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Abstract: 

One of the deadliest cyber-attacks against smart grids is known as false data injection (FDI), which may result in energy theft from end 

users, false dispatch in the distribution process, and device malfunction during power production. In this work, we develop a new kind of 

FDI attack called tolerant false data injection (TFDI). These assaults circumvent the conventional method of detecting incorrect data by 

taking use of the detector's latitude for dealing with observational mistakes. After that, we present an EDSE-based approach to TFDI 

detection in smart grids. Using graph partition methods, the smart grid is broken down into its constituent parts. The extended subsystem 

is the result of each subsystem being expanded to include the neighbouring buses and tie lines. Each expanded subsystem's bogus data is 

checked using the Chi-squares test. Decomposition makes the bogus data easily distinguishable from common observational mistakes, 

hence improving the sensitivity of the detection process. IEEE 14-bus, IEEE 39-bus, IEEE 118-bus, and IEEE 300-bus systems are 

subjected to extensive TFDI attack simulations. The suggested technique greatly decreases the related computing costs, while simulation 

results demonstrate that the detection accuracy of the EDSE-based method is much greater than that of the previous method. Keywords: 

smart grids; security; false data injection (FDI); bad data detection; extended distributed state estimation (EDSE) 
 

 

Introduction 

In smart grids, information techniques are applied 

to provide a desirable infrastructure for real-time 

Quantification, Dissemination, Determination, and 

Management. Millions of buildings and streets are 

outfitted with sensors for this reason. Due to its 

interconnection with the data infrastructure, the 

question of how to prevent false data injection (FDI) 

attacks — those that manipulate data in 

transmissions or acquire unauthorized access and 

control over electrical systems — arises. In addition, 

hackers are drawn to FDI assaults because of the 

potential financial rewards they provide (hackers, 

for instance, may alter their energy expenditures by 

tampering with the readings on their smart meters). 

The control center might be led 

astray by the phony information and endanger the 

smart grid in the process. Since the ground- breaking 

work of Schweppe in 1970 [2], it has been widely 

accepted that power system state estimate (SE) is a 

suitable way to analyse the poor data. Processing the 

set of redundant measurements, often bus voltage 

magnitudes and phase angles, in real-time is used in 

supervisory control and data acquisition (SCADA) 

systems to decrease observation errors, identify 

incorrect data, and predict the electrical states of 

power systems. It is hypothesized that faulty data 

detection techniques 

[3] may safeguard smart grids against FDI assaults, 

such as the energy conservation test, the Chi- 

squares test, and the normalized residuals test. 
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Preliminaries SE 

Power system SE is widely used to ensure the safety 

and economy of operation of power system. The 

state variables are related to the measurements as 

shown in Equation (1): 

 

 
where x is the state variables; z is the meter 

measurements; 
 

 

is the measurement error. For a well-proofreading 

system, these errors can be considered to follow the 

Gaussian distribution of zero mean [3]. In the SE, 

measurements are usually the values that can be 

observed easily, such as the line power flow, bus 

power injections, bus voltage magnitudes, and line 

current flow magnitudes, etc. The state variables are 

usually complex phasor voltages which cannot be 

measured conveniently. Both the measurements and 

state variables follow the same constraints, such as 

power balance theory and the Kirchhoff’s Law, etc. 

When using the polar coordinates for a system 

containing N buses, the state vector will contain (2N 

− 1) elements, N bus voltage magnitudes and (N − 

1) phase angles. In general, measurements are more 

than state variables (m > n), since there are more 

lines than buses and more kinds of measurements 

than state variables. Essentially, power system SE is 

a process which uses real-time redundant 

measurements to improve data accuracy and 

automatically excluded from the error message 

caused by random interference. The objective is to 

find an estimate x ^ of x that is the best fit of the 

measurement z according to Equation (1). The 

problem is usually solved by the weighted least 

squares (WLS) algorithm [3]. The SE can be 

formulated as a quadratic optimization problem: 

 

 

where R−1 is the measurement inverse covariance 

matrix. The Newton’s method can be applied to 

solve the quadratic optimization problem. The 

increment can be calculated by: 

 

 

 

 
is the Jacobi matrix; and 

 

 

is the gain matrix. The convergence criterion is the 

following: 
 

 

where εx is a predefined threshold. 

TFDI 

Most researches on the FDI construction follow the 

same idea: the attackers find an attack vector, a, to 

be equal to Hc. Then the manipulated measurement 

za = z + a can pass the bad data detection and 

identification of direct-current (DC) SE [8,9]. Thus, 

the measurement residual is: 
 

 
From the perspective of the attacker, it is almost an 

unattainable mission to find an attack vector a in the 

real world. Firstly, the topology of the power system 

is one of the top secrets of most power companies. It 

is difficult to obtain the measurement matrix H. 

Secondly, solving the a = Hc, which in real systems 

is an ultra-high dimensional equation is difficult. It 

would be a NP-hard problem, when the attackers 

want to inject a specific data with limited 

compromised meters. Moreover, if the system 

topology is changed, the FDI attack would trigger 

bad data detection. Subject to the constraints of 

invisible observation errors and the false alert rate, 

the tolerance mechanism for measurement errors in 

SE is necessary. Instead of solving the problem in 

Equation (6), the attacker can construct a TFDI 

below the threshold of estimated residuals: 
 

 

Moreover, there is a high probability that the false 

data could not be detected when the attackers 
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manipulate the data on both sides of the same 

transmission line. There are four power flow 

measurements per line. In each direction, there is a 

pair of active powers and reactive powers. Since the 

active power is related to economic interests, it is 

more attractive for attackers to falsify. On the 

transmission line Li,j (between the bus i and j), Pi,j 

denotes the active power from busi to busj, observed 

on busi, and Pj,i denotes the active power from busi 

to busj, observed on busj. The original active power 

from bus i to j , org Pi j and , org Pj i are changed by 

same times to be , inj Pi j and , inj Pj i 

simultaneously to guarantee the balance of line 

power flow. Injected data levels (IDL) is defended 

to present the relative injected errors against the 

measurements: 

 

Comparing with the strict conditions required by the 

undetectable FDI attack, the TFDI only needs the 

attacker to manipulate meters on target transmission 

lines. Moreover, from [8], it can be seen that the 

probability of finding an attack vector for a target 

FDI (unconstrained case) in an IEEE 300-bus system 

is about 20%, even if the attacker can compromise 

60% of all smart meters. In experiments, traversal 

attacks are conducted in IEEE 57- and 300-bus 

systems. The probabilities to construct a TFDI are 

shown in Table 1. It can be seen that the possibility 

to construct a TFDI attack is much higher than for 

an undetectable FDI. 

Table 1. Success probability to find a tolerable false 

data injection (TFDI) attack. IDL: injected data 

levels; and IEEE: the Institute of Electrical and 

Electronics Engineers. 
 

In addition, we modify the active power on each bus 

in IEEE 39-, 57- and 118-bus systems with different 

IDL. A relative low detection precision is performed 

by the Chi-squares test, as shown in Table 2. 

Furthermore, with the scale of the power system 

grows, the tolerance of measurement errors is 

accordingly increased. We can see from Table 2 that 

it is easier for the attackers to bypass the detection 

in the larger system. 

Table 2. Detection precision of the Chi-squares test 

against TFDI attacks. 

 

 
 

It's important to remember that attackers build the 

TFDI based on the information and access they have 

to smart meters. The system's observability is of 

little concern to them. TFDI assaults conceal 

themselves amid regular measurement mistakes 

and take advantage of the detector's tolerance of 

typical cumulative random noises. It just causes 

certain smart meter readings to be inaccurate and 

does not change the system's observability overall. 

Since the TFDI method is simple to implement and 

works with both AC and DC models, it is important 

for power engineers and security experts to be aware 

of the threat posed by this kind of attack. In this 

article, we'll go through several ways to defend 

yourself against this kind of assault. 

Possible Dangers and Attack Scenarios 

Invasion of Smart Meters 

The FDI is based on cyber methods. To get access to 

invalid activities on smart meters or network 

communications is the primary goal of cyberattacks. 

Modbus/TCP and DNP 3.0/TCP are the most used 

protocols for communicating with smart meters. 

Modbus/TCP uses port 502, whereas DNP3.0/TCP 

uses port 20,000. An adversary may begin by 

scanning the whole network segment for hosts with 

open ports (either 502 or 20,000). After that, unique 

hosts are identified and labeled as potentially 

malicious. The attack may then interact with these 

gadgets to confirm that they are smart meters and to 

learn what kind of goods they are. Smart meters may 

be hacked in two ways: (1) Hacking into a gadget 

has traditionally included deciphering passwords. 

Smart meters often demand authentication when 

their settings need to be changed. Smart meters don't 

have complicated password procedures because of 

the limited computing resources and storage. In this 

simulated attack on smart meters, the password 

consists of four digits, and it can be cracked in a 

matter of seconds. (2) Plaintext communication is 

another weakness that may be used to get access to 

smart meters. Password protection systems for 

certain smart meters may be somewhat involved. 

However, Modbus/TCP or DNP 3.0/TCP is often 

used as the communication protocol for smart meters 

since it allows for unencrypted data transmission. 

Critical 
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activities on smart meters, such as changes to system 

time, IP addresses, and firmware upgrades, need 

authentication, and an attacker may discover these 

events by monitoring the data flow. Attackers may 

get access to smart meters if they are able to locate 

the package containing authentication information 

and capture the password. If an attacker gains access 

to a system, they may alter the values of any 

measurements they take. Most smart meters just 

allow you to read off numbers like active power and 

reactive power. Some parameters, however, are 

editable, including time and CT ratio. Alternating 

electric currents may be measured with the use of a 

CT. Where I1 and I2 are the main and secondary 

currents, respectively, the CT ratio K is denoted as 

K = I1/I2. Changes in K have an equivalent effect on 

the active and reactive power levels. Altering the CT 

ratio allows the attacker to skew power consumption 

readings. 

Identifying Erroneous Data Using EDSE 

Section 2.2 demonstrates that the Chi-squares test 

has a threshold that allows for random and 

unavoidable fluctuations in the data. Attackers may 

develop sophisticated TFDI assaults by masking 

their signals with background sounds in 

measurements. The accumulated normal observation 

errors from each measurement become more 

problematic for the Chi-square test as the number of 

measurements increases. False data won't be able to 

hide amongst the noise of regular measurements if 

the big system can be properly dissected. To deal 

with TFDI attacks, an EDSE- based faulty data 

detection approach is presented. 

Separation of the Power Grid 

The weighted-undirected graph model of power 

systems may be built for a smart grid with n buses 

and m transmission lines by writing G = V, E, where 

V is a collection of vertices representing load buses 

or generators and E is a set of edges representing the 

transmission lines in smart grids. Graph adjacency 

matrix is represented by A = ai,j, where i,j = 1, 2,..., 

n. When buses i and j are physically linked, their 

physical attributes are reflected in the ai,j element, 

which is non-zero in this case. 

The branch's importance in the modeled 

graph may be calculated in the following 

ways: 

transmission line impedance; line power flow at each 

sample period; the fundamental architecture of the 

power system (ai,j = 1 if bus i and bus j are linked). 

Transmission line impedance (Z = R + jX), which 

represents the electrical distance between buses, is 

used as edge weight in this research. The 

transmission line's reactance, X, is equal to R, its 

resistance. When compared to X, R's value is 

negligible. Therefore, the edge weight is decided 

upon as the absolute value of the line reactance |X|. 

Using clustering techniques like the L-bounded 

Graph Partition Method (LGPM) [25], the K- 

Medoid [26], Chameleon [27], etc., the massive 

graph is partitioned into multiple smaller subgraphs. 

In this study, we use the LGPM approach, which is 

stable and independent of the initial clustering 

centers, to decompose graphs. Table 3 shows the 

essential steps in LGPM's method. 

Analysis and Experiment 

Section 6.1 simulates three assault scenarios on the 

IEEE 14-bus system to examine the efficacy of the 

EDSE-based approach. Section 6.2 uses the IEEE- 

39 bus system to present a statistical comparison of 

detection performances between the traditional and 

EDSE-based methods; Section 6.3 discusses some 

TFDI attacks that are not detected by the EDSE- 

based method; Section 6.4 demonstrates the 

evaluation of time complexity; and Section 6.5 

addresses the appropriate number of subsystems. 

Cases of Attack on IEEE 14-Bus Systems, Version 

6.1 In Figure 3, we see three different attack 

scenarios built on the IEEE 14-bus architecture. The 

LGPM is responsible for breaking down the IEEE 

14-bus architecture. 
 

Figure 1. Attack cases on IEEE 14-bus system. 

As shown in Table 4, the IEEE 14-bus system is 

divided into two subsystems, “subsys_1” and 

“subsys_-2 “ 

 

 
are tie lines. In subsys_1, there are 8 buses including 

adjacent buses: bus6,bus7 and bus9. The number of 

state variables n1 is 15 and the number of 

measurements m1 is 40. The degree of freedom o1 

in this subsystem is m1 − n1 = 25. According to the 

property of distribution, the threshold of bad data 

suspicion is 43.77. In subsys_2, there are 11 buses, 

21 state variables, and 52 measurements, and 
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the threshold is 51.00. This indicates that the local 
threshold is much lower than the global one. 

Table 4. Decomposition of IEEE 14-bus system. 
 

To test the performance of EDSE-based bad data 

detection, three attack cases are constructed as 

shown in Table 5. In Table 5, Li,j denotes the 

transmission line where the false data are injected. 

Pi,j denotes the active power from busi to busj, 

observed on busi. The active power Pi,j and Pj,i are 

modified at the same time to guarantee the balance 

of line power flow. The original measurements are 

simulated by MATPOWER and then the Gaussian 

noise is added. It should be noted that there is a tiny 

difference between Pi j , and Pj i, . These two active 

power measurements are observed at each end of the 

transmission line. There is some power loss on the 

transmission line. For an attacker, it is not easy to 

change the active power to arbitrary values, because 

active power is usually read-only. As explained in 

Section 4.1, attackers can change the active power 

through falsifying the CT ratio. In Attack Case 1–3, 

they increase the CT ratio by 2 times, 3 times and 

1.5 times, respectively. In Attack Case 1, false data 

is only injected into subsys_1. The P4,5 is modified 

from −61.16 MW to −122.32 MW and P5,4 is 

modified from 61.67 MW to 

122.34 MW. In Attack Case 2, false data is only 

injected into subsys_2. The P6,13 is modified from 

17.75 MW to 53.24 MW, and P13,6 is modified 

from −17.54 MW to 52.61 MW. In Attack Case 3, 

the false data is injected into the tie line between 

subsys_1 and subsys_2. The P5,6 is modified from 

66.13 MW to 99.20 MW, and P6,5 is modified from 

−66.13 MW to 99.20 MW. 

Table 5. TFDI attack cases on IEEE 14-bus system. 
 

As shown in Table 6, global values of J(x ^ ) are 

54.91, 66.04 and 54.73 in three attack cases, 

respectively. Obviously, they are lower than the 

threshold To,p(72.15). Thus, the injected false data 

cannot be detected. When we adopt EDSE-based 

method to deal with the Attack Case 1, we find that: 

in subsys_1, the J(x ^ ) is 51.98, which is 

higher than the local threshold 1 o p, T (43.77); in 

subsys_2, the J(x ^ ) is 25.22, which is below the 

local threshold 2 o p, T (51.00). It implies that there 

is false data in subsys_1. Similarly in Attack Case 

2, the EDSE-based method can detect the false data 

in subsys_2. In Attack 

Case 3, false data is detected in subsys_2. If the 

subsystem is not extended to include the adjacent 

buses, the FDI on tie-line L5,6 will not be found. 

Table 6. Detection results on IEEE 14-bus system. 
 

 

Conclusions 

In order to demonstrate how hackers might 

manipulate data in smart grids and avoid the 

conventional bad data detection techniques in power 

systems, this article presents many TFDI attack 

examples. These assaults conceal in regular 

observational flaws, which are within the margin of 

error for the Chi-square test. Potential losses from 

energy theft and cracking economic dispatch on the 

IEEE 14-bus system are calculated, and the 

implications of such assaults on smart grids are 

discussed. To address this issue, we offer an EDSE- 

based approach for identifying TFDI assaults. By 

breaking down a large system into smaller, more 

manageable pieces, this technique increases the 

sensitivity of faulty data detection. Decomposing the 

power grid into manageable chunks using clustering 

techniques, expanding each subsystem to encompass 

neighboring buses, and performing SE and bad data 

detection inside each chunk are the three main 

processes that make up the EDSE-based approach. 

The IEEE 14, 39, 118, and 300-bus systems are 

simulated through comprehensive TFDI assault 

scenarios. The results demonstrate a dramatic 

increase in the detection accuracy of the EDSE-

based technique. In addition, the EDSE provides a 

novel approach to online bad data identification due 

to its substantially decreased computing complexity 

and the possibility of further speeding up the 

detection process through parallel analysis of all 

extended subsystems. A better response to FDI in 

smart grids is the cyber-physical fusion method, 

since this kind of assault produces interactive 

responses in both the cyber network and the 

electricity grid. In the future, we want to go further 

into a detection approach that combines the EDSE 

with traffic flow anomaly detection. Even if the 

EDSE misses the bad data, the communication 
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network's alarms will go off if criminals get 
unauthorized access to smart meters. 
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