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Abstract 

Sparse representation has numerous benefits over traditional picture representation approaches as a novel multiscale geometric analysis 

technique. The normal sparse representation, on the other hand, ignores inherent structure and time complexity. A new fusion mechanism 

for multimodal medical images focused on sparse representation and judgment is presented in this article. 

A map is planned to address both of these issues at the same time. To allow the effects reserve more energy and edge knowledge, three 

decision maps are designed: structure information map (SM), energy information map (EM), and structure and energy map (SEM). The 

Laplacian of a Gaussian (LOG) captures the local structure function in SM, and the mean square variance detects the energy and energy 

distribution feature in EM. To increase the pace of the algorithm, the decision map is applied to the standard sparse representation dependent 

procedure. By improving the contrast and reserving more structure and energy details from the source pictures, the proposed solution also 

enhances the accuracy of the fused data. The findings of 36 classes of CT/MR, MR-T1/MR-T2, and CT/PET photos show that the SR and 

SEM-based approach outperforms five state-of-the-art approaches. 

1. INTRODUCTION 
Thanks to the growing demands of clinic inquiry and 

disease diagnosis, medical imaging is gaining in 

popularity. Medical imaging is complicated by a 

variety of imaging processes. In a small domain, 

photographs of various modals include a variety of 

complementary details regarding the human body. 

For eg, computed tomography (CT) images provide 

better information on thick tissue, PET images 

provide better information on blood flow and tumor 

activity with low spatial resolution, and magnetic 

resonance (MR) images provide better information 

on soft tissue. Furthermore, MR-T1 images provide 

more information regarding anatomical shapes, while 

MR-T2 images provide a stronger distinction 

between regular and abnormal tissues. However, a 

single multiple modalities would not be able to meet 

the need for high-resolution imagery and simulation 

for disease diagnosis. Medical picture fusion is a 

valuable and efficient strategy for combining 

complementary details from multimodality images to 

increase diagnostic precision in this regard. 

Furthermore, fused images are better for assisting 

doctors in diagnosis and care preparation : fusing MR 

and CT images will provide images that describe soft 

tissue and bone while simultaneously representing 

anatomical and physiological aspects of the human 

body. To segment white matter lesions and direct 

neurosurgical resection of epileptogenic lesions, MR-

T1 and MR-T2 photos are fused . In oncology, hybrid 

PET/CT imaging is useful for viewing biological, 

biochemical, and tumor response characteristics. 

Furthermore, medical picture fusion not only aids in 

disease diagnosis but also lowers storage. Multistage 

decomposition approaches have grown in popularity 

as the most widely used image fusion process
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Discrete wavelet transform (DWT), frame let 

transform contour let transform and nonsubsampled 

contour let transform (NSCT) have all been 

established in recent years. Regrettably, In the 

presence of noise, transform-based approaches yield 

low fusion effects, and choosing the decomposition 

levels is challenging. Since sparse representation 

(SR) has proved to be an extremely useful method for 

processing high-dimensional signals more and more 

researchers are applying it to the field of picture 

fusion to improve fused outcomes .  

The regular SR, on the other hand, ignores the 

intrinsic structure and the time complexity. As a 

result, incorporating them into the SR model is a 

rational approach for improving SR but determining 

the connection between intrinsic structure knowledge 

and sparse coefficients is difficult. Reference 

suggested a dictionary learning approach that 

combined geometrical structure with group sparse 

coding, but it did not discuss the time complexity of 

the sparse representation algorithms. Picture fusion 

approaches focused on joint sparse representation 

(JSR) and need a significantly higher number of 

iterations to achieve image vector sparse 

representation for a larger qualified vocabulary. 

Some researchers suggested new methods combining 

multistage transform and SR to fuse the source 

images' structure details into the fused images, but 

these methods are far more complicated and time 

consuming. 

As a result, the main challenge became how to 

achieve picture fusion dependent on SR with local 

structure knowledge in less time. By extracting the 

local structure function of the picture blocks, the 

decision map will assist us in achieving this aim. 

Unfortunately, the majority of judgment map-based 

approaches are only suitable for multifocal picture 

fusion. The decision map is used in infrared and 

visible picture fusion in references demonstrating that 

it can be used for other types of image fusion. In 

particular, almost all sparse coefficients fusion rules 

for SR methods are dependent on different blocks 

feature values, implying that they are all decision 

map methods . We incorporate the local structure and 

energy details of source images into the decision map 

to increase the pace of the algorithm and the accuracy 

of the fused effects in order to realize medical image 

fusion based on SR with decision map. 

This paper's main contribution is as follows: 

(1) To incorporate the source images' local structure 

and energy details into the SR algorithm for medical 

image fusion, we generated three decision maps to 

remove the source images' local energy and structure 

features. 

(2) It is beneficial to use the decision to reduce the 

amount of picture blocks to coarse representation in 

order to obtain faster performance. The accuracy of 

the findings would also increase if the maps are used 

to keep more structure and energy details in fused 

pictures. 

2. The Proposed Method's Framework 
Figure 1 show the architecture of the suggested 

solution, which is focused on SR and function 

extraction. To begin, we divide all source images into 

two groups, A and B, based on their scale. 𝑚×𝑛 into 

patches 𝑦𝑖, 1 and 𝑦𝑖,𝑗 2 through a sliding window 

with the size of×𝑤(𝑖 ≤ 𝑚−𝑤, 𝑗 ≤ 𝑛−𝑤). All patches 

are arranged into vectors (𝑖−1)∗ (𝑛−𝑤)+𝑗 1 and 

𝑉(𝑖−1)∗ (𝑛−𝑤)+𝑗 2 from left to right and from top to 

bottom. Second, we divide these vectors into vector 

pairs based on the initial patches' corresponding 

locations, and construct the decision map for each 

pair separately. 

Finally, when the map is labeled as 1 or 2, we use the 

decision map to decide whether one vector in each 

category is the product. When the map is labeled 0, it 

implies that these classes are known as the sparse 

representation system's input. 

Finally, we use the SRmethod to fuse the remaining 

vector pairs. Finally, based on the judgment diagram, 

the machine may produce fused data. The patches' 

overlaps are averaged. SR. 2.1. A signal can be 

expressed in SR algorithms as a sparse mixture of the 

fewest possible atoms from an over complete 

dictionary. 

Let 𝑉𝑅𝑚 denote a signal vector from the source 

images and let   𝑚×𝑘 (𝑘 > 𝑚) denote an over 

complete dictionary whose column vectors are its 

atoms. The signal vector can be represented as𝑉 = 

𝐷𝜃, where   is a sparse coefficient vector. The sparse 

o efficient vector is acquired by solving the following 

question: 

 

 



 

Where is the parameter for error tolerance? A 

superposition of the smallest number of atoms in the 

dictionary can be used to describe a picture vector. 

(1) Can be solved by since it is an NP-hard challenge, 

use OMP, BP, or other algorithms. It is critical to 

locate a suitable dictionary for SR. There are two 

major methods for creating a dictionary. The Gabor 

dictionary], the discrete cosine transform (DCT) and 

the Haar dictionary are examples of set dictionaries. 

Another choice is to use K-SVDto train a dictionary 

from a large number of training image patches, which 

normally outperforms fixed dictionary methods in 

image processing. 

 

2.2. The Energy Map and the Structure 

Map. 
Let us regard 𝑦𝑖, 1 and 𝑦𝑖, 2 as mean values of 𝑦𝑖, 1 

and 𝑦𝑖, 2 , respectively. We use ‖𝑦𝑖,𝑗 1 ‖2 as the sign 

of energy and the mean square deviation (1/64)‖𝑦𝑖,𝑗 1 

− 𝑦𝑖,𝑗 1 ‖2 as the sign of energy distribution for 𝑦𝑖,𝑗 1 

, which are similar to 𝑦𝑖,𝑗 2 . We design the first 

decision map EM ∈  𝑅𝑀×𝑁 (where𝑀 = 𝑚− 𝑤 and 𝑁 

= 𝑛 − 𝑤) which called the energy map by 

 

 
 

 
 
Figure 1: The framework of the image fusion method based on 

sparse representation and feature extraction. 

 

 
 

As a result, our map provides details about the space 

and energy distribution of the vector pairs. This chart, 

however, lacks sufficient image structure detail. To 

detect the structure details of the source pictures, the 

Laplacian of a Gaussian (LOG) was used We smooth 

the picture for noise reduction by convolving it with a 

digital mask that corresponds to the Gaussian 

function. (3)– (5) expresses the Gaussian function, 

and (3)–(5) expresses the local normalized structure 

details (6). There is more. 

 

 
 

Where 𝑟2 = 𝑥2 +𝑦2 and 𝜎 is the mean square 

deviation. Given an image matrix (𝑥, 𝑦), the LOG of 

the image function is the second-order partial 

derivatives along 𝑥 and 𝑦 directions. There is an 

example of the LOG edge detection of CT and MR 

images as shown in Figure 2. 𝑒𝑖, 1 and 𝑒𝑖,𝑗 2 

represent the local normalized structure information 

of 𝑦𝑖,𝑗 1 and 𝑦𝑖,𝑗 2 , respectively. Therefore, we 

design the second map SM  ×𝑁 named the structure 

map by 

 

 
 



The Structure and Energy Map (2.3). We create the 

third map SEM RMN, which we call the system and 

combine the electricity, energy delivery, and 

structure detail energy map generated by  

 
 

When 𝑉ℎ 1 = 𝐷𝜃ℎ 1 and 𝑉ℎ 2 = 𝐷𝜃ℎ 2, we can get 

the fusion vectors by (9) according to the decision 

map: 

 

 
 

Where   𝑀×𝑁 can be EM, SM, SEM, or other 

decision maps. In comparison to the traditional SR-

based approach, the proposed method has at least 

three merits. For starters, it should ensure that the 

merged findings retain the source's content. 

 

As far as practicable, exclude the influence of 

algorithm noise from the photographs. Second, since 

we just sparse-represent a portion of the vector pairs, 

we will get the results faster. Finally, our algorithm 

enhances contrast by combining energy, energy flow, 

and structure characteristics of the pictures. The 

proposed findings provide the strongest contrast 

details, which is the most relevant information for 

locating the location of the irregular tissue, according 

to the abstract. 

3. Experiments 
 

Experiments are carried out. The photos are all the 

same size, measuring 256 x 256 pixels. In this article, 

we use K-SV to train the dictionary. Duplicating the 

images in the manner seen in Figure 3. The blunder 

the tolerance has been adjusted to 0.01. The K-

cumulative SVD's iterations have been raised to 30. 

The first dictionary is the DCT dictionary, which has 

a scale of 64 256 characters. For convenience, we  

approximate the sparse coefficients with OMP. The 

sliding window's movement phase is set to one pixel. 

To assess the accuracy of the abovementioned 

processes, we use three types of medical image pairs: 

CT/MR images, MR-T1/MRT2 images, and CT/PET 

images. Figure 4 depicts the DCT dictionary and the 

educated dictionary. LOG's window size is set to 5 

and the number of columns is set to 2. 

In the tests, five state-of-the-art methods are tested 

for reference, namely NSCT-based methods JSR-

based methods and NSCT-based and SR-based 

methods To test the fusion efficiency in this article, 

five objective evaluation calculation parameters are 

used. Local quality index (Q0) weighted fusion 

quality index (QW) edge-dependent fusion quality 

index (QE) QAB/F all calculate the transmission of 

edge and visual knowledge from source images to 

fused images, while shared information (MI) 

computes the information transformed from source 

images to fused images. The interval is shared by Q0, 

QW, QE, and QAB/F. The higher the value for these 

parameters, the better the fusion results. 

 

 



 

Figure 2: (a) The source images, (b) the structure information of LOG, and (c) the local structure information normalization. 

 
Figure 3: The source images for fusion and training dictionary, including 12 pairs of CT/MR images, 12 pairs of MR-T1/MR-T2 images, and 

12 pairs of T/PET images. 

 



 
 

Figure 4: The DCT dictionary and the trained dictionary. 

 

Experiments were run on a PC with an Intel i7-3770 CPU running at 3.40GHz and 4GB of RAM, running 

MATLAB R2010a. 

 

3.1. Combination of CT and MR images.  

 

The CT and MR images are fused in the first 

experiment using the eight image fusion methods 

mentioned above. As seen in Figure 3, we used 12 

classes of CT and MR images to measure the 

accuracy of these approaches. Figure 5 depicts two 

sets of outcomes. The results of NSCT are clearly 

fuzzy in certain areas, especially in Figures 5(m) and 

5(n), while the results of SR + NSCT SR + SM, and 

SR + SEM will reserve better source picture 

boundary knowledge than the results of the other 

methods. Since both of the strategies use the sliding 

window technique, NSCT and NSCT use a window 

with a size of 3 and the others use a window with a 

size of 8, these findings have no block consequences. 

And the NSCT NSCT JSR and SR + NSCT findings 

are clearer than all source pictures, resulting in some 

dim detail being obscured by light information. 

We can't say the tissue details between the skull and 

the cortex, as seen in Figures 5(m), 5(n), 5(o), and 

5(q). To some point, the suggested approach should 

alleviate these issues while maintaining the benefits 

of SR-based approaches. 

In comparison, the effects of SR + SEM will provide 

improved image boundary and energy information, 

allowing us to obtain better anatomical information 

from CT images while still obtaining soft tissue 

information from MR images. 

Furthermore, in Figures 5(r), 5(s), and 5(t), the 

calcified meningioma in Figure 5(f) can be easily 

differentiated from the context (t). In terms of  

 

 



 

Figure 5: The CT and MR image fused results of different fusion methods. 

 

Table 1 shows the combined CT and MR picture 

ratings, as well as the average scores of predictive 

measurement criteria, with the “bold” values 

indicating the maximum values. If we can tell, the 

method suggested in any case, SR + SEM 

outperforms other approaches. The proposed 

methods' combined findings are all superior to 

traditional approaches. 

3.2. Image Fusion of MR-T1 and MR-T2. As seen in 

Figure 3, we used 12 classes of MR-T1 and MR-T2 

photos to measure the accuracy of these methods in 

the second experiment. Figure 6 shows two sets of 

experiments to demonstrate the proposed fusion 

process. The effects of NSCT [1], NSCT [6], and SR 

+ NSCT [18] are gloomy and vivid in general, 

showing grey distortion. Many bad edges are 

generated by NSCT [1], NSCT [6], JSR [12], and SR 

+ NSCT [18], and the fused effects are too smooth. In 

comparison, the findings of SR + NSCT [15] and 

proposed methods show improved boundary and 

energy details with less objects, allowing us to extract 

more information on adipose tissue from MR-T1 

images and vascular and tumor information from 

MR-T2 images. The suggested methods' findings 

provide more detail from the source images than the 

other methods. The proposed methods retain better 

local edge and texture detail, all of which are critical 

for diagnosis. Figure 6(l) shows the sub a cute 

premature hematoma, and Figures 6(r), 6(s), and 6(t) 

show the direction and contour of the intracranial 

hematoma (t). Table 2 lists the average scores of 

quantitative evaluation metrics for 12 MR-T1 and 

MR-T2 fused results, with the “bold” points 

indicating the highest ratings. 

 

 

 

Figure 6: The MR-T1 and MR-T2 image fused results of different fusion methods. 



 

Table 1: The objective evaluation and running time for CT and MR image fused results of all methods. 

 

 

In all ratings, we can see that SR + SEM out perform other approaches. In addition, the suggested methods' effects 

are superior to those of other methods. 

 

Fusion of CT and PET images in 3.3. As seen in 

Figure 3, the third experiment used 12 CT and PET 

picture pairs to measure the efficiency of these 

processes. Figure 7 depicts two sets of findings. 

NSCT and NSCT provide the better performance in 

terms of energy detail, allowing the fused images to 

collect both more spatial information in CT images 

and functional information contents in PET images. 

Doctors, on the other hand, ought to see the role of 

bone and tumor in clinical applications to assess 

anatomy and help in diagnosis. In Figures 7(r), 7(s), 

and 7, the findings fused by SR + SEM contain more 

accurate details and higher contrast without 

information distortion, allowing one to easily see the 

shape of the kidney (t). Figure 7(b) shows 

nasopharyngeal carcinoma, and we can easily locate 

it in Figure 7 SR+NSCT[15], SR + SM, and SR + 

SEM using the results fused by the proposed 

procedure, which are useful for viewing tumor 

behavior and helping physicians to better grasp the 

impact of cancer care. Table 3 lists the average scores 

of quantitative evaluation metrics for 12CT and PET 

fused outcomes, with the "big" values indicating the 

maximum values. In any score, the SR + SEM 

outperform the other approaches. It demonstrates that 

this strategy is adaptable and secure. 

The Time Complexity Analysis (3.4). To achieve 3D 

medical image fusion and reconstruction, a large 

number of CT/PET and MR/PET image slices must 

first be fused [37, 38]. 

As a result, a faster and more powerful image fusion 

algorithm is needed. As seen in Figure 8, we keep 

track of the total time spent by various approaches for 

36 separate medical picture pairs. Multi scale 

methods such as NSCT [1] and NSCT are clearly 

faster, while SR-based approaches (JSR SR+NSCT 

and SR +NSCT take much longer. In comparison, the 

time taken by SR + SM, SR + EM, and SR + SEM is 

around 1/50 of the time taken by the SR-based 

solution. We may conclude from the aforementioned 

study and debate that SR + SEM outperforms all 

others in the field of medical picture fusion. Our 

approaches are easier for doctors to localize irregular 

masses and tumors in patients because they provide 

more original detail from source pictures and more 

local structure information. 

4. Conclusion 
 

A new medical image fusion method based on SR 

and feature extraction is proposed in this article. 

When opposed to traditional SR-based fusion 

approaches, there are at least three significant 

advances. To begin, we propose three decision maps 

to boost the accuracy of SR-based image fusion 

methods in extracting the source images' structure 

and energy features. This technique will help keep as 

many of the initial data from the source photos as 

possible. Second, we incorporate the decision map 

into the SR based methods to speed up the algorithm. 

The suggested solution requires just 1/50 of the time 

that the conventional SR process does to achieve 

picture fusion. Third, using source picture structure 

and energy details in the decision chart greatly 

improves the accuracy of the fused data. The 



findings of the tests show that the proposed fusion process will produce greater results in both subjective and 

quantitative ways than traditional fusion approaches. 

 

 

 

 
 

Figure 7: The CT and PET image fused results of different fusion methods. 

 

 

 
 

Figure 8: The time consuming of different fusion methods. 
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