

34

35

ISSN2454-9940www.ijasem.org

 Vol 9, Issuse.1 Feb 2021

Patient Treatment Time Prediction Algorithm for Hospital Queuing-

Recommendation in a Big Data Environment

B.Venkateswarlu1,Erugu Krishna2,Firdose Fathima3,Dr.M.Sreenivasulu 4,

Abstract— One of the most difficult problems hospitals confront is effectively managing the patient queue in order to decrease patient

wait times and congestion. Patients' irritation is exacerbated when they are forced to wait for lengthy periods of time for no good reason. The

amount of time a patient must wait depends on how long the line behind him is. Patients would find it more convenient and preferred if they

could get real-time information about expected wait times and the most efficient treatment plans through a mobile application. Because of

this, we have developed a Patient Treatment Time Prediction (PTTP) method to estimate how long a patient will have to wait before receiving

treatment. For each job, we develop a patient treatment time model based on real-world patient data collected from multiple hospitals. The

treatment time for each patient in the current queue of each job is anticipated based on this large-scale, realistic dataset. A Hospital Queuing-

Recommendation (HQR) system is created based on the estimated wait time. HQR determines the most cost-effective and time-saving

treatment option for each patient. The PTTP algorithm and HQR system are required to respond quickly and efficiently because of the vast,

realistic dataset and the need for real-time reaction. The National Supercomputing Center in Changsha (NSCC) uses an Apache Spark-based

cloud solution to meet the aforementioned aims. Patients' wait times in hospitals may be reduced by recommending an appropriate treatment

plan based on extensive testing and simulation findings.

INTRODUCTION

Motivation

In most hospitals, there is now an overcrowding

problem and no efficient way to manage the patient

queues. Waiting time forecast for patients is a hard

task since each patient may need a variety of

procedures, such as a blood test or glucose level

check or an ultrasound, throughout their treatment.

Treatment tasks or tasks are used in this work to refer

to each of these stages and processes. It is very

difficult to forecast how long a certain therapy job

will take for each individual patient, making time

estimation and recommendation extremely difficult.

According to their health, a patient is often obliged to

undertake various types of exams, inspections, and

tests (together referred to as chores). In this instance,

each patient may be forced to do more than one

activity. If one job is reliant, another may have to

wait until that work is completed. Most patients are

need to take medication. Hunan University's College

of Computer Science and Electronic Engineering,

together with the National Supercomputing Center in

Changsha, Hunan, Changsha, 410082, China, is home

to the research of Jianguo Chen, Ken Li, Zhu Tang,

and Keqin Li. Kenli Li, lkl@hnu.edu.cn, is the

author's point of contact. The COMSATS Institute of

Information Technology, Islamabad, Pakistan, and

Qatar University, Qatar are both home to Kashif

Bilal. • Keqin Li is also affiliated with the State

University of New York's Department of Computer

Science in New Paltz, NY 12561, the United States.

patiently wait in line for seemingly interminable

lengths of time in order to get treatment. These

guidelines are aimed at assisting hospitals in planning

each queue of treatment chores, avoiding

overcrowding, and ensuring that patients can finish

their jobs on time and without interruption. To

construct a patient treatment time consumption

model, we draw on a wealth of real-world hospital

data. Based on crucial characteristics such as patient

treatment start time, finish time, patient age and

detail treatment content for each separate job are

assessed thoroughly and rigorously. Waiting

durations vary dependent on a patient's health and the

procedures they had during therapy. FIG. 1 depicts

Fig. 1's patient treatment and wait process. Patient 1,

Patient 2, and Patient 3 are shown in Fig. 1, along

with the therapy activities that must be completed for

each of them. Prior to X-rays, surgery or bandaging

can't be carried out, for example.

Professor1,2,3,4, Assistant Professor1,2,3,4, ,Associate Professor1,2,3,4,

Department of CSE Engineering,

Pallavi Engineering College,

Mail ID:bvenkat1109@gmail.com, Mail ID:krishna.cseit@gmail.com,
Kuntloor(V),Hayathnagar(M),Hyderabad,R.R.Dist.-501505.

36

P atient1 must do tasks A, B, and D, however job D

must wait until B is completed. As for P atient2 and P

atient3, they need to complete assignments titled 'A-

E-B-C' and 'D-E-C-A-B-C'. In addition, the number

of patients in each task's queue varies, with 7 patients

in task A's queue and 5 patients in task B's queue, for

example. A PTTP (Patient Treatment Time

Prediction) model is developed using historical

hospital data in this article. In order to estimate the

wait times for each treatment task, PTTP is used.

Fig. 1. Workflow of patient treatment and

wait model

This represents the total amount of time each patient

has to wait in the current line. A Hospital Queuing-

Recommendation (HQR) system then offers an

efficient and easy treatment plan for each patient

based on their specified treatment duties. In the

waiting room, the trained PTTP model calculates

how much time each patient will need for their

treatment. Each task's current wait time may be

calculated, such as TA = 35(min),TB = 30(min),TC =

70(min),TD = 24(min), and TE = 87(min). Finally,

each patient's jobs are arranged according to the

patient's waiting time, except for the dependent tasks.

A suggestion for queuing is made for each patient,

such as the suggested queuing 'A' for P atient1, 'B, A'

for P atient2, and 'D, C' for P atient3' for each patient.

Every task's waiting time is pre-calculated in real-

time so that all necessary treatment may be

completed in the quickest time possible. Queuing

recommendations are updated in real time because of

the dynamic nature of the task queues. This means

that each patient may be counselled on how to go

through his or her therapy in the smallest amount of

time possible.

Our Contributions

PTTP and HQR systems are proposed in this study.

Our system's real-time demands, massive data sets,

and complexity necessitate the use of big data and

cloud computing approaches. For each treatment

task, the PTTP algorithm is trained using an

enhanced Random Forest (RF) method, and the

waiting time for each task is forecasted using the

learned PTTP model. Finally, HQR makes a

recommendation for a treatment method that is both

effective and convenient for each patient. The

proposed strategy and estimated waiting time may be

seen in real time by patients utilising a mobile app.

Extensive testing and results from actual applications

indicate that the PTTP algorithm is very precise and

fast. The following is a summary of our contributions

to this work.

Based on the Random Forest (RF) algorithm, PTTP

has been presented. The PTTP model calculates the

expected wait time for each treatment job by adding

up the estimated treatment times for all patients

already in the queue.

On the basis of the anticipated waiting time, an HQR

system is presented. Each patient should be

prescribed a treatment plan that is both convenient

and time-efficient.

In order to accomplish the aforementioned objectives,

the NSCC's PTTP and HQR systems are parallelized

on the Apache Spark cloud platform. MapReduce and

Resilient Distributed Datasets (RDD) programming

models are used to store extensive healthcare data in

Apache HBase. The rest of the paper is arranged in

this way. Related studies are discussed in Section 2.

The PTTP algorithm and the HQR system are

described in Section 3. Section 4 explains how to run

the PTTP algorithm and HQR system in parallel on

the Apache Spark cloud environment. Detailed

findings and assessments of the recommendation

accuracy and performance are reported in Section 5.

Finally, Section 6 sums up the paper's findings and

suggests further research and study plans.

RELATED WORK

Classification and regression algorithms have many

optimization strategies offered to increase their

performance while using continuous characteristics in

the data. Binary regression trees may be constructed

37

incrementally using a self-adaptive induction

approach introduced in [1]. Parallel boosted

regression tree approach for web search ranking was

presented by Tyree et al. [2]. A decision tree method

based on a correlation-splitting criteria was

developed in [3]. Classification and regression tree

approaches enhanced in [4–6] have also been

developed. Big data mining may benefit from the

random forest method [7], an ensemble classifier

based on a decision tree. Some applications of this

algorithm include fast action detection via

discriminative random forest voting and Top-K sub

volume search[8, 9], robust and accurate shape model

matching via random forest regression voting [9, 10],

and a big data analysis framework for the detection of

botnets among peers using random forests. The

random forest algorithm's efficacy and adaptability

are shown in these papers. There has been a recent

push to increase the random forest algorithm's

precision by Bernard [11]. Classifying high-

dimensional, three-dimensional, noisy data using a

random forest technique based on weighted trees was

presented in [12]. Although it is a typical direct

voting technique, it is still used in the original

random forest algorithm. In this scenario, the testing

dataset's projected value would most likely be wrong

due to the random forest's noisy decision trees [13].

Algorithms for suggestion have been used in a

variety of industries. MapReduce-based service

recommendation for large data applications was

suggested by Meng et al.[14]. In [15], a

recommendation system based on people's

characteristics and the sorts of travel groups they

belong to was put out. For online social networks, Zu

et al. [16] developed a Bayesian-inference-based

recommendation system, in which a user's content

rating query is propagated among his direct and

indirect connections. Recommendation algorithms for

multi-criteria rating systems have been developed by

Adomavicius et al [17]. [18] Gediminas et al.

described the current generation of recommendation

algorithms, such as content-based, collaborative and

hybrid methods. However, present studies do not

have a methodology for accurately predicting the

amount of time patients would need to spend

receiving therapy. Rapidity of data mining and

analysis is critical in the age of big data.

Supercomputers and cloud computing provide high-

speed processing capability.. One of the most well-

known cloud computing systems is Apache Hadoop

[20] while the other is Spark [21]. For example, the

MapReduce [22] architecture has been used to

develop many parallel data mining techniques. Based

on the MapReduce programming architecture, a

variety of data-mining methods have been presented

in [24–27]. Suitable for data mining and machine

learning, Apache Spark is an effective cloud

platform. Data are stored in memory in the Spark,

and subsequent iterations of the same data are

retrieved directly from the cache. Zaharia [28]

demonstrated how to use Spark to do quick and

interactive analytics on Hadoop data. We utilise the

random forest method to train the patient treatment

time consumption based on both patient and time

parameters, and then develop the PTTP model, in

order to estimate the waiting time for each treatment

task. The RF technique uses a Classification and

Regression Tree (CART) model as a meta-classifier

since patient treatment time consumption is a

continuous quantity. In this study, the original RF

method is enhanced in four ways to get an effective

result from large-scale, high-dimensional,

continuous, and noisy patient data because of its

inadequacies. With the original RF method, PTTP

provides considerable benefits in terms of accuracy

and performance over the original RF algorithm.

Furthermore, there is no previous study on queue

management and advice in hospitals. Using the PTTP

concept, we've devised an HQR system. When it

comes to queuing service computing, we believe this

study is the first effort to address the issue of patient

wait times in hospitals. An efficient and convenient

treatment plan with the least amount of waiting time

is recommended for each patient as part of a

treatment queueing recommendation. Algorithms for

predicting how long a patient's treatment will take A

PTTP method is developed to create the PTTP model

based on both patient and temporal variables. To train

the PTTP model, we use enormous, complicated,

noisy hospital treatment data. 3.1 Definition of the

Problem and Data Preparation 3.1.1 What is the

problem? Analyzing and analysing enormous

amounts of noisy patient data from numerous

hospitals to make predictions is a difficult endeavour.

The following are some of the most pressing issues:

Data in hospitals is often large, unstructured, and

high-dimensional. Daily, hospitals generate

enormous amounts of business data including a

wealth of information on patients and their care,

including demographics, diagnoses and

prognostications, medical procedures, and other

specifics. There is also a large amount of incomplete

or inconsistent data due to the manual operation and

unexpected events during treatments, such as a lack

of patient gender and age data, time inconsistencies

caused by the time zone settings of medical machines

from different manufacturers, and treatment records

with only a start time but no finish time. Treatment

tasks in each department may not be completed

within a certain time frame due to several factors

including task content and the time of day as well as

varied patient populations. For example, a CT scan

38

takes more time on average for an elderly person than

it does for a young one. (3) Hospital queue

management and suggestion are subject to stringent

time constraints. The PTTP model and HQR scheme

must also be executed at a rapid pace. 3.1.2

Preparation of Data Preprocessing involves gathering

patient treatment data from a variety of treatment

activities. Every day, hospitals see a large number of

patients. Let S be a group of patients at a hospital,

and a patient who has been registered and whose

information is represented by si. " S = s1, s2, etc.,

where sN is the total number of patients in S. Each

patient si has a unique set of attributes, such as a

unique identifier (e.g., ID), gender, age, and location.

Depending on our goals, we can make good use of

some of these criteria, but not all of them. Depending

on their health, each patient may go to a variety of

therapy locations. This is the collection of therapeutic

tasks that will be performed on a certain patient, si, at

that time: It is possible to have more than one record

for each treatment task, such as the name of the task

(x1), the location (x2), the department (x3), start and

finish times, the doctor or attending staff (XK), and

so on.

where yj is a feature variable of the

record of treatment task xi . Here, for a

single visit, we have a single record for

patient name, age, gender, and multiple

records for treatment tasks, as shown in

Table 1.

TABLE 1 Example of treatment records

The following phases represent the preprocessing

task's workflow.Analyze the results of various

treatment procedures. Depending on the statistics, a

medium-sized hospital sees between 8,000 and

12,000 patients every day, and between 120,000 and

200,000 records of remedial therapy. Medical

examinations, registration, prescription

administration and payment are only a few examples

of the many therapeutic procedures that generate this

data. Table 2 shows the data formats for various

treatment jobs.

PTTP Model based on the improved RF

Algorithm

It is necessary to first calculate the patient treatment

time consumption based on various patient features

and time factors in order to anticipate the waiting

time for each patient treatment activity. The amount

of time it takes to complete each therapy job varies

depending on the task's content, the time of year, and

the state of the patient. Since the PTTP model is built

using patient and time characteristics, we first train it

using RF. The RF method has been enhanced in four

ways to better handle large-scale, high-dimensional,

continuous, and noisy hospital treatment data because

of the constraints of the original RF algorithm and the

characteristics of the data. As data features are

restricted and superfluous information like patient

name, ad dress, and phone number has already been

removed, the original RF method does not employ

random selection but instead uses all of the chosen

(cleaned) aspects of the data in the training phase.

CART models are utilised as meta-classifiers in the

enhanced RF algorithm since the goal variable of

treatment data is patient treatment time consumption,

a continuous variable. Some of the data's independent

variables, such as time range (0 - 23) and day of the

week (0 - 7), are nominal data, which have varying

values (Monday - Sunday). This is a situation where

classic CART's two-fork tree model cannot

adequately represent the analysis findings. As a

result, instead of using the typical CART algorithm's

two-fork model, a multi-branch model is suggested

for building the regression tree model successfully.

Although some of the inaccuracy has been eliminated

in the preparation, there may still be other sorts of

noise in the data. In certain treatment jobs, the

amount of time it takes to complete one patient's

treatment is measured by the time it takes to complete

the next patient's treatment. Suppose that the final

patient in the morning had an operation time of

"12:00:00" and that the first patient in the afternoon

had an operation time of "14:00:00" as an example of

a payment job. As "7200 (s)" is more than the

expected value of "100 (s)," this is deemed erroneous

data for the former. In certain cases, as while doing a

blood examination, the time consumption number

"7200 (s)" has been accurate. According to the

treatment data attributes, we can't just classify one

value of time consumption as "noisy data." To begin

with, we need to detect and eliminate any errant data.

Noisy data are eliminated from the average value of

the data in each regression tree leaf node before

accuracy is calculated. A standard direct voting

39

approach is used in the original RF algorithm. This is

because an RF with noisy decision trees would

provide a projected value for the testing dataset that

is off by the expected amount. A weighted voting

approach was used in this study to estimate the RF

model's output, as shown in Figure 1. For the sake of

voting on the test data, each tree classifier is assigned

a certain reasonable weight. When a tree classifier is

trained, it will have a high voting weight because of

its accuracy. Overall classification accuracy is

improved and generalisation error is reduced by using

the classifier. Based on the enhanced RF algorithm,

our PTTP algorithm provides considerable

improvements in terms of accuracy and performance

when compared to the original RF algorithm

Training CART Regression Trees of the RF

Model

The single decision tree in the RF model is a

regression tree since the goal feature variable of

treatment data S, the patient treatment time

consumption, is a continuous value. CART

regression tree models are built for each training

subset straini in this manner. CART trees are

generated in the RF algorithm's initial stage of

optimization. Instead of randomly selecting m

features from each strain of training data, the original

RF technique uses all M features from all strains of

training data. CART's regression tree-building

technique is outlined here.

Calculate the best splitting feature variables and

the best split point

By using vp in the feature subspace yj, split

the training dataset in half. There are two

data subsets: RL(yj, vp) and RR(yj, vp),

which represent the left and right data sets,

respectively. Here are the definitions for

these subsets:

Construct multi-branch for the CART

model.

Some independent variables of data, such as

the time range (0 - 23) and the day of the

week, are nominal data, which may have

varying values (Monday - Sunday). The

second optimization feature of the RF

technique is to utilise a multi-branch

regression tree model instead of a two-fork

tree model to generate the CART model.

Step 2 divide the tree node into two forks by

selecting the variable yj and the value vp

and calculating the optimal split points vpL

and vpR for the left and right branches,

respectively. To illustrate, let's look at the

left branch and see what the optimal split

point is for the present feature subspace:

in where PL and PR are proportions of data

in the left and right branches, respectively,

to the total volume of training data. A p(cj

|yL) is the volume of cj data in the left

branch compared to all data in this branch.

Nodes on the left branch will continue to

split if the split value of (vpL|yj) is bigger

than the previous node, i.e. (vpL|yj) vp|YJ).

If not, the final feature variables are still

being calculated. The right branch is also

computed in the same manner. It is then

computed sequentially for each node and its

two sub-nodes. A node merger should be

performed if the variable split is the same in

both the parent and child nodes. As a result,

a multi-branch node is formed in the tree.

Fig. 3 shows a CART model example of

multi-branch splitting.

Fig. 3. Example of multi-branch splitting for

the CART modeRepeat steps 1 to 3 for each

branch until all of the data in that branch is

categorised as a leaf node. After removing

noise from the data, calculate the mean

40

value of leaf nodes. Although some

incorrect data was eliminated in the

preprocessing, there may still be other sorts

of noise listed above. For this reason it is

important to decrease how much of an

impact noise has on RF algorithm accuracy.

For each CART leaf node, a noise-removal

approach based on box plots is used. Each

node's data is arranged by ascending order.

The box-plot model's three data points Q1,

Q2, and Q3 are then computed, with Q2

being the median and Q1 and Q3

representing the data's bottom and higher

four digits, respectively. An example of how

to define the noise's upper limit is:

The data outside of the range of IL, OL" is

considered to be unreliable. The average

value cj of the data yj is obtained at each

leaf node of the regression tree after

removing the noisy data.. Formulas are

defined in this way:

3.3 Hospital Queuing

Recommendation System based on

PTTP Model

It is thus possible to use the PTTP model for

each treatment job to construct a queue

suggestion system for hospitals. To

accomplish intelligent triage, a treatment

plan that is both efficient and convenient is

developed and suggested to each patient. For

each patient, suppose there are different

therapy chores based on the patient's

condition, such as tests and inspections.

There are a number of treatment activities

that must be completed by the present

patient, and there are a number of patients

who are waiting in the queue for those

chores to be completed. Figure 6 depicts the

HQR system's workflow based on the PTTP

paradigm. The present patient's treatment

chores will take a certain amount of time to

complete. As long as there is a patient Uik in

the Task Queue,

Fig. 6. Process of the HQR system

based on the PTTP model

The trained PTTP model uses the patient's

attributes (such as gender and age), temporal

variables (such as the week and month of the

present time), and other factors to forecast

the patient's treatment time consumption

(such as treatment departments, available

machines, and service windows). Tik is the

patient treatment time used by patient Uik in

line.

4PARALLEL

IMPLEMENTATION OF THE

PTTP

HQR SYSTEM AND ALGORITHM There

are almost 5 TB of past treatment data

(increasing every day) saved in HBase. The

PTTP model and the HQR system are then

parallelized on the Apache Spark cloud

platform for better performance. Thus, the

algorithms' performance is greatly enhanced.

This is an RDD. The training dataset is

saved as an RDD object called RDDoriginal.

For each RDDtraini object, k subsets of the

training set are sampled from RDDoriginal.

In order to store related OOB subsets,

further k RDD objects are constructed, each

of which is specified as RDDOOBi. K map

jobs are assigned to numerous slave nodes at

the same time, with k training subsets. The

RDD programming paradigm and a

sequence of procedures are used in parallel

to compute these training subsets. In the

end, there are k regression tree models

Transformation and action are two sorts of

operations supported by each RDD object in

the RDD programming paradigm. Map(),

41

filter(), flatM ap(), mapPartitions(), union(),

and join() are examples of transformation

operations on an RDD object (). It is thus

possible to return a new RDD object from

each change that takes place. An RDD

object may be reduced, collected, counted

on, saved to a Hadoop file, or counted by

key in a sequence of action activities. In

Algorithm 4.1, the PTTP model's dual

parallelization training phases are laid out in

great detail. The following are the phases in

the training procedures for each RDDtraini

and RDDOOBi OOB subset. A

transformation and an action operation are

performed in stage 1 by the

buildFeatureData() and findSplitsFeature()

methods. There are M feature variables

referenced by M partitions in the

buildFeatureData() method, which maps

RDDtraini feature subspaces to a new RDD

object. Each feature variable subspace's loss

function and each variable's potential split

point value are determined. F

indSplitsFeature() is used to sort feature

variables' loss function results, and then

selects the lowest-valued one as Ti's initial

node, which is produced as an RDD object

as part of the CART tree. Two split()

methods and a FindBestSplits() function are

available in stage two. RDDtraini is divided

into two forks by a split point in the current

feature subspace (RDDL/Rtree) in the first

split() function. A f indBestSplits() function

is provided for each branch. When using the

f indBestSplits() function, the current feature

subspace's possible splitting values are

determined using the same set of feature

variables. RDDsplitf eature2 is found to be

the optimal split point for the data in the

branch. In this case, the branch continues to

divide by the current feature variable and the

best possible split point in the second split()

method. Without further ado, let's have a

look at the remaining features. To calculate

the next feature, repeat steps 1 and 2 if the

current node in the tree is not a leaf node.

For a leaf node, move to stage 3 instead.

Alternatively NoiseDataClear() and mean()

functions are available in stage 3. Using the

noisyDataClear() method, each leaf node's

noisy data is cleaned up. This value is then

averaged in order to get a value that

corresponds to RDDT leaf node i. After each

split, the feature variables are recalculated to

complete the picture. The training subset

RDDtraini is used to train a tree model

RDDT i. When it comes to the accuracy of

the tree RDDT I the OOB subset against the

RDDtraini training subset is used for testing,

and the weight in the getAccuracy() function

is utilised to determine the accuracy of

RDDTi. Using the cloud-computing

platform to its fullest potential

CONCLUSIONS

The Apache Spark cloud environment and a

large data PTTP method are introduced in

this work. The PTTP model is optimised

using a random forest technique. The PTTP

model is used to anticipate the wait time for

each treatment activity. Patients are given an

efficient and easy treatment plan based on a

parallel HQR system. Our PTTP algorithm

and HQR system have shown outstanding

accuracy and performance in several trials

and real-world applications. There is an

ever-increasing amount of data being

generated by hospitals every day. Each set

of hospital guide recommendations is

anticipated to need a significant amount of

time and effort to train the historical data,

although this does not have to be the case.

Future work should include an incremental

PTTP algorithm based on real-time

streaming data, as well as a more user-

friendly suggestion with less path

knowledge.

ACKNOWLEDGMENT

It was partially funded by the National

Natural Science Foundation of China (Grant

Nos. 60133005, 601432005), the National

Natural Science Foundation of China (Grant

Nos. 601370095 and 601472124), the

International Science & Technology

Cooperation Program of China (Grant No.

2015DFA11240), and the National Research

Foundation of Qatar (NPRP, Grant Nos. 8-

519-1-108). (Grant Nos. 2016JJ4002).

REFERENCES

[1] R. Fidalgo-Merino and M. Nunez, “Self-adaptive

induction of regression trees,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 33,

no. 8, pp. 1659–1672, 2011.

[2] S. Tyree, K. Q. Weinberger, K. Agrawal, and J.

Paykin, “Parallel boosted regression trees for web

search ranking,” in In Proceedings of the 20th

international conference on World wide

web(WWW’11). ACM, 2012, pp. 387–396. [3] N.

Salehi-Moghaddami, H. S. Yazdi, and H. Poostchi,

“Correlation based splitting criterionin multi branch

42

decision tree,” Central European Journal of

Computer Science, vol. 1, no. 2, pp. 205–220, June

2011. [4] G. Chrysos, P. Dagritzikos, I.

Papaefstathiou, and A. Dollas, “Hc-cart: A parallel

system implementation of data mining classification

and regression tree (cart) algorithm on a multi-fpga

system,” ACM Transactions on Architecture and Code

Optimization, vol. 9, no. 4, pp. 47:1–25, January 2013.

[5] N. Uyen and T. Chung, “A new framework for

distributed boosting algorithm,” in Proceeding FGCN

’07 Proceedings of the Future Generation

Communication and Networking. IEEE, 2007, pp.

420–423. [6] Y. Ben-Haim and E. Tom-Tov, “A

streaming parallel decision tree algorithm,” Journal

of Machine Learning Research, vol. 11, no. 1, p.

849C872, October 2010. [7] L. Breiman, “Random

forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,

October 2001. [8] G. Yu, N. A. Goussies, J. Yuan, and

Z. Liu, “Fast action detection via discriminative

random forest voting and top-k subvolume search,”

Multimedia, IEEE Transactions on, vol. 13, no. 3, pp.

507 – 517, June 2011. [9] C. Lindner, P. A. Bromiley,

M. C. Ionita, and T. F. Cootes, “Robust and accurate

shape model matching using random forest

regression-voting,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 25, no. 3, pp.

1–14, December 2014. [10] K. Singh, S. C. Guntuku,

A. Thakur, and C. Hota, “Big data analytics

framework for peer-to-peer botnet detection using

random forests,” Information Sciences, vol. 278, pp.

488–497, 2014.[11] S. Bernard, S. Adam, and L.

Heutte, “Dynamic random forests,” Pattern

Recognition Letters, vol. 33, no. 12, pp. 1580–1586,

September 2012. [12] H. B. Li, W. Wang, H. W. Ding,

and J. Dong, “Trees weighting random forest method

for classifying highdimensional noisy data,” in IEEE

International Conference on E-Business Engineering,

vol. 10, November 2010, pp. 160–163. [13] G. Biau,

“Analysis of a random forests model,” Journal of

Machine Learning Research, vol. 13, no. 1, pp. 1063 –

1095, January 2012. [14] S. Meng, W. Dou, X. Zhang,

and J. Chen, “Kasr: A keyword-aware service

recommendation method on mapreduce for big data

applications,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 25, no. 12, pp. 3221 – 3231,

2014. [15] Y. Y. Chen, A.-J. Cheng, and W. H. Hsu,

“Travel recommendation by mining people attributes

and travel group types from community-contributed

photos,” Multimedia, IEEE Transactions, vol. 15, no.

6, pp. 1283– 1295, 2013. [16] X. Yang, Y. Guo, and Y.

Liu, “Bayesian-inference based recommendation in

online social networks,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 24, no. 4, pp.

642–651, 2013[17] G. Adomavicius and Y. Kwon,

“New recommendation techniques for multicriteria

rating systems,” Intelligent Systems, IEEE, vol. 22,

no. 3, pp. 48–55, 2007. [18] G. Adomavicius and A.

Tuzhilin, “Toward the next generation of

recommender systems: a survey of the state-of-the-art

and possible extensions,” Knowledge and Data

Engineering, IEEE Transactions on, vol. 17, no. 6,

pp. 734–749, 2005. [19] X. Wu, X. Zhu, and G. Wu,

“Data mining with big data,” Knowledge and Data

Engineering, IEEE Transactions on, vol. 26, no. 1,

pp. 97–107, January 2014. [20] Apache, “Hadoop,”

Website, January 2015, http:

