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Considerations for Applying the GFDM to Dynamic Analysis 
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ABSTRACT 

In this work, a dynamic analysis of beams and plates is carried out using the generalized 

finite difference method (GFDM). We provide the stability conditions for a fully explicit 

technique for beams and plates. Measures of beam and plate point cloud irregularity are 

given. The method's dependability for clouds of irregularly shaped nodes is shown by results 

obtained from addressing beam and plate vibration issues. 

 

INTRODUCTION 

From the traditional finite difference 

approach came the generalized finite 

difference method (GFDM) (FDM). It 

doesn't matter whether the point cloud 

you're working with is uniform or very 

irregular; GFDM may be used on it [1]. The 

goal is to employ a method called moving 

least squares approximation to derive 

explicit difference formulas that can be 

plugged into the partial differential 

equations [2]. Benito, Urea, and Gavete 

have made several promising contributions 

[3-8] to the refinement of this technique. 

The GFDM is used to solve hyperbolic and 

parabolic equations, as shown in [9]. In this 

study, we provide an explicit approach [10-

13] for employing the GFDM to solve 

dynamic analytic issues involving beams 

and plates. Specifically, the paper follows 

this structure. The first part is an 

introduction. Section 2.1 details the explicit 

GFDM scheme for beams, and Section 2.2 

details the explicit GFDM strategy for 

plates, both of which are described in 

Section 2 of this work. 

There are two types of truncation errors that 

are studied in this paper: beam truncation 

errors in Section 3.1.1 and plate truncation 

errors in Section 3.1.2. Section 3 focuses on 

the convergence, consistency, and von 

Neumann stability. In Section 3.2.1, we 

examine von Neumann stability for beams, 

and in Section 3.2.2, we do the same for 

plates. In Section 4, we look at how the 

consistency of a cluster of nodes is related 

to its erratic nature. The index of 

irregularity of a cloud of nodes is defined 

for beams in Section 4.1, and for plates in 

Section 4.2. Some GFDM for solvin 

applications are discussed in Section 5. 

Included are difficulties in doing a dynamic 

study of beams. In Section 6, we look at 

how the GFDM has been used to address 

issues in the field of dynamic analysis of 

plates. Finally, some findings are presented 

in Section 7. 
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Explicit generalized finite difference 

schemes 

Frequency of beam vibrations in beams are the first 

kind of example we'll look at. So, let's take into 

account the situation described by the following 

partial differential equation (pde) 

 

Starting and case-specific boundary conditions for a 

beam of length L 

 

Where F1 and F2 are constants, while the material 

and shape of the beam determine C1. 

For the values of partial derivatives in the space 

variable, we use the explicit difference equations. 

The goal is to find closed-form linear equations that 

may be used to approximate partial derivatives at 

certain places in the domain. Before doing anything 

further, the domain is seeded with an uneven grid or 

cloud of points. After establishing a composition's 

central node and the N points (henceforth nodes) 

around it, the star may be used to refer to the formed 

node group in respect to the central node. All of the 

domain's vertices have been given a star in the order 

[3, 2, 4, and 1]. If the value of the function at the 

central node (U0) of the star, at coordinate x0, is 

approximated by the fourth-order approximation u0, 

and the values of the function at the other nodes, at 

coordinates xj with j = 1,..., N, are approximated by 

the fourth-order approximations uj, then the Taylor 

series expansion states that. 

 

Function B4(u) may be defined as in if the terms 

above the fourth order in Eq. (3) are disregarded. 

 

And the denominator weighting function is 

represented by w(hj). The system of linear equations 

is produced if the norm (4) is minimized with regard 

to the partial derivatives. 

 

 

By using the same procedure as in [3-5, 9], the 

explicit difference formulas for the fifth system are 

produced. When the partial derivatives' values are 

given in explicit form, the star equation is achieved. 

 

The time-dependent portion of Eq. (1) will be 

calculated using an explicit formula. The Cauchy 

starting value issue may be solved by using this 

explicit formula. This technique requires only a 

single grid point at the maximum time scale. An 

approximation to the second derivative with regard 

to time 

 

When Equations (9) and (11) are inserted into Eq. 

(1), the following recursive connection is obtained: 
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The central difference formula is a method of 

approximating the first derivative with regard to 

time. 

 

The following equation is found by substituting Eq. 

(13) into Eq. (12) while also considering beginning 

conditions (2): 

 

The value of the function at the centre node of the 

star at time n = 1 is related to the values F1(x0, 0) 

and the starting conditions F2 by Eq. (14). (x0). 

2.2. Vibrations of plates 

Vibrations of plates are the second scenario we 

analyze. Let's think about the situation in terms of 

 

Including starting and plate boundary conditions in 

the range [0, L] [0, L]. 

 

Where G1 and G2 are two smooth functions of 

known value and C2 is a constant that varies with 

plate material and shape. Fourth-order 

approximations of the value of the function at the 

centre node (U0) of the star, with coordinates (x0, 

y0), u0, and uj, are employed in the same manner as 

in the preceding subsection. 

Then, using the Taylor series expansion, we can 

determine the value of the function at the remaining 

nodes, or coordinates (xj, yj) for j = 1,..., N. 

 

Ignore the terms above the fourth order in Eq. (17). 

The function may then be defined. 

 

For some w (hj, kJ) where w (hj, kJ) is the 

denominator weighting function. 

The system of linear equations is produced if the 

norm (18) is minimized with regard to the partial 

derivatives. 

 

 

 

Moreover, the explicit difference formulas are 

produced by solving the system. When the partial 
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derivatives' values are given in explicit form, the star 

equation is achieved. 

 

 

An approximation to the second derivative with 

regard to time 

 

When replaced in Eq. (15), the recursive connection 

shown below is obtained: 

 

The central difference formula approaches the first 

time derivative. 

 

The following equation is produced when Eq. (27) 

is substituted into Eq. (26) while starting conditions 

(16) are considered: 

 

The expressions (12) and (26) show a connection 

between the value of the function at the central node 

of the star at time step n + 1 and the values of the 

functions at the nodes of the star at time step n. 

By solving the systems of Eqs. (5) And (19) and 

plugging in the partial derivatives, the explicit 

generalized finite difference schemes may be 

produced. All of the partial derivatives in the PDE 

must be accounted for in the Taylor series 

expansion. This is because the GFD scheme is 

derived in a manner unique to the partial differential 

equation being solved. The Taylor series expansion 

(Eqs. (3) and (17)) relies on partial derivatives; 

hence this also depends on the weighting function 

(see [3, 4, and 9]). 

Convergence 

Stability is sufficient for convergence under Lax's 

equivalence theorem, provided that the consistency 

criterion is met. Here, we look at the truncation error 

of Eqs. (12) (For beams) and (26) (for plates), then 

we go on to stability. 

Truncation error and consistency 

Beams 

It is well knowledge that the following expression 

describes the truncation errors for the second order 

time derivative (TEt). 

 

Higher order functions B 4 [u] are derived by using 

the Taylor series expansion that includes higher 

order derivatives to determine the truncation error 

for space derivatives. Similar to the formulations of 

B 4 [u] provided by Eq. (4), but with higher-order 

derivatives included. 

 

The following systems of linear equations are 

formed if the new norms B 4 [u] are minimized with 

regard to the partial derivatives up to the fourth 

order: 

 

Where A4, Du4, and b4 were determined using Eqs. 

(6) And (7), and b 4 is defined as 

 

 

It is possible to divide the value of b4 in half as 

shown below: 
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For beams, the GFDM uses the approximation 

expressed by A1 4 b4 in Eq. (36); the truncation 

errors for spatial derivatives are thus given by 

 

Thus 

 

Where 1,j(he) and 2,j(hj) are rational homogeneous 

functions of order one and two, respectively, and 

(hj) is a sequence of functions of order three or 

higher. In the case of beams, the truncation error for 

spatial derivatives is given by Expression (40). 

Remember that the sum of the truncation errors 

(TTE) is 

 

Thus (30) and (41) may be used to get TEt and TEx4, 

respectively. 

Since Eq.41 

 

Then, the approximation's consistency is shown by 

the truncation error condition in Eq. (42). 

Plates 

It is well knowledge that the truncation errors for the 

second order time derivative (TEt) are as follows. 

 

Higher order functions B 14[u] are created by using 

the Taylor series expansion that includes higher 

order derivatives to calculate the truncation error for 

space derivatives. Similar to the formula in Eq. (18), 

but now including higher order derivatives, are the 

expressions B 14[u]. 

 

The following sets of linear equations are produced 

if the new norm B 14[u] is minimized with regard to 

the partial derivatives up to the fourth order: 

 

Where A14 and Du14 have been determined using 

Eqs. (20) And (21), respectively, and b 14 is defined 

as 

 

Where b14 is as determined by Eq. (22), and the 

additional terms b 4 and correspond to the newly 

introduced higher order derivatives integrated into 

the Taylor series expansion to bring the functions 

from B14[u] to B 14[u]. 

After that, we may use the inverse matrix A1 14 to 

get a more accurate estimate of the partial 

derivatives. 

 

As can be shown in Eq. (49), the GFDM uses the 

approximation A1 14 b14 for the case of plates (see 

[9,8]), and the truncation errors for spatial 

derivatives are thus provided by 
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Where (hj, kj) is a sequence of third- and higher-

order functions, and (i,j) are homogeneous rational 

functions of order two. The inaccuracy introduced 

by truncating spatial derivatives in the case of plates 

is given by Eq. (53). Remember that the sum of the 

truncation errors (TTE) is 

 

Where Eqs. (30) And (53) determine TEt and 

TE(x,y), respectively. 

By analyzing Eq. 54  for derivatives with bounds, 

we can 

 

Then, Eq. (55) demonstrates the approximation's 

consistency under the truncation error condition. 

Criterion for stability 

Stability of the difference schemes may be 

guaranteed by satisfying the von Neumann criterion, 

which is both sufficient and required [14]. The von 

Neumann technique theoretically only works for 

pure initial value issues with periodic beginning 

data, because it ignores boundary conditions. 

However, it does provide the essential requirements 

for stability of constant coefficient problems under 

any boundary conditions. 

Beams 

The basic concept for the stability analysis is to do a 

harmonic decomposition of the estimated solution at 

grid points and at a certain time step n. After that, 

the approximate finite difference solution may be 

written in the star's nodes at time n 

 

Where stands for the multiplier,. 

 

Since the stability requirement may be expressed as 

1, where the wave number, v, and 1 are is the 

threshold value. Simply by plugging Eq. (56) into 

Eq. (12), we see that the elimination of neix0 yields 

 

The quadratic equation may be calculated using Eq. 

(9) as an input. 

 

Therefore, the possible values are 

 

Now, if we focus on the stability requirement, we 

get 

 

The star's stability condition is achieved by solving 

Eqs. (60) and (61), which include cancelling 

conservative conditions. 

 

Where C1 is the coefficient supplied by Equation (1) 

and 0 is the coefficient of the fourth-order estimate 

for the value of the function at the centre node of the 

star in Equation (9). 

Plates 

The basic concept for the stability analysis is to do a 

harmonic decomposition of the estimated solution at 

grid points and at a certain time step n. Then, at time 

n, the finite difference approximation may be 

expressed in terms of star nodes. 
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This allows us to express the stability criterion as 1. 

Cancellation of neivT x0 occurs when Eq. (63) is 

substituted into Eq. (26), producing 

 

The quadratic equation is found using Eq. (24) and 

some more mathematics. 

 

Therefore, the possible values are 

 

Now, if we take the criterion for stability into 

account, we get 

 

By cancelling out conservative conditions in Eqs. 

(67) And (68), we get the star stability condition, 

which reads as 

 

Where C2 is the coefficient from Eq. (15) and 0 is 

the coefficient from Eq. (23) describing the fourth-

order approximation of the value of the function at 

the central node of the star? 

Irregularity of the star (IIS) and stability 

Beams 

In this part, we will define both the star's index of 

irregularity (IIS) and the node cloud's index of 

irregularity (IIC ). Coefficient 0 depends on (a) the 

total number of star nodes (including the central 

node), (b) the coordinates of each star node 

(including the central node), and (c) the weighting 

function (see Refs. [3,4,6]). Since Eq. (62) depends 

on the coordinates of the star's centre node, the 

number of star nodes and the weighting function are 

assumed to be constants. The average distance 

between a star's nodes and the centre node at 

coordinate (x0) is denoted by the symbol 0, while 

the average distance between stars in a cloud of 

nodes is denoted by the symbol. 

 

It is possible to reformulate the stability requirement 

as 

 

Inequality (71) is written as follows for one-

dimensional situations with regular mesh. 

 

 

The result is an unequal number (71). 

For each star in the cloud of nodes, we provide the 

IIS for a star with the core node in (x0) as 

 

That equals 1 if the mesh is regular and 0 if the IIS 

is not. 

If IIS goes down, t goes down since Eq. (71) says it 

must, as a rise in the absolute value of t0 also means 

a reduction in t. When all the irregularity indices of 

the stars in a cloud of nodes are added together, the 

result is the irregularity index of the cloud of nodes 

(IIC). 

 

 

One obtains inequality (76). 
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We characterize the IIS for a star with a centre node 

in coordinates (x0, y0) as 

 

Beam analysis using numerical methods 

This section employs a weighting function where 

 

The worldwide precise inaccuracy may be 

determined via the formula 

 

Transverse vibrations of a simply supported 

beam 

 

Forced vibrations of a simply supported beam 

Here, we use a weighting function of (80), and the 

worldwide error is computed as (81). 

For the pde, we have 

 

 

 

Transverse vibrations of a beam with one end 

fixed and other end free 

Here, we use a weighting function of (80), from 

which we get the following formula for the 

worldwide exact error: (81). For those interested in 

the pde: 
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Fig. 3. Global error versus time step 

Transverse vibrations of a beam with one end 

fixed and other end simply supported 

Here, we use a weighting function of (80), from 

which we get the following formula for the 

worldwide exact error: (81). For those interested in 

the pde: 

 

Summary of the results obtained for beams 

We summaries the partial differential equations 

(PDEs), boundary conditions (BCs), starting 

conditions (ICs), and exact solutions (XSs) in Table 

1. You can see the point clouds used in each of the 

four scenarios in Figures 1 and 2. 

In all circumstances when the time step is less than 

the stability limit, as illustrated in Fig. 3, the global 

error rises with the time step (62). Fig. 4 displays the 

result of a drop in the cloud's index of irregularity, 

which leads to a little rise in the resulting inaccuracy 

(the IIC is in interval [0, 1], and it is equal to 1 when 

the cloud corresponds to the regular case). 

 

Fig. 4. Global error versus IIC 

Numerical results of plates 

This section employs a weighting function where 

 

And the worldwide precise error is found by (81). 

Here, we show off a variety of plate-related 

numerical findings for the following use-cases. One, 

the unrestricted movement of a flat plate on a single 

support. Impact-induced free vibrations in a plate 

with a single support point. Induced vibrations in a 

plate with little support. Free vibrations of a 

stationary plate. We provide the PDEs, boundary 

conditions, beginning conditions, and precise 

solutions for all four scenarios below. 

Free vibrations of a simply supported plate 

 

The starting condition, the domain border, and the 

interval [0, 1] [0, 1]. 

 

Free vibrations of a simply supported plate due 

to impact given to a point 
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Forced vibrations of a simply supported plate 

Here, we use weighting function (98), and we 

compute the worldwide error using (81) 

For those interested in the pde: 

 

Having Boundaries 

 

Free vibrations of a fixed plate 

 

Having Boundaries 

 

If the starting conditions are [0, 1] [0, 1] and is the 

border of the domain 

 

Summary of the results obtained for plates 

The PDEs, boundary conditions, beginning 

conditions, and precise solutions are summarized in 

Table 2. In Figs. 5 and 6, we see the point clouds 

used in these four scenarios. 

 

 

Fig. 5. Regular mesh (IIC = 1). Irregular mesh (IIC 

= 0.92). 

 

Fig;6   Irregular mesh (IIC = 0.83). Irregular mesh 

(IIC = 0.76). Irregular mesh (IIC = 0.58 
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In all circumstances when the time step is below the 

stability limit, as illustrated in Fig. 7, the global error 

grows in proportion to the time step (69). Fig. 8 

shows a little rise in inaccuracy when the cloud's 

index of irregularity is decreased (the IIC lies in the 

range [0, 1], and it is equal to 1 when the cloud 

matches the regular case). 

Convergence test 

As can be shown in Fig. 9, the GFD approach 

converges reliably when applied to plates. When 

applied to case 6.1, Fig. 5 (cases with 121, 289, 441 

and 676) for t = 0.005, the global error reduces as 

the number of nodes in the cloud of nodes rises. 

 

 

Fig. 9. Global error versus the number of nodes for 

case 6.1 

Conclusions 

An intriguing approach to solving partial differential 

equations is the extended finite difference technique 

using uneven clouds of points. The generalized 

finite difference has been created to allow for the 

explicit solution of various issues in beam and plate 

dynamic analysis. For both beams and plates, the 

von Neumann stability criteria have been written as 

a function of the coefficients of the star equation for 

an irregular cloud of nodes. In this article, we 

provide an explanation of the index of irregularity of 

clouds of nodes (IIC) and how it relates to the 

stability bound. Numerical studies reveal that, when 

the time step is decreased (while being within 

stability bounds), the overall error decreases. 
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