
17

18

 ISSN2454-9940www.ijsem.in

 Vol 10, Issuse.2 May 2022

AdSherlock: An Advanced and Efficient and Deployable Click

Based Fraud Detection for Mobile Applications

D Srikar professor1, Adabala Mounika Rajeswari2

Abstract:
Mobile advertising plays a vital role in the mobile app ecosystem. A major threat to the sustainability
of this ecosystem is click fraud, i.e., ad clicks performed by malicious code or automatic bot
problems. Existing click fraud detection approaches focus on analyzing the ad requests at the server
side. However, such approaches may suffer from high false negatives since the detection can be
easily circumvented, e.g., when the clicks are behind proxies or globally distributed. In this paper, we
present AdSherlock, an efficient and deployable click fraud detection approach at the client side
(inside the application) for mobile apps. AdSherlock splits the computation-intensive operations of
click request identification into an offline procedure and an online procedure. In the offline
procedure, AdSherlock generates both exact patterns and probabilistic patterns based on URL
(Uniform Resource Locator) tokenization. These patterns are used in the online procedure for click
request identification and further used for click fraud detection together with an ad request tree
model. We implement a prototype of AdSherlock and evaluate its performance using real apps. The
online detector is injected into the app executable archive through binary instrumentation. Results
show that AdSherlock achieves higher click fraud detection accuracy compared with state of the art,
with negligible runtime overhead.

Introduction:
Many Android applications are distributed for
free but are supported by advertisements. Ad
libraries embedded in the app fetch content
from the ad provider
 and display it on the app's user interface. The
ad provider pays the developer for the ads
displayed to the user and ads clicked by the
user. A major threat to this ecosystem is ad
fraud, where a miscreant's
 code fetches ads without displaying them to
the user or "clicks" on ads automatically. Ad

fraud has been extensively studied in the
context of web advertising but has gone
largely unstudied in the context of mobile
advertising. We take the first step to study
mobile ad fraud perpetrated by Android apps.
We identify two fraudulent ad behaviors in
apps: 1) requesting ads while the app is in the
background, and 2) clicking on ads without
user interaction. Based on these observations,
we

#1 Associate Professor in Computer Science Department Bhimavaram Institute of Engineering and
Technology Pennada, Bhimavaram, West Godavari district
#2 M.Tech Scholar, in Computer Science Department Bhimavaram Institute of Engineering and
Technology Pennada, Bhimavaram,West Godavari district

19

developed an analysis tool, MAdFraud, which
automatically runs many apps simultaneously
in emulators to trigger and expose ad fraud.
Since the formats of ad impressions and clicks
vary widely between different ad providers,
we develop a novel approach for
automatically identifying ad impressions and
clicks in three steps: building HTTP request
trees, identifying ad request pages using
machine learning, and detecting clicks in HTTP
request trees using heuristics. We apply our
methodology and tool to two datasets: 1)
130,339 apps crawled from 19 Android
markets including Play and many third-party
markets, and 2) 35,087 apps that likely
contain malware provided by a security
company. From analyzing these datasets, we
find that about 30% of apps with ads make ad
requests while in running in the background.
In addition, we find 27 apps
 which generate clicks without user
interaction. We find that the click fraud apps
attempt to remain stealthy when fabricating
ad traffic by only periodically sending clicks
and changing which ad provider is being
targeted between installations.
Detecting click fraud in online advertising: A
data mining approach
Click fraud-the deliberate clicking on
advertisements with no real interest on the
product or service offered-is one of the most
daunting problems in online advertising.
Building an effective fraud detection method
is thus pivotal for online advertising
businesses. We organized a Fraud Detection
in Mobile Advertising (FDMA) 2012
Competition, opening the opportunity for
participants to work on real-world fraud data
from BuzzCity Pte. Ltd., a global mobile
advertising company based in Singapore. In
particular, the task is to identify fraudulent
publishers who generate illegitimate clicks,
and distinguish them from normal publishers.
The competition was held from September 1
to September 30, 2012, attracting 127 teams
from more than 15 countries. The mobile
advertising data are unique and complex,
involving heterogeneous information, noisy
patterns with missing values, and highly

imbalanced class distribution. The
competition results
 provide a comprehensive study on the
usability of data mining-based fraud detection
approaches in practical setting. Our principal
findings are that features derived from fine-
grained time-series analysis are crucial for
accurate fraud detection, and that ensemble
methods offer promising solutions to highly-
imbalanced nonlinear classification tasks with
mixed variable types and noisy/missing
patterns. The competition data remain
available for further studies
Click fraud is jeopardizing the industry of
Internet advertising. Internet advertising is
crucial for the thriving of the entire Internet,
since it allows producers to advertise their
products, and hence contributes to the
wellbeing of e- commerce. Moreover,
advertising supports the intellectual value of
the Internet by covering the running expenses
of the content publishers' sites. Some
publishers are dishonest, and use automation
to generate traffic to defraud the advertisers.
Similarly, some advertisers automate clicks on
the advertisements of their competitors to
deplete their competitors ' advertising
budgets. In this paper, we describe the
advertising network model, and discuss the
issue of fraud that is an integral problem in
such setting. We propose using online
algorithms on aggregate data to accurately
and
 proactively detect automated traffic,
preserve surfers' privacy, while not altering
the industry model. We provide a complete
classification of the hit inflation techniques;
and devise stream analysis techniques that
detect a variety of fraud attacks. We abstract
detecting the fraud attacks of some classes as
theoretical stream analysis problems that we
bring to the data management research
community as open problems. A framework is
outlined for deploying the proposed detection
algorithms on a generic architecture. We
conclude by some successful preliminary
findings of our attempt to detect fraud on a
real network.

20

Detecting click fraud in pay-per-click streams
of online advertising networks
With the rapid growth of the Internet, online
advertisement plays a more and more
important role in the advertising market. One
of the current and widely used revenue
models for online advertising involves
charging for each click based on the
popularity of keywords and the number of
competing advertisers. This pay-per- click
model leaves room for individuals or rival
companies to generate false clicks (i.e., click
fraud), which pose serious problems to the
development of healthy online advertising
market. To detect click fraud, an important
issue is to detect duplicate clicks over
decaying window
 models, such as jumping windows and sliding
windows. Decaying window models can be
very helpful in defining and determining click
fraud. However, although there are available
algorithms to detect duplicates, there is still a
lack of practical and effective solutions to
detect click fraud in pay-per-click streams
over decaying window models. In this paper,
we address the problem of detecting
duplicate clicks in pay-per-click streams over
jumping windows and sliding windows, and
are the first that propose two innovative
algorithms that make only one pass over click
streams and require significantly less memory
space and operations. GBF algorithm is built
on group Bloom filters which can process click
streams over jumping windows with small
number of sub-windows, while TBF algorithm
is based on a new data structure called timing
Bloom filter that detects click fraud over
sliding windows and jumping windows with
large number of sub-windows. Both GBF
algorithm and TBF algorithm have zero false
negative. Furthermore, both theoretical
analysis and experimental results show that
our algorithms can achieve low false positive
rate when detecting duplicate clicks in pay-
per-click streams over jumping windows and
sliding windows.
 We present AdSherlock, a productive and
deployable snap misrepresentation
identification approach at the customer side
(inside the application) for versatile
applications. AdSherlock parts the calculation

serious tasks of snap demand distinguishing
proof into a disconnected system and an
online method. In the disconnected strategy,
AdSherlock produces both careful examples
and probabilistic examples dependent on URL
(Uniform Resource Locator) tokenization.
These examples are utilized in the online
system for click demand recognizable proof
and further utilized for click
misrepresentation identification along with an
advertisement demand tree model.
Advantages:
AdSherlock generates both exact patterns and
probabilistic patterns based on URL (Uniform
Resource Locator) tokenization.
Finally, AdSherlock instruments the online
fraud detector into the app binaries which are
then released by the app store. Mobile
advertising plays a vital role in the mobile app
ecosystem. A recent report shows that mobile
advertising expenditure worldwide is
projected to reach $247.4 billion in 2020 [1].
To embed ads in an app, the app developer
typically includes ad libraries provided by a
third-party mobile ad
 provider such as AdMob [2]. When a mobile
user is using the app, the embedded ad library
fetches ad content from the network and
displays ads to the user. The most common
charging model is PPC (Pay-Per-Click) [3],
where the developer and the ad provider get
paid from the advertiser when a user clicks on
the ad. A major threat to the sustainability of
this ecosystem is click fraud [4], i.e., clicks
(i.e., touch events on mobile devices) on ads
which are usually performed by malicious
code programmatically or by automatic bot
problems. There are many different click fraud
tactics which can typically be characterized
into two types: in-app frauds insert malicious
code into the app to generate forged ad clicks;
bots- driven frauds employ bot programs
(e.g., a fraudulent application) to click on
advertisements automatically. To quantify the
in app ad fraud in real apps, a recent work
MAdFraud [5] conducts a large scale
measurement about ad fraud in realworld
apps. In a dataset including about 130K
Android apps, MAdFraud reports that about
30% of apps make ad requests while running
in the background. Focusing on bots-driven

21

click fraud, another recent work uses an
automated click generation tool ClickDroid [4]
to empirically evaluate eight popular
advertising networks by performing real click
fraud attacks on them. Results [4] show that
six advertising
 networks out of eight are vulnerable to these
attacks. Aiming at detecting click frauds in
mobile apps, a straightforward approach is a
threshold-based detection at the server side.
If an ad server is receiving a high number of
clicks with the same device identifier (e.g., IP
address) in a short period, these clicks can be
considered as fraud. This straightforward
approach, however, may suffer from high
false negatives since the detection can be
easily circumvented when the clicks are
behind proxies or globally distributed. In the
literature, there are also more sophisticated
approaches [6], [7] focusing on detecting click
frauds at the server-side. The precisions of
these server-side approaches, however, are
not sufficient enough for the click fraud
problem. For example, in a recent mobile ad
fraud competition [6], the best three
approaches achieve only a precision of
46.15% to 51.55% using various machine
learning techniques. Given the insufficient
precision of server-side approaches, a natural
question comes up: how about client-side
approaches? In fact, compared with the
server-side approaches, it is easier to tell
whether there is an actual user input at the
client side. However, the attacker of the click
fraud could be the app developers
themselves, since the developers will get paid
for those fraudulent ad clicks. Due to this
conflict-of-interest problem, we
 cannot assume the existence of coordination
from developers in designing a client-side
approach for click fraud detection, e.g., a click
fraud detection SDK.
Therefore, in this paper, we focus on
designing a client-side approach to detect
click frauds in mobile apps, without
coordination from developers. There are two
major challenges in designing such a system.
First, for a mobile client, its resources are
constrained in terms of computation,
memory, and energy. Therefore, the proposed
approach must perform the complete fraud

detection process efficiently, without causing
significant overhead. This means that we need
to design new algorithms to detect click
frauds since existing machine- learning
algorithms used by server-side approaches
are not suitable for the client side. Second,
the click fraud detection should be able to
execute under practical user scenarios,
instead of a controlled environment dedicated
to fraud detection. In MAdFraud [5], a
controlled environment (i.e., only one app is
running and the HTTP requests are collected
for offline analysis) is used to measure the ad
fraud behavior of a vast number of apps.
However, in our case, the click fraud detection
should happen inside the mobile
 client without outside support, i.e., be
deployable in real-world scenarios. In this
paper, we propose AdSherlock, an efficient
and deployable click fraud detection approach
for mobile apps at the client side. Note that as
a client-side approach, AdSherlock is
orthogonal to existing server-side approaches.
AdSherlock is designed to be used by app
stores to ensure a healthy mobile app
ecosystem. AdSherlock’s high accuracy helps
market operators to fight both in-app frauds
and bots-driven frauds. Note that, AdSherlock
can also be used by any third parties to detect
in-app frauds. For example, ad providers can
employ AdSherlock to check whether apps
embedding their libraries have in-app
fraudulent behaviors. To achieve these goals,
AdSherlock relies on an accurate offline
pattern extractor and a lightweight online
fraud detector.
AdSherlock works in two stages. At the first
stage, the offline pattern extractor
automatically executes each app and
generates a set of traffic patterns for efficient
ad request identification, i.e., extracts
common token patterns across different ad
requests. Specifically, after tokenization of the
network requests, AdSherlock generates both
exact patterns and probabilistic patterns for
robust matching. Using the offline pattern
 extractor, AdSherlock can perform the
computation and I/O intensive pattern
generation operations in an offline manner,
without degrading the online fraud detection
operations. At the second stage, the online

22

fraud detector as well as the generated
patterns are instrumented into the app and
run with the app in actual user scenarios.
Inside the app, AdSherlock uses an ad request
tree model to identify click requests
accurately and efficiently. Since the online
fraud detector runs inside the app, it can
obtain the fine-grained user input events
which are further employed for click fraud
detection. We implement AdSherlock and
evaluate its performance using real apps.
Results show that AdSherlock achieves higher
click fraud detection accuracy compared with
state of the art, with negligible runtime
overhead. The contributions of this paper are
summarized as follows:
We present the design and implementation of
AdSherlock, the first system which can
achieve efficient and deployable click fraud
detection at the client side.
We propose a pattern generation mechanism
that generates patterns for ad requests and
non-ad requests with high accuracy.
 We also propose an efficient method for
online click fraud detection based on an ad
request tree model.
We implement AdSherlock and compare its
performance with the state-of-art approach.
Results show that AdSherlock achieves higher
detection accuracy with lower overhead. The
rest of this paper is organized as follows. Click
Fraud Detection in Web Advertising in the
context of Web advertising, researches on
click fraud detection mainly focus on bots-
driven click frauds. These approaches are
usually performed at the server-side,

analyzing network traffic and characterizing
the features of click fraud behaviors. [8] and
[9] aggregate ad traffics across client IP
address and cookie IDs to observe the client
who has deviated ad traffic behaviors.
SBotMiner [10] detects search engine bots by
looking for anomalies in query distribution.
However, such server-side approaches are not
robust against sophisticated bots who can
vary their IP addresses and other traffic
features.
Different from them, AdSherlock is a client-
side method exploiting the property of click
events on the end device which is hard to
bypass. Moreover, these server- side methods
need to collect sufficient ad traffics for
analysis while AdSherlock does not need.
From the client-side, AdSherlock
 can detect and prevent click fraud promptly.
Others works such as [11] and
[12] focus on detecting duplicate clicks, where
a publisher inflates its clicks by clicking on the
same ad many times. These server-side
methods can be viewed as a supplementary
on AdSherlock in that they can detect click
fraud performed by real humans. FcFraud [13]
is the latest work on click fraud detection in
web advertising from the user side and is very
related to our work. It identifies ad clicks and
examines whether real mouse events
accompany them. However, it needs to collect
a bundle of HTTP requests for the ad request
classifier which will cause unbearable
overhead for Andriod apps. AdSherlock, on
the other hand, focuses on click fraud
detection in mobile applications.

Results:

23

Conclusion

AdSherlock is an efficient and deployable click
fraud detection approach for mobile apps at
the client side. As a client-side approach,
AdSherlock is orthogonal to existing server-
side approaches. It splits the computation
intensive operations of click request
identification into an offline process and an
online process. In the offline process,
AdSherlock generates both exact patterns and
probabilistic patterns based on url
tokenization. These patterns are used in the
online process for click request identification,
and further used for click fraud detection
together with an ad request tree model.
Evaluation shows that AdSherlock achieves
high click fraud
 detection accuracy with a negligible runtime
overhead. In the future, we plan to combine
static analysis with the traffic analysis to
improve the accuracy of ad request
identification and explore attacks designed to
evade AdSherlock.
References:

1.“Mobile advertising spending worldwide.”
[Online]. Available:
https://www.statista.com/statistics/280640/
mobile-advertisingspending-worldwide/
2. “Google admob.” [Online]. Available:
https://apps.admob.com/
3. M. Mahdian and K. Tomak, “Pay-per-
action model for online advertising,” in Proc.
of ACM ADKDD, 2007.
4.G. Cho, J. Cho, Y. Song, and H. Kim, “An
empirical study of click fraud in mobile
advertising networks,” in Proc. of ACM ARES,
2015.
5. J. Crussell, R. Stevens, and H. Chen,
“Madfraud: Investigating ad fraud in android
applications,” in Proc. of ACM MobySys, 2014.
6.R. Oentaryo, E.-P. Lim, M. Finegold, D. Lo, F.
Zhu, C. Phua, E.-Y. Cheu, G.-E. Yap, K. Sim, M.
N. Nguyen, K. Perera, B. Neupane, M. Faisal, Z.
Aung, W. L. Woon, W. Chen, D. Patel, and D.
Berrar, “Detecting click fraud in online
 advertising:

24

A data mining approach,” The Journal of
Machine Learning Research, vol. 15, no. 1, pp.
99–140, 2014.
7.B. Kitts, Y. J. Zhang, G. Wu, W. Brandi, J.
Beasley, K. Morrill, J. Ettedgui,
S. Siddhartha, H. Yuan, F. Gao, P. Azo, and R.
Mahato, Click Fraud Detection: Adversarial
Pattern Recognition over 5 Years at Microsoft.
Cham: Springer International Publishing, 2015,
pp. 181– 201.
8. A. Metwally, D. Agrawal, and A. El
Abbadi, “Detectives: detecting coalition hit
inflation attacks in advertising networks
streams,” in Proc. of ACM WWW, 2007.
9. A. Metwally, D. Agrawal, A. El Abbad,
and Q. Zheng, “On hit inflation techniques and
detection in streams of web advertising
networks,” in Proc. of IEEE ICDCS, 2007.
10. F. Yu, Y. Xie, and Q. Ke, “Sbotminer:
large scale search bot detection,” in Proc. of
ACM WSDM, 2010.
[11] L. Zhang and Y. Guan, “Detecting click
fraud in pay-per-click streams of online
advertising networks,” in Proc. of IEEE ICDCS,
2008.
 [12] A. Metwally, D. Agrawal, and A. El
Abbadi, “Duplicate detection in click streams,”
in Proc. of ACM WWW, 2005.
[13] M. S. Iqbal, M. Zulkernine, F. Jaafar,
and Y. Gu, “Fcfraud: Fighting click-fraud from
the user side,” in Proc. of IEEE HASE, 2016.
[14] B. Liu, S. Nath, R. Govindan, and J. Liu,
“Decaf: detecting and characterizing ad fraud
in mobile apps,” in Proc. of USENIX NSDI,
2014.

