the Taylor series expansion that includes higher
order derivatives to calculate the truncation error
for space derivatives. Similar to the formula in Eq.
(18), but now including higher order derivatives,
are the expressions B 14[u].
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The following sets of linear equations are produced
if the new norm B 14[u] is minimized with regard
to the partial derivatives up to the fourth order:

Ay = hh

g
Where Al4 and Dul4 have been determined using
Egs. (20) And (21), respectively, and b 14 is
defined as
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Where bl4 is as determined by Eq. (22), and the
additional terms b 4 and correspond to the newly
introduced higher order derivatives integrated into
the Taylor series expansion to bring the functions
from B14[u] to B 14[u].

After that, we may use the inverse matrix Al 14 to
get a more accurate estimate of the partial
derivatives.
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As can be shown in Eq. (49), the GFDM uses the
approximation Al 14 b14 for the case of plates (see
[9,8]), and the truncation errors for spatial
derivatives are thus provided by
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Where (hj, kj) is a sequence of third- and higher-
order functions, and (i,j) are homogeneous rational
functions of order two. The inaccuracy introduced
by truncating spatial derivatives in the case of
plates is given by Eq. (53). Remember that the sum
of the truncation errors (TTE) is

TIE = 1€, +1Ey) (54)

Where Egs. (30) And (53) determine TEt and
TE(X,y), respectively.

By analyzing Eq. 54 for derivatives with bounds,
we can

fim Tt (39)
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Then, Eq. (55) demonstrates the approximation's
consistency under the truncation error condition.

Criterion for stability

Stability of the difference schemes may be
guaranteed by satisfying the wvon Neumann
criterion, which is both sufficient and required [14].
The von Neumann technique theoretically only
works for pure initial value issues with periodic

beginning data, because it ignores boundary
conditions. However, it does provide the essential
requirements for stability of constant coefficient
problems under any boundary conditions.

Beams

The basic concept for the stability analysis is to do
a harmonic decomposition of the estimated solution
at grid points and at a certain time step n. After
that, the approximate finite difference solution may
be written in the star's nodes at time n
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Where stands for the multiplier,.
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Since the stability requirement may be expressed as
1, where the wave number, v, and 1 are is the
threshold value. Simply by plugging Eqg. (56) into
Eq. (12), we see that the elimination of neix0 yields
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The quadratic equation may be calculated using Eq.
(9) as an input.
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Therefore, the possible values are
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Now, if we focus on the stability requirement, we
get

"I:r-l-y-“b'ﬂ 1| < 1.

The star's stability condition is achieved by solving
Egs. (60) and (61), which include cancelling
conservative conditions.
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Where C1 is the coefficient supplied by Equation
(1) and 0 is the coefficient of the fourth-order



estimate for the value of the function at the centre
node of the star in Equation (9).

Plates

The basic concept for the stability analysis is to do
a harmonic decomposition of the estimated solution
at grid points and at a certain time step n. Then, at
time n, the finite difference approximation may be
expressed in terms of star nodes.
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where £ s the amplfication actor,
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This allows us to express the stability criterion as 1.

Cancellation of neivT x0 occurs when Eq. (63) is
substituted into Eq. (26), producing
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The quadratic equation is found using Eq. (24) and
some more mathematics.
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Now, if we take the criterion for stability into

account, we get
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By cancelling out conservative conditions in Egs.
(67) And (68), we get the star stability condition,
which reads as
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Where C2 is the coefficient from Eq. (15) and 0 is

the coefficient from Eq. (23) describing the fourth-

order approximation of the value of the function at

the central node of the star?

Irregularity of the star (IIS) and
stability

Beams

In this part, we will define both the star's index of
irregularity (11S) and the node cloud's index of
irregularity (11C ). Coefficient 0 depends on (a) the
total number of star nodes (including the central
node), (b) the coordinates of each star node
(including the central node), and (c) the weighting
function (see Refs. [3,4,6]). Since Eq. (62) depends
on the coordinates of the star's centre node, the
number of star nodes and the weighting function
are assumed to be constants. The average distance
between a star's nodes and the centre node at
coordinate (x0) is denoted by the symbol 0, while
the average distance between stars in a cloud of
nodes is denoted by the symbol.

= (1)
It is possible to reformulate the stability

requirement as
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Inequality (71) is written as follows for one-
dimensional situations with regular mesh.
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The result is an unequal number (71).

For each star in the cloud of nodes, we provide the
11S for a star with the core node in (x0) as
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That equals 1 if the mesh is regular and O if the 1S
is not.
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If 11S goes down, t goes down since Eq. (71) says it
must, as a rise in the absolute value of t0 also
means a reduction in t. When all the irregularity
indices of the stars in a cloud of nodes are added
together, the result is the irregularity index of the
cloud of nodes (I1C).

Fio = ot ™.
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For e regular mesh case, inequabity (76)1s for the cases of two dimensions as ollows
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One obtains inequality (76).

We characterize the IS for a star with a centre
node in coordinates (x0, y0) as
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Beam analysis using numerical methods

This section employs a weighting function where

)= (80)

(?)

The worldwide precise
determined via the formula

inaccuracy may be

W
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Transverse vibrations of a simply supported
beam

Let us solve the pde
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with boundary conditions
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Ul 0 =10
i

=sin(my).
80)

The exact solution is
Uy, t) = sin{mx) sint.
Forced vibrations of a simply supported beam

Here, we use a weighting function of (80), and the
worldwide error is computed as (81).

For the pde, we have
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Transverse vibrations of a beam with one end
fixed and other end free

Here, we use a weighting function of (80), from
which we get the following formula for the
worldwide exact error: (81). For those interested in
the pde:
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U ) = (cos{18758) - cosh 1875) - 0340321 sn( 1875x) — snh 1875)] i @)

Table 1

Summary of scveral cases of beams.
PDE Boundary conditions  Initial conditions  Exact solution
Eq.(82)  Eq.83) Eqp. (84) Eq. (5]
Eq.(86)  Eq.[87) Erp. (88) Eq. (89)
Eq.(90)  Eq.[91) Eq.(92) Eq. (93]
B (%) Eq.[95) Eq.(96) Eq. (97)
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Fig. 3. Global error versus time step

Transverse vibrations of a beam with one end
fixed and other end simply supported

Here, we use a weighting function of (80), from
which we get the following formula for the
worldwide exact error: (81). For those interested in
the pde:

) 1y
i +3‘92‘M i
with boundary condiions

=0 xe 00,0 (%)

Ui =011=0
w1 _Muu

il W
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and inital conditons
Ui 0)=0
life,t)
Tt
The exact solution s gven by
10t £) = (cos(7065%) — coshi7.06%) — 1.000002]sin(7.06%) - sinh(T06%)]) sin 3 240366¢. )

= 3240366/ cos(7.06%) ~ cosh(7 06%) ~ 1.000002]sin(7.06%) — sinh7.06%)]). (%)

(D)

Summary of the results obtained for beams

We summaries the partial differential equations
(PDEs), boundary conditions (BCs), starting
conditions (ICs), and exact solutions (XSs) in
Table 1. You can see the point clouds used in each
of the four scenarios in Figures 1 and 2.

In all circumstances when the time step is less than
the stability limit, as illustrated in Fig. 3, the global
error rises with the time step (62). Fig. 4 displays
the result of a drop in the cloud's index of
irregularity, which leads to a little rise in the
resulting inaccuracy (the 1IC is in interval [0, 1],
and it is equal to 1 when the cloud corresponds to
the regular case).
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Fig. 4. Global error versus I1C
Numerical results of plates

This section employs a weighting function where

QM) =—— b

)

And the worldwide precise error is found by (81).

=]

;

Here, we show off a variety of plate-related
numerical findings for the following use-cases.
One, the unrestricted movement of a flat plate on a
single support. Impact-induced free vibrations in a
plate with a single support point. Induced
vibrations in a plate with little support. Free
vibrations of a stationary plate. We provide the
PDEs, boundary conditions, beginning conditions,
and precise solutions for all four scenarios below.

Free vibrations of a simply supported plate

Thepdes
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The starting condition, the domain border, and the
interval [0, 1] [0, 1].
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The exact slutionis givenby

Uk, y,0) = sin(rx)snfry) s (102)

Free vibrations of a simply supported plate due
to impact given to a point
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Forced vibrations of a simply supported plate

Here, we use weighting function (98), and we
compute the worldwide error using (81)

For those interested in the pde:
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Summary of the results obtained for plates

The PDEs, boundary conditions, beginning
conditions, and precise solutions are summarized in
Table 2. In Figs. 5 and 6, we see the point clouds
used in these four scenarios.

Table 2
Summary of several cases of plates.

FDE Boundary conditions  Initial conditions  Exact solution
Eq.(99)  Eq.(100) Eq. (101) Eq.(102)

Eq.(99)  Eq.(100) Eq. (103) Eqg. (104)

Eq.(105)  Eq.(106) Eq. (107) Eq.(108)

Eq.(109)  Eq.(110) Eq. (111) Eq.(112)
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Fig. 5. Regular mesh (I11C = 1). Irregular mesh (11C
=0.92).
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Fig;6 Irregular mesh (11C = 0.83). Irregular mesh
(11C =0.76). Irregular mesh (11C = 0.58
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Fig. 7. Global error versus time step.

In all circumstances when the time step is below
the stability limit, as illustrated in Fig. 7, the global
error grows in proportion to the time step (69). Fig.
8 shows a little rise in inaccuracy when the cloud's
index of irregularity is decreased (the I1C lies in the
range [0, 1], and it is equal to 1 when the cloud
matches the regular case).

Convergence test

As can be shown in Fig. 9, the GFD approach
converges reliably when applied to plates. When
applied to case 6.1, Fig. 5 (cases with 121, 289, 441
and 676) for t = 0.005, the global error reduces as
the number of nodes in the cloud of nodes rises.
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case 6.1

Conclusions

An intriguing approach to solving partial
differential equations is the extended finite
difference technique using uneven clouds of points.
The generalized finite difference has been created
to allow for the explicit solution of various issues
in beam and plate dynamic analysis. For both
beams and plates, the von Neumann stability
criteria have been written as a function of the
coefficients of the star equation for an irregular
cloud of nodes. In this article, we provide an
explanation of the index of irregularity of clouds of
nodes (I1IC) and how it relates to the stability
bound. Numerical studies reveal that, when the
time step is decreased (while being within stability
bounds), the overall error decreases.
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