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Abstract 

This paper aims to support our claim that statistics holds a pivotal role among disciplines, offering essential tools 

and methodologies for uncovering patterns within data and gaining profound insights. Furthermore, we assert 

that statistics is paramount in the analysis and quantification of uncertainty. In this paper, we provide an 

extensive examination of various Data Science frameworks and emphasize the significant influence of statistics 

at each stage of the data analysis process, including data collection and enhancement, exploratory data analysis, 

data modeling, validation, and the presentation and reporting of findings. Additionally, we shed light on the 

potential pitfalls that may arise when statistical reasoning is disregarded. 
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Introduction 
Data Science, as a scientific discipline, is a multifaceted 

field drawing influences from informatics, computer 

science, mathematics, operations research, statistics, 

and various applied sciences. In a significant milestone, 

the term "Data Science" was first integrated into the 

title of a statistical conference, the International 

Federation of Classification Societies (IFCS) 

conference in 1996, under the theme "Data Science, 

classification, and related methods" . Despite its origins 

in statistics, the public perception of Data Science often 

places more emphasis on computer science and 

practical business applications, especially in the age of 

Big Data. 

 

The evolution of Data Science has been influenced by 

pivotal figures such as John Tukey, whose ideas in the 

1970s transformed the perspective of statistics. Tukey 

shifted the focus from a purely mathematical context, 

centered on statistical testing, to an exploratory setting. 

This shift involved deriving hypotheses from data, 

striving to comprehend the data before formulating 

hypotheses. 

 

Another foundational element of Data Science is the 

concept of Knowledge Discovery in Databases (KDD), 

with a particular emphasis on its subfield, Data Mining. 

KDD serves as a platform that unites diverse 

approaches for acquiring knowledge and insights from 

data. 

 

edge discovery, including inductive learning, 

(Bayesian) statistics, query optimization, expert 

systems, information theory, and fuzzy sets. Thus, KDD 

is a big building block for fostering interaction between 

different fields for the overall goal of identifying 

knowledge in data. 

Nowadays, these ideas are combined in the notion of 

Data Science, leading to different definitions. One of 

the most comprehensive definitions of Data Science 

was recently given by Cao as the formula  
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data science = (statistics + informatics + computing + 

communication + sociology + management) | (data + 

environment + thinking). 

 

In this formula, sociology stands for the social aspects 

and | (data + environment + thinking) means that all the 

mentioned sciences act on the basis of data, the 

environment and the so- called data-to-knowledge-to-

wisdom thinking. 

A recent, comprehensive overview of Data Science pro- 

vided by Donoho in 2015  focuses on the evolution of 

Data Science from statistics. Indeed, as early as 1997, 

there was an even more radical view suggesting to 

rename statis- tics to Data Science . And in 2015, a 

number of ASA leaders  released a statement about the 

role of statistics in Data Science, saying that “statistics 

and machine learning play a central role in data 

science.” 

In our view, statistical methods are crucial in most fun- 

damental steps of Data Science. Hence, the premise of 

our contribution is: 

Statistics is one of the most important disciplines to 

pro- vide tools and methods to find structure in and to 

give deeper 

Methodology 

This paper centers around the significance of statistics 

in the field of Data Science, emphasizing its pivotal role 

in providing insight into data and quantifying 

uncertainty. It delves into the major impact of statistics 

on the fundamental steps of Data Science, which have 

evolved from influential models like CRISP-DM (Cross 

Industry Standard Process for Data Mining). 

 

CRISP-DM, organized into six primary steps: Business 

Understanding, Data Understanding, Data Preparation, 

Modeling, Evaluation, and Deployment, has played a 

foundational role in applied statistics. 

 

In this paper's perspective, the main steps in Data 

Science have drawn inspiration from CRISP-DM but 

have evolved into a sequence of the following steps: 

Data Acquisition and Enrichment, Data Storage and 

Access, Data Exploration, Data Analysis and Modeling, 

Optimization of Algorithms, Model Validation and 

Selection, Representation and Reporting of Results, and 

Business Deployment of Results. The paper 

acknowledges that statistics may have a reduced role in 

steps indicated in small capitals. 

 

Typically, these steps are not executed in isolation but 

rather as part of an iterative and cyclic process. 

Moreover, it's common to alternate between multiple 

steps, notably in Data Acquisition and Enrichment, 

Data Exploration, Statistical Data Analysis, Data 

Analysis and Modeling, and Model Validation and 

Selection. 

 

Table 1 in the paper compares different definitions of 

Data Science steps and illustrates the relationships 

between them. It highlights the absence of Data 

Acquisition and Enrichment in CRISP-DM, suggesting 

that CRISP-DM primarily deals with observational 

data. Additionally, the paper's proposal incorporates 

Data Storage and Access and Optimization of 

Algorithms, steps where statistics plays a less 

prominent role, into CRISP-DM. 

 

The paper notes that the list of steps in Data Science 

can be further expanded, referencing Cao's proposal, 

which includes additional steps like Domain-specific 

Data Applications and Problems, Data Storage and 

Management, Data Quality Enhancement, and others. 

These align with the main steps in the paper's proposal, 

albeit with some variations in terminology and detail, 

depending on the background of the author (computer 

science or statistics). 

 

In the subsequent sections of the paper, the role of 

statistics is discussed in detail, with a focus on the steps 

where it is significantly involved, encompassing all 

steps in the proposal from Table 1, except those 

indicated in small capitals. 

 

 

Table 1: Comparison of Steps in Data Science - CRISP-DM, Cao's Definition, and Our Proposal 
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CRISP-DM Cao’s definition Our proposal 

Business Understanding Domain-specific Data, 

Applications and 

Problems 

Data Acquisition and Enrichment 

 Data Storage and Management Data Storage and Access 

Data 

Understanding, 

Data Preparation 

Data Quality Enhancement Data Exploration  

Modeling Data Modeling and 

Representation, Deep Analytics, 

Learning and Discovery 

Data Analysis and Modeling  

 High-performance Processing and 

Analytics 

Optimization of Algorithms 

Evaluation Simulation and Experiment Design Model Validation and Selection 

Deployment Networking, Communication Representation and Reporting of Results  

Deployment Data-to-decision and Actions Business Deployment of Results 

 

The entries "Data Storage and Access" and 

"Optimization of Algorithms" are primarily within the 

domain of informatics and computer science, where 

expertise in data management and algorithm 

optimization plays a crucial role. On the other hand, 

"Business Deployment of Results" is a step that 

typically falls under the purview of Business 

Management, involving decision-making, strategy, and 

practical implementation of data-driven insights within 

an organization. 

 

2.1 Data acquisition and enrichment 

 

Design of experiments (DOE) is essential for a 

systematic generation of data when the effect of noisy 

factors has to be identified. Controlled experiments are 

fundamental for robust process engineering to produce 

reliable products despite variation in the process 

variables. On the one hand, even con- trollable factors 

contain a certain amount of uncontrollable variation 

that affects the response. On the other hand, some 

factors, like environmental factors, cannot be controlled 

at all. Nevertheless, at least the effect of such noisy 

influencing factors should be controlled by, e.g., DOE. 

DOE can be utilized, e.g., 

 

– to systematically generate new data (data 

acquisition) , 

– for systematically reducing data bases , and 

– for tuning (i.e., optimizing) parameters of 

algorithms , i.e., for improving the data analysis 

methods  themselves. 

 

Simulations  may also be used to generate new data. A 

tool for the enrichment of data bases to fill data gaps is 

the imputation of missing data . 

Such statistical methods for data generation and enrich- 

ment need to be part of the backbone of Data Science. 

The exclusive use of observational data without any 

noise control distinctly diminishes the quality of data 

analysis results and may even lead to wrong result 

interpretation. The hope for “The End of Theory: The 

Data Deluge Makes the Scientific Method Obsolete” 

[4] appears to be wrong due to noise in the data. 

Thus, experimental design is crucial for the reliability, 

validity, and replicability of our results. 

 

2.2 Data exploration 

 

Exploratory statistics is essential for data preprocessing 

to learn about the contents of a data base. Exploration 

and visualization of observed data was, in a way, 

initiated by John Tukey. Since that time, the most 

laborious part of data analysis, namely data 

understanding and transformation, became an important 

part in statistical science. 

Data exploration or data mining is fundamental for the 

proper usage of analytical methods in Data Science. 

The most important contribution of statistics is the 

notion of distribu- tion. It allows us to represent 

variability in the data as well as (a-priori) knowledge of 

parameters, the concept underly- 

  

ing Bayesian statistics. Distributions also enable us to 

choose adequate subsequent analytic models and 

methods. 

 

2.3 Statistical data analysis 

 

Finding structure in data and making predictions are the 

most important steps in Data Science. Here, in 
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particular, statistical methods are essential since they 

are able to handle many different analytical tasks. 

Important examples of statistical data analysis methods 

are the following. 

 

a) Hypothesis testing is one of the pillars of 

statistical anal- ysis. Questions arising in data driven 

problems can often be translated to hypotheses. Also, 

hypotheses are the natural links between underlying 

theory and statistics. Since statistical hypotheses are 

related to statistical tests, questions and theory can be 

tested for the available data. Multiple usage of the same 

data in different tests often leads to the necessity to 

correct significance levels. In applied statistics, correct 

multiple testing is one of the most important problems, 

e.g., in pharmaceutical studies. Ignoring such 

techniques would lead to many more significant results 

than justified. 

b) Classification methods are basic for finding 

and predict- ing subpopulations from data. In the so-

called unsuper- vised case, such subpopulations are to 

be found from a data set without a-priori knowledge of 

any cases of such subpopulations. This is often called 

clustering. 

In the so-called supervised case, classification rules 

should be found from a labeled data set for the predic- 

tion of unknown labels when only influential factors are 

available. 

Nowadays, there is a plethora of methods for the unsu- 

pervised  as well for the supervised case 

In the age of Big Data, a new look at the classical meth- 

ods appears to be necessary, though, since most of the 

time the calculation effort of complex analysis methods 

grows stronger than linear with the number of observa- 

tions n or the number of features p. In the case of Big 

Data, i.e., if n or p is large, this leads to too high 

calcula- tion times and to numerical problems. This 

results both, in the comeback of simpler optimization 

algorithms with low time-complexity and in re-

examining the tradi- tional methods in statistics and 

machine learning for Big Data . 

c) Regression methods are the main tool to find 

global and local relationships between features when 

the tar- get variable is measured. Depending on the 

distributional assumption for the underlying data, 

different approaches may be applied. Under the 

normality assumption, linear regression is the most 

common method, while gener- alized linear regression 

is usually employed for other distributions from the 

exponential family . More 

 

This section provides an overview of various advanced 

statistical methods and their applications in the field of 

Data Science: 

 

1. Functional Regression for Functional Data: This 

method, such as the one described in reference  is used 

to analyze data where the variables are functions. It can 

be applied to a wide range of fields, including 

economics, natural sciences, and engineering. 

 

2. Quantile Regression: Quantile regression, as 

referenced in , is a technique used to model conditional 

quantiles of a response variable. It is valuable for 

understanding the relationships between variables in 

different quantiles. 

 

3. Regression Based on Loss Functions: Regression 

methods, like Lasso regression mentioned in , consider 

loss functions other than the traditional squared error 

loss. These approaches are employed to address specific 

data characteristics and modeling requirements. 

 

4. Challenges in Big Data: Handling large datasets in 

the context of Big Data poses challenges, particularly 

due to the high volume of observations (n) and features 

(p). Techniques such as compressed sensing, random 

projection, and sampling-based procedures are used to 

reduce computation time (n reduction). Additionally, 

variable selection and shrinkage methods like Lasso 

help reduce the number of features (p reduction) while 

preserving their interpretability. 

 

5. Time Series Analysis: Time series analysis, as 

discussed in , focuses on understanding and predicting 

temporal patterns. This analysis is essential in various 

fields, including behavioral sciences, economics, and 

natural sciences. Statistical methods are applied to 

model and predict future values or properties of time 

series data. 

 

6. Statistical Modeling: 

 

Complex Interactions: Complex interactions between 

factors can be modeled using graphs or networks. These 

interactions can be directed or undirected and are 

valuable in various fields. 

Stochastic Differential and Difference Equations: These 

equations are used to represent models in natural and 

engineering sciences. Approximate statistical models 

derived from such equations can provide insights into 

statistical control of processes. 

Local Models and Globalization: Statistical models are 

often valid only in sub-regions of variable domains. 

Local models, structural breaks, and concept drift 

analysis are employed to adapt models to local regions 

or time periods. 

Mixture Models: Mixture models are used to generalize 

from local to global models, accounting for 

heterogeneity in data. 
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7. Model Validation and Model Selection: In cases 

where multiple models are proposed for prediction or 

analysis, statistical tests, resampling methods, and 

perturbation experiments are used to assess and 

compare model performance. Model selection 

techniques help choose the most suitable model for a 

given task. 

 

8. Representation and Reporting: Visualization and 

model storage in an easily updatable format are 

essential for interpreting results and deploying data 

analysis. Reporting of uncertainties and review are 

crucial for communicating results effectively and 

ensuring the accuracy of data analysis. 

 

This section highlights the diverse range of statistical 

methods and their applications in Data Science, 

demonstrating the field's versatility and significance in 

various domains and data-driven decision-making. 

 

 

In the realm of data analysis, there are potential 

fallacies that can arise when statistical methods are not 

adequately considered or when overly simplistic data 

analytics and statistical techniques are employed. These 

fallacies are especially pertinent in the analysis of large 

and complex datasets. Here are some key fallacies that 

can be encountered: 

 

1. Neglecting the Role of Distributions: Distributions, 

as emphasized in Section 2.2, are a cornerstone of 

statistical thinking. Failing to take distributions into 

account during data exploration and modeling can limit 

the reporting of values and parameter estimates without 

considering their associated variability. Distributions 

are crucial for making predictions with corresponding 

error bands. 

 

2. Importance of Model-Based Data Analytics: Model-

based data analytics often require an understanding of 

distributions. For instance, in unsupervised learning to 

find clusters in data, incorporating additional structural 

information, such as spatial or temporal dependencies, 

may necessitate the inference of parameters like cluster 

radii and their spatio-temporal evolution. This type of 

analysis heavily relies on the concept of distributions. 

 

3. Comparing Multivariate Hypothesis Testing: When 

multiple parameters are of interest, it is advisable to 

compare univariate hypothesis testing approaches to 

multiple procedures, such as in multiple regression. 

Restricting analysis to univariate testing may lead to 

overlooking relationships between variables. 

 

4. Complex Models for Deeper Insights: Gaining 

deeper insights into data may require more complex 

models, such as mixture models for detecting 

heterogeneous groups within the data. Ignoring the 

presence of mixtures can result in meaningless 

averages, necessitating the identification of subgroups 

through unmixing components. In a Bayesian 

framework, latent allocation variables in models like 

the Dirichlet mixture model can facilitate this process. 

For example, such models can be applied to decompose 

a mixture of different networks within a heterogeneous 

cell population in molecular biology. 

 

5. Handling Mixtures with Unequal Component Sizes: 

In some scenarios, mixture models may represent 

mixtures of components with highly unequal sizes, 

where small components (outliers) are of particular 

importance. In the context of Big Data, naïve sampling 

procedures are often used for model estimation. 

However, these procedures carry the risk of missing 

small mixture components. Therefore, model validation 

and the use of more appropriate distribution choices, as 

well as resampling methods to assess predictive power, 

are crucial to avoid these pitfalls. 

 

In summary, understanding the role of distributions, 

employing model-based data analytics, considering 

multivariate approaches, using complex models for 

deeper insights, and being cautious with respect to 

mixtures of unequal sizes are all essential aspects of 

robust and effective data analysis, especially in the 

context of large and complex datasets. Ignoring these 

principles can lead to avoidable fallacies in data 

analysis. 

 

Conclusion 

In conclusion, the assessment of the capabilities and 

impacts of statistics in Data Science leads us to a 

fundamental observation: 

 

The role of statistics in the field of Data Science is 

often underestimated when compared to the prominence 

of computer science. This underestimation is 

particularly evident in the areas of data acquisition and 

enrichment, as well as advanced modeling essential for 

prediction. 

 

This conclusion underscores the need for statisticians to 

take a more proactive and assertive role in the evolving 

and highly respected domain of Data Science. It is 

crucial for statisticians to recognize and assert their 

contribution to this field. 

 

Furthermore, it's essential to emphasize that, especially 

in the context of Big Data, the integration and synergy 

of mathematical methods, computational algorithms, 

and statistical reasoning are necessary to yield 

scientifically sound results based on appropriate 
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approaches. Achieving success in Data Science 

necessitates a harmonious collaboration between all 

scientific disciplines involved. 
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