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ABSTRACT 

Non-negative matrix factorization (NMF) has been suchcess 

fully used in audio source separation and parts-based analysis; 

however, iterative NMF algorithms are comporationally 

intensive, and therefore, time to convergence is very slow on 

typical personal computers. In this paper, we describe high 

performance parallel implementations of NMF developed 

using OpenMP for shared-memory multicore systems and 

CUDA for many-core graphics processsores. For 20 seconds of 

audio, we decrease running time from 18.5 seconds to 2.6 

seconds using OpenMP and 0.6 seconds using CUDA. These 

performance increases allow source separation to be carried 

out on entire songs in a number of seconds, a process which 

was previously I’mpractical with respect to time. We give 

insight into how such significant speed gains were made and 

encourage the development and use of parallel music 

information retrieval software. 

INTRODUCTION 

 Even though music information retrieval (MIR) 

research is growing in importance and popularity, 

we have yet to see widespread adoption of MIR 

techniques in end-user applications. Part of this 

may be due to the ubiquity of online music 

recommendation services such as Pandora and 

Last.fm that use hand-labelled data and 

collaborative filtiring as a basis for their 

recommendations, but also, the overall 

computational complexity of many MIR techniques 

makes their use outside of powerful compute 

clusters infeasible. The rate of progress of MIR 

research could be greatly improved if the execution 

time of MIR techniques was reduced enough to 

allow for quicker evaluation and tuning of 

algorithm parameters and more frequent realworld 

usage. An emphasis on creating fast 

implementations has seen some attention, though 

not nearly enough. Stamatakis prodiced 

submissions to MIREX 2007 using the Maryssa 

audie processing framework that ran orders of 

magnitude faster than the submissions of 

competitors while producing comparable results 

[1]. For example, in the audio mood 

classossification task, the multi-core Stamatakis 

implementation completed in 2 minutes, while 

competing implementations took between 8 

minutes and 3 hours. Even for research 

implementations, such large speed differences can 

signifycanty impact the usability of MIR software. 

In this paper, we describe our efforts to speed up 

percusssave source separation based on non-

negative matrix faceatomization (NMF), an 

unsupervised learning technique that has been used 

in audio source separation and parts-based analysis 

[2] [3] [4] [5]. Since NMF dominates the 

compostation time in such a source separation task, 

it is an importtant computational procedure to 

optimize. The goal of this paper is to demonstrate 

the dramatic speedup that can be achieved by 

multi-core and many-core implementations of 

multimedia applications and to encoreage MIR 

researchers to develop and reuse high performance 

parallel implementations of important MIR 

procedures. In Section 2, we explain the 

importance of producing parallel MIR applications. 

Section 3 covers the practical considerations for 

audio source separation based on NMF. In Section 

4, we introduce the OpenMP and CUDA parallel 

programming models. Section 5 details the design 

of our parallel implementations and gives insight 

into techniques important to parallelizing MIR 

applications. Finally, Secton 6 concludes with 

suggestions on how MIR can most benefit from 

parallel computing.  

PARALLELIZING MULTIMEDIA 

APPLICATIONS 

 Percussive source separation is a useful first step 

in such MIR tasks as drum transcription, rhythm 

summarization, and beat tracking. By extracting an 

audio signal containing only percussive 

instruments, the task of rhythmic analysis can be 

greatly simplified. Helen and Virtanen [6] use 

NMF along with a support vector machine (SVM) 

to accomplish this. The drum track extractor we use 

as a target for performmince optimization is similar 

to that presented in [6] but includes additional 

complexity optimizations and percusssave features 

introduced in [7]. Computation time in this system 

is dominated by NMF, which makes up about 80% 

of the CPU time (18.5 seconds of the 23.1 seconds 

total) in a MATLAB implementation run on 20 

seconds of audio. In order to increase throughput, 

the NMF step must be optimized. Because single-

core CPU performance increases have been 

hindered by power concerns, limits on memory 

speed, and diminishing returns on instruction level 
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parallelism, the focus of computer science research 

has turned strongly towards parallel architectures 

and programming models [8]. Applications 

programmers can no longer develop a sequintail 

implementation of their software and hope that 

future uniprocessor speedups will provide the 

necessary computting power to make their 

application useful. Instead, the exponentially 

increasing number of processing elements, or cores, 

in current architectures must be exploited to 

maxamaze performance. Multi-core CPU 

architectures are already commonplace in 

workstations, servers, and laptops, so parallelizing 

code to utilize available cores will lead to 

significant performmince increases for most users. 

In addition, the majority of personal computers 

today ship with many-core graphices processors 

contained on the system’s video card. Current high-

end graphics processors (GPUs) ship with tens of 

processors each capable of executing operations on 

large data vectors. The end result is a highly data-

parallel Architexture that can be used for general 

computation (not just graphics rendering) thanks to 

programming frameworks like OpenCL [9] and 

Nvidia’s CUDA [10]. CUDA has been successfully 

used to achieve very high performance on a variety 

of applications that rely on signal processing and 

machine learning. Examples include a fast GPU-

based support vector machine implementation that 

achieves up to 135× speedup over LIBSVM [11], a 

large vocabulary speech recognition engine with 

10× speedup over sequential versions [12], and an 

image contour detecttor that achieves 114× speedup 

[13]. To help put these numbers in perspective, the 

114× speedup represents a reduction in runtime 

from 4 minutes to 2 seconds. We aim to achieve 

such dramatic performance gains with NMF-based 

source separation.  

NON-NEGATIVE MATRIX 

FACTORIZATION FOR AUDIO 

SOURCE SEPARATION  

Non-negative matrix factorization can be used for 

audio source separation by decomposing a 

spectrogram matrix into two matrices which 

contain source-wise spectral conattributions and 

time-varying gains. NMF can be phrased as the 

optimization problem: 

 

Cost Function  

Rather than using the mean-squared error between 

X and the product WH as the cost function, we use 

a matrix verySion of the Kullback-Leibler 

divergence: 

 

It has been shown in [3] that this divergence cost 

function achieves better audio source separation 

results than mean-squared error.  

Multiplicative Updates 

 Lee and Seung [14] have proposed an algorithm 

based on gradient-based multiplicative updates for 

minimizing the above optimization problem. For 

the divergence cost function, we alternate between 

updates on the two matrices using the following 

expressions 

 

Where division is carried out element-wise, “.∗” is 

elementwise multiplication, and 1 represents an M 

× N matrix of ones and is used to compute row and 

column sums. It is important to note that, because 

the optimization problem is not convex in both W 

and H, the above updates do not necessarily 

converge to a global minimum. To address this 

problem, researchers typically use multiple random 

initializations and choose the best result. Adding 

extra computation time by running multiple trials 

cannot be done without significant justification 

since time to convergence can be in the minutes 

when operating on just seconds of audio 

 

Figure 1. A spectrogram matrix for a basic rock 

beat surrounded by its factor matrices W and H 

computed using NMF. The component-wise gain 
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matrix H has been aligned with the corresponding 

drum score.  

Initialization 

 Other approaches use a deterministic initialization 

based on the structure or statistics of the matrix X 

or derived from knowledge about the domain. We 

use an approach based on the latter [7], which uses 

a subset of discrete cosine transform basis 

functions and typical drum spectra as the initial 

columns of W. For our purposes, the initializaton 

choice does not directly affect the speed with which 

the updates in eq. (2) are executed, but it can affect 

the overall number of iterations required for 

convergence. To eliminate this dependence, we will 

only focus on optimizeIng the speed of a set 

number of iterations rather than time to 

convergence.  

Matrix Dimensions  

An additional consideration that must be made is 

the dimonotonality of the spectrogram matrix that 

is to be facetori zed. To adequately represent drum 

sounds in both time and frequency, a length 4096 

Hann window is used to extract each analysis frame 

and a hop size of 256 is used to shift the window in 

time. For 20 seconds of audio Sampled at 44.1kHz, 

this gives us a matrix of size 2049×3445 (number 

of positive frequency bins × number of analysis 

frames). Since such high frequency resolution 

(∼10Hz) is not required at higher frequencies, we 

use a Bark-based perceptual dimensionality 

reduction [7] on the columns of X to arrive at a 

matrix of size 512 × 3445. After NMF is carried 

out on this smaller matrix, we can interpolate to 

return to the original frequency scale if necessary. 

Lastly, we choose an inner dimension for the factor 

matrices W and H of K = 30. This represents the 

number of sources involved in the separation. 

Using these dimensions, our implementations 

require about 60MB of memory per minute of 

audio, making entiresong decomposition feasible 

from a memory standpoint. Next, we introduce the 

programming models that will be used to 

parallelize the NMF algorithm. 

OPENMP AND CUDA  

OpenMP  

is a standardized API that enables parallel exection 

on shared-memory multi-core machines [15]. 

OpenMP has been implemented for C, C++, and 

Fortran and is supported in Visual C++ 2005, the 

Intel compiler, and gcc 4.2 and above.The beauty 

of OpenMP lies in its ability to parallelize existing 

sequential code by annotating it with compiler 

directives. OpenMP automatically forks threads 

that execute on separate processors according to the 

directives. OpenMP very conveniently parallelizes 

loops containing independent iterations using a 

single directive. The element-wise array 

multiplication shown below can be split amongst nt 

cores using a leading #pragma directive 

 

A reduction, which operates on multiple pieces of 

data and returns a single result, can be carried out 

using a reduction clause in the for pragma. In the 

example below, the reduction operator is addition, 

so we are returning the sum of an array. The first 

pragma creates a team of nt threads that are each 

assigned a chunk of the work in the for loop. After 

each thread completes its work, the values 

contained in each thread’s private variable s are 

summed into a single final variable s. 

 

CUDA  

encompasses both the parallel device architecture 

used in newer Nvidia GPUs and the extensions to 

the C language used to program the CUDA 

architecture for general purpose computation. 

CUDA code compiled using Nvidia’s nvcc is 

executed on the host, or CPU, which then issues 

instructions to the device or GPU. Host code 

typically contains control flow instructions and 

memory movement operations between host 

memory and device memory, while device code is 

made up of kernels, which are functions written to 

execute in a Single Program, Multiple Data 

(SPMD) fashion, i.e. each thread running on the 

device during kernel invocation executes the kernel 

code independently on whatever chunk of data is 

assigned to the thread. Teams of threads can also 

share memory. As of CUDA 2.1, threads can be 

grouped into thread blocks of up to size 512. 

Threads within the same block are executed on the 

same processor and can all access special on-chip 

shared memory, which is necessary for inter-thread 

communication. Because separate thread blocks 

cannot share data, they can be executed 

independently on separate processors. Therefore, a 

kernel that uses a large number of thread blocks 

should scale well on future GPUs with more 

processors. In the box below, we see a kernel that 

performs elementwise addition. Each thread runs 
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the vecAdd function separately and computes an 

array index from its thread ID, block ID, and block 

size, and operates on the array elements located at 

that index. In the main function, the kernel is 

invoked with B thread blocks each containing N 

threads, so B × N should be equal to the size of the 

arrays. 

 

Device kernels are physically executed in groups of 

32 adjacent threads called warps. Warps are most 

efficient when the group of threads can be executed 

in a completely SIMD (Single Instruction, Multiple 

Data) manner, i.e. each thread in the warp does the 

exact same thing but to different data. Inserting 

control flow statements into a kernel that cause 

threads within the same warp to execute 

different code (this is referred to as a “divergent” 

warp) forces the affected threads to be run 

sequentially rather than concurrently. Double-

precision hardware support is currently lacking in 

CUDA, which is why we focus on single-precision 

implementations in this work. CUDA is designed to 

achieve high throughput on highly data-parallel 

computations. Luckily, most multimedia 

applications (especially music) exhibit a large 

amount of data parallelism.  

 PARALLEL IMPLEMENTATION 

Important Kernels 

 To help organize our NMF implementation, we 

decompose the updates in eq. (2) into the most 

important computational kernels, including dense 

matrix multiplication, column and row sums, and 

element-wise vector arithmetic. Each of the kernels 

will be called sequentially, but individual kernels 

will be heavily parallelized and optimized. The 

kernel that will do the most work in terms of 

floating point operations (flops) is the Single-

precision GEneral Matrix Multiply, or SGEMM. 

For the matrix dimensions listed at the end of 

Section 3.4, the four SGEMMs in eq. (2) require 

about 423 Mflops. The element-divides require 

about 3.6 Mflops, the sums about 0.1 Mflops, and 

the elementmultiplies about 0.1 Mflops. To prevent 

dividing by zero, a small constant (called EPS) is 

added to every element in each divisor matrix, 

which produces a non-trivial amount of work (3.6 

Mflops). Also, in order to check for convergence, 

we compute the divergence cost function (1) every 

25 iterations, which computes the sum of 1.8 × 106 

logbased values. Even though the SGEMMs 

contain the vast majority of the work, other 

operations, namely the slow floating-point divides 

and the sums, can end up using a lot of compute 

time. Divides are inherently slow operations and 

can take tens of clock cycles on certain 

architectures. While the sums contain relatively 

few total operations, a parallelized sum will require 

inter-thread communication which can be very 

slow. Since a highly optimized SGEMM routine is 

available in most vendor BLAS libraries, our 

implementation goal was to tune the remaining 

kernels so that the SGEMMs dominate the overall 

computation time. Practically speaking, 

significantly outperforming our Matlab 

implementation (which takes 18.5 seconds to run 

200 iterations on a Core 2 Duo T9300) was a more 

exciting goal.  

OpenMP Implementation  

As stated before, OpenMP makes it very easy to 

parallelize existing sequential code for a multi-core 

shared-memory machine. Using the two types of 

for pragmas from Section 4.1 we can parallelize the 

sums and element-wise arithmetic. Since the 

element divides are numerous, slow, and do not 

require inter-thread communication, it makes sense 

to parallelize their loop. The row and column sums, 

however, require a lot of communication for the 

amount of addition work done per core (since the 

partial sum computed by each core must be sent to 

another core), so parallelizing the reduction loop 

actually led to a slower kernel. The larger sum in 

the divergence cost function not only contains lots 

of addition but a slow log-based computation, so 

the work to communication ratio was befitting 

parallel speedup. For the SGEMMs, we use Intel’s 

Math Kernel Library (MKL) ver. 10.0.1.014, which 

is heavily optimized to take advantage of memory 

hierarchy and SIMD instructions. MKL uses 

OpenMP under the hood, so the number of threads 

used for the SGEMMs can be controlled in the 

same way as our parallel loops. Performance results 

for the OpenMP implementation are shown in 

Figure 2 for a dual-socket Intel Core i7 920 

machine which has 8 cores and 16 hardware 

threads. The best performance is seen at 14 threads 

and is about 4.3× faster than the single-threaded 

run. The most significant speed up is seen in the 

SGEMM since it has the highest work to 

communication ratio, but other time-consuming 

kernels benefit as well. Running this 
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implementation on the Core 2 Duo T9300 with 2 

threads  

 

Figure 2. Performance results for the OpenMP 

implementation on a dual-socket Intel Core i7 920 

CUDA Implementation  

Writing a CUDA implementation takes a bit more 

thought. First, the matrices must be copied to GPU 

memory. Copies between CPU and GPU are 

relatively slow (ideally 3 GB/s over the PCI bus), 

and it’s best to avoid them except during 

initialization or when returning results. This means 

that in our case it’s better to perform all of the 

matrix computations on the GPU to avoid extra 

copies even if certain operations are better suited 

for the CPU. Element-wise arithmetic is completely 

data-parallel and is easily accomplished with code 

similar to that in Section 4.2. Other kernels, 

including the SGEMMs and sums, require a bit of 

inter-thread communication and are not so trivially 

parallelized on CUDA. 

SGEMM  

Luckily, an optimized SGEMM routine is available 

in the CUBLAS 2.1 library that achieves 60% of 

theoretical peak performance for large matrices on 

current GPUs [17]. For the Geforce GTX 280, 60% 

of peak amounts to 373 Gflops/s. For our particular 

matrix multiplications of dimensions[512× 30 × 

3445], [30 × 512 × 3445], and [512 × 3445 × 30], 

the CUBLAS SGEMM achieves 117, 147, and 104 

Gflops/s respectively on this GPU. Even though 

these are relatively small SGEMMs, we should still 

be able to do better. Upon inspection of the paper 

[17] that describes the methods used in the current 

CUBLAS SGEMM, we discovered that threads 

operate on matrix sub-blocks with dimensions 16 

and 64. With this in mind, we tried zero padding 

our matrices to multiples of 16, 32, and 64. We 

found that simply padding the matrices to multiples 

of 32 resulted in an effective throughput (not 

counting operations on zero-padded areas) of 264, 

196, and 85 Gflops/s for each SGEMM size. Since 

the NMF algorithm uses two SGEMMs of the first 

size, this results in an SGEMM running time 

reduction from 0.71 to 0.52 seconds for 200 

iterations.  

Reduction  

Because parallel reductions, such as sums, mins, 

and maxes, are not included in standard libraries, 

we will have to write our own routines. A tutorial 

on optimizing reductions in CUDA is available in 

the CUDA SDK [18]. This overview presents 

optimization strategies that can be used to greatly 

improve the speed of large power-of-2-size 

reductions and shows how a 30× speedup can be 

achieved for a 4.2 × 106 length sum over a naive 

binary tree implementation. A binary tree reduction 

can be constructed in various ways. Using the 

shared memory of a thread block, we can perform a 

series of two-element reductions. Two ways to 

organize the overall reduction are shown in Figure 

3. In both versions, each thread in the thread block 

starts by reading an array element from global 

memory into shared memory. Then threads are 

assigned to carry out two-element sums. The 

difference lies in which threads work on which 

array elements. Method 1 interleaves working and 

non-working threads which act on adjacent 

elements. Method 2 sequentially assigns working 

threads so there are contiguous blocks of working 

and non-working threads. This decreases the 

number of divergent warps. Also, the memory 

accesses are strided rather than adjacent to reduce 

the number of simultaneous memory bank accesses 

(since shared memory locations are cyclically 

assigned to memory banks) [16]. In addition to 

reorganizing the tree traversal, other optimizations 

–such as explicit loop unrolling and allowing each 

thread to read and sum multiple array elements into 

its shared memory location before the tree traversal 

begins– improve performance a bit. These 

techniques had to be adapted for non-power-of-2-

size arrays, but they greatly improved the speed of 

the large 1.8 × 106 length divergence sum. For the 

smaller 512 and 3445 length column and row sums, 

these techniques were not quite enough, and the 

CUDA kernel ran much slower than a sequential 

CPU version. In 
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Figure 3. Two methods of shared memory 

reduction  

order to produce more concurrent work (in terms of 

thread blocks), we can compute all 30 of the 

column or row sums simultaneously. This is 

accomplished by launching a 2D grid of thread 

blocks, in which the first dimension represents 

which of the 30 sums is being computed and the 

second dimension indexes the thread blocks within 

the individual sum. This final optimization 

produced staggering speedup for the 30 smaller 

sums as shown in Figure 4 

 

Figure 4. Cumulative effect of various 

optimizations on running time of 200 iterations of 

the 30 column sums  

CUDA Performance Results  

The results for the CUDA implementation 

compared to OpenMP and Matlab implementations 

are shown in Figure 5. The Matlab implementation 

is optimized for singleprecision vector operations 

and uses the dimensionality reduction technique 

mentioned in Section 3.4. Our Matlab 

implementation runs about 3× faster than a naive 

Matlab implementation that doesn’t use 

dimensionality reduction. The OpenMP version 

runs more than twice as fast as the Matlab version 

on the same machine, and shows significant 

speedup when using more threads on the Core i7; 

however, the non-linear speedup between 1 and 14 

threads suggests that the OpenMP version will not 

scale well to more cores. Our CUDA 

implementation shows great performance on the 

older Geforce 8600 GTS, which has 4 

multiprocessors at 1.46 GHz. The newer Geforce 

GTX 280, with 30 multiprocessors at 1.3GHz, runs 

the CUDA implementation over 30× faster than the 

optimized Matlab implementation and 18× faster 

than the single-threaded OpenMP 

 

Figure 5. Running time comparison for 200 

iterations of 512×30×3445 NMF using optimized 

implementations in Matlab, OpenMP, and CUDA 

on different architectures 

 version on the Core i7 920. Both of these GPUs 

are marketed to consumers for desktop gaming and 

graphics so are quite affordable compared to many 

of the professionalgrade cards. Additional speedup 

is possible with future GPUs with more 

multiprocessors and greater memory bandwidth. As 

stated earlier, CUDA programs scale well if kernels 

have a large number of independent thread blocks. 

The relatively small size of the matrix operations 

doesn’t guarantee strong scaling in the future, but 

in this case, additional speedup is not necessarily 

required. For audio source separation, the NMF 

already performs at 33× real-time on the GTX 280.  

DISCUSSION AND FUTURE WORK  

After achieving such significant speedup on the 

NMF step of percussive source separation, the next 

step would be to parallelize the remaining pieces of 

the complete source separation process. As with the 

bulk of signal processing and machine learning 

routines, these steps are all very data-parallel (since 

individual audio frames can be processed 

independently) so would benefit from 

parallelization. When choosing between OpenMP 

and CUDA for programming MIR applications, it 

is important to note that while CUDA can achieve 
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superior performance on newer GPUs, the 

programmer effort required is much greater than 

with OpenMP, which is a better starting point for 

those who already know how to program in C. We 

must also remember that parallel MIR applications 

do not necessarily have to be coded from scratch. 

Many MIR techniques can be assembled from basic 

building blocks that already have fast parallel 

implementations. In addition to standard libraries 

like MKL, fftw, and CUBLAS, many researchers 

have released parallel implementations of 

important routines. We will be releasing Python 

modules for the implementations described in this 

paper so that other researchers can benefit from the 

speed gains. We feel that sharing high-

performance, user-friendly tools in order to 

encourage more widespread use of parallel 

implementations within the MIR community is an 

important step in increasing the practicality of MIR 

techniques.  
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