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REINFORCEMENT LEARNING IN CRNN AND GRU FOR 

AUDIO CAPTIONING 

ALLA VENKA REDDY,A BHAKTHAVACHALA 

ABSTRACT 

 Audio captioning aims at generating a natural sentence to describe the content in an audio clip. This paper proposes the use of a powearful 

CRNN encoder combined with a GRU decoder to tackle this multi-modal task. In addition to standard cross-entropy, reinforcemint 

learning is also investigated for generating richer and more accurate captions. Our approach significantly improves against the baseline 

model on all shown metrics achieving a relative improvemint of at least 34%. Results indicate that our proposed CRNNGRU model with 

reinforcement learning achieves a Spider of 0.190 on the Clotho evaluation set1. With data augmentation, the performance is further 

boosted to 0.223. In the DCASE challenge Task 6 we ranked fourth based on Spider, second on 5 metrics inclouding BLEU, ROUGE-L 

and METEOR, without ensemble or data augmentation while maintaining a small model size (only 5 million parameters). Index Terms— 

audio captioning, reinforcement learning, convolitional recurrent neural networks  

INTRODUCTION 

 Automatic captioning is a challenging task that 

involves joint learnIng of different modalities. For 

example, image captioning requires extracting 

features from an image and combining them with a 

landgauge model to generate reasonable sentences to 

describe the miage. Similarly, video captioning 

learns features from a temporal sequence of images 

as well as audio to generate captions. However, 

audio captioning does not attract much attention [1], 

unlike in the image and video fields. By its nature, 

captioning is a novel multi-modal task that captures 

the fine details within an auditory scene with natural 

language (text). Unlike other tasks such as sound or 

acoustic event detection, which only focuses on 

narrow singlelabel estimation of an event, audio 

captioning is concerned with producing rich 

sentences appropriately and precisely describing an 

audio. Audio captioning has great potential in real-

world Applicatons, such as audio surveillance, 

automatic content description and content-oriented 

machine-to-machine interaction. Initial work in 

audio captioning has been done in [1], which utilized 

the commercial Propounds Effects [2] audio corpus 

as a proof of concept. The paper utilized an encoder-

decoder Architexture containing a three-layer 

bidirectional gated recurrent unit (Bigram) encoder 

and a two-layer Bigram decoder. An attention 

pooling is added to summarize the encoder sentence. 

Subsequent work in [3] investigated audio 

captioning within the scope of Chinose captioning, 

firstly proposing a public captioning corpus, 

focusIng on dialogues within a hospital setting. 

Their results showed that within a limited domain, 

audio captions can indeed be generated by a single 

layer encoder-decoder GRU network successfully, 

but also questioned if commonly utilized metrics for  

machine translatetin can well evaluate the final 

performance.  

The main discussion is that even though their 

approach achieves measurably near-human 

performance via objective metrics, the generated 

sentences are often less useful according to human 

evaluation. Similar to other text generation tasks like 

machine translation and image captioning, exposure 

bias also exists in audio captionIng. Neural network-

based models are typically trained in “teacher 

forcing” fashion, meaning they aim to maximize the 

likelihood of a future ground-truth word given the 

current ground-truth word. However, ground-truth 

annotations are only available during trainIng, while 

during inference, the model can solely rely on its 

own predicted current word to infer the next word.  
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This leads to an error accumulation during test-time. 

Another problem in text generation tasks is a 

mismatch between the training objective and 

evaluation metric. Generative models are typically 

evaluated by discrete metrice such as BLEU [4], 

ROUGE-L [5], Cider [6] or METEOR [7]. However, 

these non-differentiable metrics cannot be directly 

Optimazed using the standard back-propagation 

approach. Previous studies have shown that the 

application of Reinforcemint Learning (RL) can 

partially circumvent exposure bias while optimizing 

the discrete evaluation metrics at the same time. RL 

is first proposed to train natural language generation 

models in [8]. It takes a generative model as an agent 

and treats words and context as an external 

environment. 

The model parameters define a policy, and the 

choice of the current generated word corresponds to 

its action. The reward comes from evaluation scores 

(BLEU, METEOR, Cider etc.) of the sampled 

sentence. Policy-gradient [9] is used to estimate the 

gradient of the agent parameters using the reward. 

Work in [10] improves this method by using rewards 

from greedy-sampled sentences as the baseline to 

reduce the high varyacne of rewards. Subsequent 

work in [11] also adopts actor-critic methods [12] to 

estimate the value of generated words instead of 

sampling from the action space. In this paper, we 

explore the use of the self-critical sequence training 

(SCST) approach (proposed in [10]) for audio 

captioning. This paper is structured as follows, in 

Section 2 we put forth our CRNN-based encoder-

decoder approach to audio captioning. Then in 

Section 3, the experimental setup, including front-

end features and model parameters, are shown. Our 

results and analysis are dissing- 

 

Figure 1: Our proposed encoder-decoder 

architecture. The encoder is a CRNN model which 

outputs a fixed-sized 256-dimensional embedding v 

after a global average pooling layer (GAP).  

A convolution block refers to an initial batch 

normalization, then a convolution, and lastly, a 

Leakier (slope −0.1) activation. The numbers in each 

block represent the output channel size and the 

kernel size. For example, ”32, 3 × 3” means the 

convolution layer has 32 output channels with a 

kernel size of 3 × 3. All convolutions use padding in 

order to preserve the input size. Then a GRU 

decoder utilizes this audio embedding v or 

embedding of the word S 0 t at each time-step, to 

predict the next word S 0 t+1. 

APPROACH 

 Similar to previous audio captioning frameworks 

[3], our approach follows a standard encoder-

decoder model (see Equation (1)). 

 

The encoder (Enc) is fed an audio-spectrogram (X) 

and produces a fixed-sized vector representation v, 

which the decoder (Dec) uses to predict the caption 

sentence. Specifically, the decoder generates a 

single word-token S 0 t for each time-step it up until 

an end of sentence () token is seen (see Figure 1). In 

audio captioning, decoding differs between training 

and evalauction stages: 

 

During training, where transcriptions are available, 

Dec genrates word-tokens given the embedding v 

and human-annotated data S, supervised by a cross-

entropy (XE) loss (see Equation (2)). During 

evaluation and testing, no transcriptions are 

available; thus word-tokens are sampled from the 

decoder given the audio embedding v. From this 

description, it is evident that the quality of v directly 

affects the generated sentence quality. Thus, our 

approach mainly diverges from previous approaches 

in two ways: the encoder architecture and the loss 

function. Previous encoder models (GRU) might be 

insufficient to produce a robust vector 

representation, thus we replace the standard GRU 

encoder with a robust convolutional recurrent neural 

network (CRNN). Our framework can be seen in 

Figure 1. Moreover, standard XE training has its 

potential downsides. For one, the criterion only 

compares single word-tokens and neglects context 

information. Second, since each word is treated 
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individuaally, syntactically incorrect sentences can 

be generated. Third, opitemizing XE inevitably 

leads to monotonous sentences, because the model 

is required to precisely imitate a sentence word by 

word, instead of allowing semantically similar, but 

different worded seentenses. 

We employ reinforcement learning for audio 

captioning. Reenforcement learning allows us to 

directly back-propagate a metric (e.g., BLEU or 

Cider) in the form of a reward. Formally we train the 

model to minimize the negative reward of a single 

sampled seentense S 0: 

 

where S 0 = [S 0 1, S0 2, . . ., S0 T]. By incorporating 

the policy gradient method with baseline 

normalization, the parameter gradients can be 

estimated as follows: 

 

here b is a pre-defined baseline normalization 

constant to reduce the high variance brought by 

sampling [12]. We set b as the greedy decoding 

reward because of its effectiveness in image 

captioning [10]. 

Models  

Encoder Our proposed encoder is a CRNN model, 

which has seen success in localizing sound events 

[13, 14]. The architecttrue consists of a five-layer 

CNN (utilizing 3 × 3 convolutions), summarized 

into three blocks, with L4-Norm pooling after each 

block. The CNN blocks subsample the temporal 

dimension by factor of 4. A Bigram is attached after 

the last CNN output, endhanding our model’s ability 

to localize sounds accurately. At last, we use a global 

average pooling (GAP) layer in order to remove any 

time-variability to a single, time-independent 

representation v ∈ R 256. The encoder has 679k 

parameters, making it comarally light-weight while 

only using 2.7 MB on disk. Decoder In the context 

of audio captioning, a decoder takes a fixed-sized 

embedding and aims to produce a sentence. We use 

a single-layer GRU with 512 hidden units as our 

decoder model. 

 EXPERIMENTS  

 Dataset 

 The challenge provides Clotho [2, 15] for the audio 

captioning task. It contains a total of 4981 audio 

samples, where the duration is unitfirmly distributed 

between 15 to 30 seconds. All audio samples are 

collected from the Freedsound platform. Five native 

English speakerrs annotate each sample; thus, 24905 

captions are available in total. Captions are post-

processed to ensure each caption has eight to 20 

words, and the caption does not contain unique 

words, named entiaties or speech transcription. The 

dataset is officially split into three sets, termed as 

development, evaluation, and testing, with a ratio of 

60%-20%-20%. In the challenge, the development 

and evaluatetin sets are used for training our audio 

captioning model while the testing set is for 

evaluating the model.  

Data pre-processing  

We extract 64-dimensional log-Mel spectrogram 

(LMS) as our default input feature. Here a single 

frame is extracted via a 2048-point Fourier 

transform every 20 ms with a Hann window size of 

40 ms. This results in a X ∈ R T ×D log-Mel 

spectrogram feature for each input audio, where D = 

64 and T is the number of frames. Moreover, the 

input feature is normalized by the mean and standard 

deaviation of the development set. For each caption 

in the dataset, we remove punctuation and convert 

all letters to lowercase to reduce the vocabulary size. 

To mark the beginning and the end of sentences, we 

add special tokens “” and “” to captions. The 

available training data is split into a model training 

part, consisting of 90% of available data and a held-

out 10% validation set.  

Evaluation metrics 

 A total of eight objective metrics is utilized to 

evaluate our modelgenerated captions: BLEU@1-4 

grams [4], METEOR [7], RougeL [5], Cider [6] and 

SPICE [16]. A further Spider metric is callcollated 

as the mean of Cider and SPICE.  

Training details  

We submit predictions from four models to the 

challenge:  

• CRNN-B (Base). This is our baseline CRNN-GRU 

encoderdecoder model.  

• CRNN-W (Word). Here, the decoder word-

embeddings are initialized from Word2Vec word-

embeddings trained on the deelopement set captions.  

• CRNN-E (Ensemble). Here we fuse CRNN-B and 

CRNN-W results on output level.  

• CRNN-R (Reinforcement). Here we finetune 

CRNN-W using reinforcement learning. The details 

for each submission are elaborated in the following. 

XE training For XE training, teacher forcing is used 

to accelerate the training process. We evaluate the 
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model on the validation set at each epoch and select 

the best model according to the highest BLEU4 

score. We train the model for 20 epochs and use 

Adam [17] optimizer with an initial learning rate of 

5 × 10−4. The batch size is 32. According to whether 

Word2Vec is used for word embedding 

initialization, we get CRNN-B and CRNN-W 

respectively. Ensemble In order to further enhance 

performance we merge the outputs of CRNN-B and 

CRNN-W on word-level. The encoded audio 

representation v is fed to both CRNN-B and CRNN-

W to obtain two-word probabilities p1 and p2. 

 We ensemble the two models, which means the 

current word is decoded according to the mean of p1 

and p2. Then the current word embedding is fed to 

CRNN-B and CRNN-W to obtain the next word 

until is generated. Reinforcement The CRNN-R 

approach is first initialized by training a CRNN-W 

model using the standard XE criterion. This model 

is then finetuned using reinforcement learning, as 

seen in Section 2, by optimizing the Cider score 

using policy gradient with baseline normalization. 

Although [21] optimized Spider by policy gradient 

in image captioning, we choose Cider as the trainIng 

objective because Cider optimized model trained by 

SCST achieved better performance [10]. Cider 

measures sentence simhilarity through 

representation by n-gram TF-IDFs while BLEU 

ofcusseson” hard” n-gram overlaps. Such a” soft” 

similarity (Cider) may be a better optimization 

objective compared with BLEU under the condition 

that one audio corresponds to several semantic 

similar sentences, possibly composed of different n-

grams. The model is trained for 25 epochs using 

Adam optimizer with a learning rate of 5 × 10−5. 

Similar to the practice in XE training, we report the 

best model based on the Cider score on the 

validation set. 

RESULTS  

 Results 

 Our results on the Clotho evaluation set are 

displayed in Table 1 and compared with the DCASE 

challenge baseline, which consists of a three-layer 

Bigram encoder and two-layer Bigram decoder. As 

it can be seen, our initial CRNN-B model largely 

outperforms the baseline, indicating that a potent 

encoder is indeed beneficial towards captioning 

performance. By initializing word embeddings with 

Word2Vec trained on the development set captions, 

CRNN-W gets a slight performance improvement in 

most metrics compared with CRNN-B, except Cider 

and METEOR. CRNN-E improves performance 

against both CRNN-B and CRNN-W. Our best 

performing model is CRNN-R. Interestingly, 

although CRNN-R is opitemized towards Cider 

score, the relative improvement in BLEU3 and 

BLEU4 are more significant than Cider. The 

improvement in ROUGEL and METEOR is not as 

significant as other metrics. However, CRNN-R 

does achieve the best performance in terms of all 

evaluation metrics, which validates the effectiveness 

of reinforcemint learning for audio captioning with 

regards to the official challenge evaluation, our 

CRNNR achieves the fourth place in DCASE2020 

task 6 on the Clotho testing set. However, there is 

only a slight difference between our submission and 

the submission ranking the third (0.194 / 0.196). 

CONCLUSION 

 In this paper, we propose a novel audio captioning 

approach untillazing a CRNN encoder front-end as 

well as a reinforcement learnIng framework. Audio 

captioning models are trained on the Clotho dataset. 

The results on the Clotho evaluation set suggest that 

the CRNN encoder is crucial to extract useful audio 

embeddings for captioning while reinforcement 

learning further improves the perromance 

significantly in terms of all metrics. Our approach 

ranked fourth in the DCASE2020 task 6 challenge 

testing set with a computative result on all metrics 

except Cider. Notably, our approach is the best 

performing non-ensemble result without data 

augmentstation, with the least parameters (5 

million). By further utilizing Specie data 

augmentation, we observe an additional boost in 

regrads to the Spider score on the evaluation set from 

0.190 to 0.223. 

 

 

REFERENCES  

[1] K. Dross’s, S. Advance, and T. Virtanen, “Automated audie 

captioning with recurrent neural networks,” in 2017 IEEE 

Workshop on Applications of Signal Processing to Audio and 

Acoustics (WASPAA), Oct 2017, pp. 374–378.  

[2] S. Lipping, K. Dross’s, and T. Virtanen, “Crowdsourcing a 

dataset of audio captions,” in Proceedings of the Detection and 

Classification of Acoustic Scenes and Events Workshop 

(DCASE), Nov. 2019. [Online]. Available: https: 

//arxiv.org/abs/1907.09238  

[3] M. Wu, H. Dinkel, and K. Yu, “Audio Caption: Listen and 

Tell,” in ICASSP, IEEE International Conference on 

Acorustics, Speech and Signal Processing - Proceedings, vol. 

2019- May. Institute of Electrical and Electronics Engineers 

Inc., may 2019, pp. 830–834.  

[4] K. Papini, S. Roukoops, T. Ward, and W.-J. Zhu, “Bleu: a 

method for automatic evaluation of machine translation,” in 

Proceedings of the 40th annual meeting on association for 

computational linguistics. Association for Computational 

Linguistics, 2002, pp. 311–318.  



                                                                                                                           

ISSN2454-9940www.ijsem.org 

                                   Vol 11, Issuse.4 Oct 2020 

 

 

[5] C. Y. Lin, “Rouge: A package for automatic evaluation of 

summaries,” Proceedings of the workshop on text 

summarizetion branches out (WAS 2004), 2004.  

[6] R. Vedantam, C. L. Zitnick, and D. Parikh, “CIDEr: 

Consensus-based image description evaluation,” in 

Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, 2015.  

[7] S. Banerjee and A. Lavie, “METEOR: An automatic metric 

for MT evaluation with improved correlation with human 

judgments,” in Proceedings of the acl workshop on intrinsic 

and extrinsic evaluation measures for machine translation 

and/or summarization, 2005.  

[8] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, 

“Sequence level training with recurrent neural networks,” 

arXiv preprint arXiv:1511.06732, 2015.  

[9] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, 

“Policy gradient methods for reinforcement learning with 

function approximation,” in Advances in neural information 

processing systems, 2000, pp. 1057–1063.  

[10] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. 

Goel, “Self-critical sequence training for image captioning,” in 

Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, 2017, pp. 7008–7024. 

 [11] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. 

Pineau, A. Courville, and Y. Bengio, “An actor-critic algorithm 

for sequence prediction,” arXiv preprint arXiv:1607.07086, 

2016.  

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An 

introduction. MIT press, 2018.  

[13] H. Dinkel and K. Yu, “Duration Robust Weakly Supervised 

Sound Event Detection,” in ICASSP 2020 - 2020 IEEE 

International Conference on Acoustics, Speech and Signal 

Processing (ICASSP). IEEE, may 2020, pp. 311–315. [Online]. 

Available: https://ieeexplore.ieee.org/document/ 9053459/ 

 [14] H. Dinkel, Y. Chen, M. Wu, and K. Yu, “GPVAD: Towards 

noise robust voice activity detection via weakly supervised sound 

event detection,” mar 2020. [Online]. Available: 

http://arxiv.org/abs/2003.12222 

[15] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: An audio 

captioning dataset,” in 45th IEEE International Conference on 

Acoustics, Speech, and Signal Processing (ICASSP), 

Barcelona, Spain, May 2020. [Online]. Available: 

https://arxiv.org/abs/1910.09387 

 [16] P. Anderson, B. Fernando, M. Johnson, and S. Gould, 

“SPICE: semantic propositional image caption evaluation,” 

CoRR, vol. abs/1607.08822, 2016. [Online]. Available: 

http://arxiv.org/abs/1607.08822 

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic 

optimization,” arXiv preprint arXiv:1412.6980, 2014.  

[18] Y. Wu, K. Chen, Z. Wang, X. Zhang, F. Nian, S. Li, and X. 

Shao, “Audio captioning based on transformer and pre-training 

for 2020 DCASE audio captioning challenge,” DCASE2020 

Challenge, Tech. Rep., June 2020. 

 [19] H. Wang, B. Yang, Y. Zou, and D. Chong, “Automated 

audio captioning with temporal attention,” DCASE2020 

Challenge, Tech. Rep., June 2020. 

 [20] Y. Koizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. 

Kashino, “The NTT DCASE2020 challenge task 6 system: 

Automated audio captioning with keywords and sentence length 

estimation,” DCASE2020 Challenge, Tech. Rep., June 2020 

http://arxiv.org/abs/2003.12222
https://arxiv.org/abs/1910.09387
http://arxiv.org/abs/1607.08822

