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Abstract 

Cement production is a major contributor to global CO2 (Carbon dioxide) emissions. To minimize its 

environmental impact while maintaining the required mechanical properties of cement, there is a pressing need for 

sustainable pro- duction processes. This paper focuses on developing sustainable cement produc- tion processes by 

optimizing the mechanical properties of limestone calcined clay cement (LC3) using data-driven models based on 

artificial intelligence. The study explores the use of data augmentation techniques, specifically the copulas method, 

to improve the performance of linear regression models for linking the compressive strength of LC3 with its mix 

design. While data augmentation using copulas can be useful in augmenting tabular data, its effectiveness in 

improving linear regression performance may depend on the statistical characteristics of the original data. The 

method successfully generated additional data that preserved the original statistical properties, but it did not always 

lead to significant improve- ments in linear regression performance. The research highlights the potential of data- 

driven models for optimizing cement materials properties and emphasizes the importance of considering the 

statistical characteristics of the original data when applying data augmentation techniques. 
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Introduction 

Data-driven models based on artificial intelligence applied in the optimiza- tion of cement materials properties 

is an emerging research topic. Considering the number of current published papers about this subject, it confirms 

that the cement community is interested in these novel approaches. Data-driven approach for cement materials 

constitute a new paradigm to link the performance prop- erties to their composition and process parameters. One 

example of cement for with there is an urgent need of data-driven approach is LC3 [1]. This cement is today 

considered as the next generation of building binders. When it is compared to the classical Portland cement, it 

shows a reduced carbon footprint of 25 to 35%, with equivalent or higher compressive strength [2]. The research 

studies on LC3 performance require some acceleration to reach rapidly carbon neutrality of the cement production. 

To link cement performance with its composition and process parameters, an empirical approach is applied [3-6]. 

This approach involves “idealized” mod- els and does not reflect the “real life” case. Whereas data-driven approach 

does not enforce particular assumptions and can excel at treating complex and non- linear links. Except, they 

require a large dataset for training and testing. Canbek et al. [7] linked the rheology of LC3 cements to the 

composition through support vector machine model showing high accuracy with R2 = 0.96, about 108 ce- ment 

pastes were carried out to feed the model. Hafez et al.[8] created a ML regression model to predict the 

performance of blended concretes including LC3. A database of 1650 data points was created to train and test the 

model. Even so, only few datapoints were relevant to mixes with LC3 cement. It is clear that there is a scarcity of 

research on the use of data-driv- en models to study LC3 cements. One reason to explain this lack of studies is the 

dataset availability. The challenge lies in organizing and standardizing large amounts of data. Addi- tionally, the 

time-consuming and expensive process of charac- terizing a significant number of samples poses a limitation for 

implementing ML algorithms [9]. There are several ways to do data augmentation of tabular values such as adding 

random noise to feature values, flipping the values of binary features, sampling random subsets of the data, 

standardizing the values by subtracting the mean and dividing by the standard devia- tion, transforming the values 

using a scaling function, creating new features by combining existing features or using domain knowledge, 

applying small transformations to the original data, and using Copulas technique, which involves modeling the 

dependencies between features and generating new sam- ples that preserve these dependencies [10-12]. Tabular 
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Figure 1: The research idea of the present work. 
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data augmentation is a technique that can be used to improve the performance of linear regression models [13]. The 

basic idea is to generate new, synthetic data samples from the existing dataset by applying various transformations 

to the original data. 

 

 

such as support vector machine or artificial neural network, in order to demonstrate the improvement that can be 

achieved with the application of tabular data augmentation technique. The research idea of the present work is 

illustrated in figure 1. 

 

 

 

 

Materials and Method 

The followed work approach of the present study starts by the construction of a dataset from literature, then data 

is struc- tured, and missing values were handled in the preprocessing step. After this, data augmentation was carried 

out by applying the Copulas method. Thereafter, a linear regression ML model was applied to evaluate the 

efficiency of data augmentation and dimension reduction approaches. All used materials are nanoscale materials. 

Data collection and preprocessing 

 
The size and the quality of the dataset are significant for the accuracy of the ML model [9]. An experimental 

database of 323 mix design (10692 data values), containing partial re- placement of Portland cement with calcined 

clay and lime- stone, was compiled from previous studies that were reported in literature [14-26]. Data splitting is 

a usually used method for model validation, where the dataset is split into two sepa- rate parts: the first for training, 

and the second for testing [27]. The data was randomly partitioned into training and testing sets: 80% of the data 

was used for training and the remaining 20% was used for testing. Table 1 shows a description and sta- tistical 

parameters of the data features. 

Linear regression model 

Simpler models with fewer coefficients are preferable to complex ones. Li et al. [28] emphasize the 

importance of avoiding the use of opaque and complex machine learn- ing models, such as neural networks, when 

simpler and more interpretable models like linear regression can suffice. Model accuracy is determined by 

observed data, which may not ac- curately represent the ground truth if the data quality is in- sufficient. In concrete 

field, data quality is often impacted by cumulative random errors from experiments. Thus, it is rec- ommended to 

begin with simple, interpretable models and gradually increase complexity while cautiously evaluating pre- diction 

performance. The simplest ML algorithm is the linear regression. This later is a model in which the target value is 

expected to be a linear combination of the features noted x1 

to xp [29, 30]. In mathematical notation, yˆ is the predicted relates to the result that data values that are modeled 

as being random variables from any given continuous distribution can be converted to random variables having a 

standard uniform distribution [32]. Suppose we have a random variable X that comes from a distribution with 

cumulative density function 

F(X). Then, we can define a random variable Y which follows a uniform distribution over the interval [0,1]: 

Y = F(X) 

Application of linear regression and comparisons 

Figure 2 shows the performance of a regression model trained on datasets with varying degrees of data 
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augmentation using copulas. The model’s performance is evaluated using the R2 metric, both on the training and 

testing data. The results suggest that moderate levels of data augmentation, up to 500 augmented samples, can 

improve the model’s performance on the testing data, with R2 scores ranging from 0.4 to 0.47. However, further 

increasing the number of augmented sam- ples does not consistently improve the model’s performance and may 

even lead to overfitting, as indicated by decreasing R2 scores on the testing data for some of the larger augmentation 

rates. 

 

Conclusion and Recommendations 

This paper demonstrates that the use of data augmenta- tion techniques, particularly the Copula method, 

enhances the performance of linear regression models in linking the compressive strength of LC3 with its mix 

design. The research findings highlight the potential of data augmentation using copulas to augment tabular data 

while preserving its statistical properties. However, the impact on improving linear regres- sion performance may 

vary based on the statistical character- istics of the original data. This contribution adds to the grow- ing body of 

knowledge in data-driven modeling for studying LC3 cements and suggests further exploration of alternative 

augmentation methods and their application to different ce- ment materials. 
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