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Pascal matrices are helpful for calculations that require precision 

and conditioning. 
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ABSTRACT 

We show a theorem about Pascal matrices that are in an unsuitable state. The use of bidiagonal factorizations of Pascal matrices, however, is 

shown as a means to achieve relatively high precision in numerical calculations. 

INTRODUCTION 

Pascal matrices have been around for a while (see to 

[1-3]) and have found use in a wide variety of 

disciplines, including probability, combinatory, 

numerical analysis, electrical engineering, and image 

and signal processing (refer to [2,4] and [5,6]). 

Solving linear systems using rapid methods has been 

the subject of numerous recent articles. The use of 

Pascal matrices (see to [6]) and quick eigenvalue 

methods (cf. [7]). The ill-conditioning of 

Vandermonde matrices is well-known to grow with 

matrix size. From the Matrix. In Section 3, we use the 

Skeel condition number to verify a result about the 

ill-conditioning of Pascal matrices.  

Proving that, of a given order, they are always less 

well conditioned than an equivalent Vandermonde 

matrix. But even with this outcome, we prove that 

accurate methods can be obtained for calculating 

eigenvalues and inverses of Pascal matrices, and for 

solving linear equations using Pascal matrices as 

coefficients. HRA denotes regardless of the 

condition's magnitude, the relative errors of the 

calculations are on the order of machine accuracy. 

Number When the calculations don't need 

subtractions (apart from the original data), as is well 

known (cf. [8]), the Legal protections for HRA are 

available. Two resources are used in the development 

of HRA algorithms for Pascal matrices. For one 

thing, a specifically, the bidiagonal factorization of 

Pascal matrices is discussed in Chapter 

2. 
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Factorization of Pascal metric 

The symmetric matrix is an n-by-n Pascal matrix. 

 

Pascal matrices of rank n are lower triangular 

matrices. 

 

It is widely known (see to [10]) that the factor of the 

Cholesky factorization of the Pascal matrix P is the 

lower triangular Pascal matrix PL: 

 

A major component of the precise methods employed 

in this article is the following well-known result (cf. 

Lemma 1(ii) of [9]), which offers a bidiagonal 

decomposition of a lower triangular Pascal matrix. 

We will provide a proof because it is important to do 

so. 

Lemma 1. Given (2), we get a lower triangular Pascal 

matrix of order n PL that satisfies 

 

 

 

 

Given that P(k) L is a lower triangular matrix with a 

unit diagonal, it follows that (5) holds true k for I j, in 

particular for the final column of P(k) L. Simply 

demonstrating that (5) is true for I > j for j = no, 

nk+1,... n1 is all that has to be done. If k = 1, then it 

must be true. Let's start off by assuming that (5) is 

true for k 1, and then show it for k. Recall that P (k) 

In order to achieve L, one needs just consult P(k−1) L 

by multiplying each column by nk, then nk+1, etc., 

until n1 is reached. 

 

 

And if one accepts the induction hypothesis, then for 

I > n, one obtains 

 

Using the assumptions that n is less than or equal to 

k, j, and n is less than or equal to n and that I is less 

than or equal to n, we may get (5). For k = n 1, we 

will use the result from (5) to show that 

 

To clarify, qij of (2). Proof is accomplished using 

induction on the rows I of P (n1) L for I = 1, n. For 



the first set of cells, the inductive assertion is 

undeniably correct. Let's take it as given that it holds 

for 1,.., I 1, and then demonstrate that it holds for i. 

 

When used in conjunction, factorizations (3) and (4) 

produce a bidiagonal decomposition of a matrix P, 

which we'll refer to as BD (P). Since it is intuitive 

that all elements of a Pascal matrix are positive, this 

factorization may also be used as evidence that the 

matrix is nonnegative in its whole. Always positive 

and it is generally known (see Theorem 3.1 of [11]) 

that a combination of completely positive matrices is 

likewise completely positive. 

Conditioning and accurate algorithms for 

Pascal matrices 

To begin, let's review what what a Vandermonde 

matrix is. The matrix is a Vandermonde matrix of 

order n. 

 

Vander monde matrices are notorious for their poor 

state. 

We refer to the matrix whose I j)-entry is |aij| if A = 

(aij)16i,j6n. Let us look at the conventional and Skeel 

condition numbers of a nonsingular matrix A, 

represented by (A) and Cond(A), respectively, and 

defined by 

 

Two characteristics are worth remembering: 

 In addition to its little size, 

 Is row-invariant; 

if D is a nonsingular diagonal matrix, 

 

Some of the reasons why the Skeel condition number 

Cond(A) is preferable to the classical condition 

number (A) are given by these features (cf. also 

Section 7.2 of [12]). Let's show that, regardless of 

order, Pascal matrices always exhibit poorer 

conditioning than Vander monde matrices. 

Let P and V denote the Pascal and Vander monde 

matrices of order n from equations (1) and (8), 

respectively, and prove the following theorem. Then 

 

Proof. Let T be the satisfiable matrix. 

 

According to Theorem 3 of [13], if T > 0 and T te = 

e, where e = (1, 1, 1) t, then T is a stochastic matrix 

(cf. also [14]). We may create the following diagonal 

matrices with positive diagonal elements given that P 

and V are nonnegative matrices with nonzero row 

sums: 

 

Next, notice that matrices 

 

Comprise random matrices. To put it another way, by 

using (10) and (11), 

 

Without a doubt, H is a positive number. As (12) and 

(13) show, because P and V are stochastic matrices, 

 



 

Fig. 1. Skeel condition numbers for Vandermonde 

and Pascal matrices versus the matrix size. 

As a corollary to the stochastic nature of H, P, and V, 

we also have 

 

Taking into mind that the Skeel condition number is 

invariant by row scaling, we can now derive (11) that 

P is nonnegative (thus |P| = P) and nonsingular. 

 

Since | P| = P and P is stochastic, we obtain by (14) 

that 

 

 

That's what we can infer from this analogy 

 

To put it in writing, use the rules of twelve and 

thirteen. 

 

We may get this conclusion from (14), (17), and (19). 

 

In spite of a Pascal matrix P's poor conditioning, one 

may nevertheless derive efficient algorithms by use 

of the matrix's bidiagonal decomposition BD (P). 

According to [8], we may discover HRA methods to 

carry out various calculations with a wholly 

nonnegative matrix A, such as the computation of a 

sub matrix of A from its bidiagonal factorization BD 

(A). 

In terms of its singular values, eigenvalues, and 

inverse, or the solution of certain linear systems those 

in which a chessboard appears in b): Ax = b design 

characterized by a series of reversing indications). 

Given that Pascal matrices are bidiagonal, it is 

possible to develop very precise algorithms for them. 

For example, HRA is familiar with factorization. All 

the non-zero values in BD(P) are 1s. 

Numerical results 

Some numerical experiments are presented here. We 

begin by comparing Pascal and Vander monde 

matrices with respect to their Skeel condition 

numbers. Then, we demonstrate that it is still feasible 

to get precise numerical results using HRA despite 

the ill-conditioning by factoring in the bidiagonal 

decomposition of Pascal matrices using the 

techniques provided in [15,8]. In the form of Pascal 

matrices. As seen in Fig. 1, Vander monde and Pascal 

matrices up to size n = 50 have Skeel condition 

numbers shown by their respective colour bars. We 

can check that Theorem 1's inequality Cond(V) 6 

Cond(P) holds. 

Table 1 

Relative errors of the eigenvalues of a 20 × 20 Pascal 

matrix. 



 

 

Fig. 2. Relative errors associated with the lowest 

eigenvalue of a Pascal matrix of order n with n = 

5(5)50. 

The eigenvalues of a Pascal matrix calculated using 

HRA and more standard techniques have been 

compared in a preliminary numerical test. The 

TNEigenValues procedure [15] was used to precisely 

calculate the eigenvalues, and the Matlab function eig 

was used for comparison. TNEigenValues's 

eigenvalues were put to the test through a comparison 

to those calculated by Mathematical with 60 decimal 

places of precision. Table 1 displays the eigenvalues 

(16 digits shown) and associated relative errors for a 

20 by 20 Pascal matrix. Values of eigenvectors 

computed using HRA and the traditional technique. 

This is important to keep in mind since the relative 

inaccuracy of when using HRA; the eigenvalues are 

estimated to within a unit round off (in double 

precision) of what is obtained using the more 

traditional method increases in complexity as 

eigenvalue size decreases. In reality, the lowest 

eigenvalue shows the highest degree of inaccuracy. 

 I think everything is going swimmingly recognized 

that matrices with zero eigenvalues had zero 

eigenvalues overall (cf. [11]). In contrast, a bigger 

Pascal matrix dimensions (n > 20), the traditional 

algorithm's approximations to the weakest 

eigenvalues turn out to be a negative value indicates 

that this method should not be used to calculate 

eigenvalues of this kind. Also, keep in mind that, 

since a singular values and eigenvalues of a Pascal 

matrix of order n are equal, making the matrix 

symmetric. The relative error for the nth-order Pascal 

matrix's lowest eigenvalue is shown in Fig. 2. n = 

5(5)50. While this demonstrates that HRA-related 

relative error is rather stable, it does not do so for 

error rates in other contexts. Traditional algorithms 

develop at an exponential rate. We have also solved 

linear systems of the to further demonstrate that 

precise answers are attainable using Pascal matrices. 

Px = b, where b is a variable with a changing sign. 

The system solution is available to HRA in this case. 

And this at the TNSolve procedure [16]. The typical 

relative errors of the approximations are shown in 

Table 2. 

Table 2 

Average relative errors for the approximate solution 

of a linear 

System of the form Px = b. 

 

Table 3 

Maximum relative error of the elements of P−1 

computed to HRA and with a conventional algorithm. 

 
Linear systems and the like. The findings were 

averaged across 20 measurements and the errors were 

calculated using the euclidean \snorm. Assuming that 

b is a uniformly distributed random integer between 0 



and 1, we generate the elements of b1:= |b| to be 

uniformly distributed random numbers between 0 and 

1, and we set b to be b(i) = (1)ib1 (i). Mathematical 

was used to get the precise answers to the systems. 

As predicted, the error is less with HRA calculations, 

and this becomes increasingly apparent as the size of 

the system increases. We have completed the Pascal 

matrix HRA inverse computation. The TNJinverse 

method [16] allowed this to be accomplished. 

Matlab's inv function was selected as the industry 

standard algorithm. Invers matrices were calculated 

exactly by using Mathematical. Maximum relative 

errors of P1 elements up to size n = 25 are shown in 

Table 3. 

 

Conclusions 
 

Pascal matrices are shown to always be worse 

conditioned for the Skeel condition number than 

Vander monde matrices of the same order, showing 

their ill-conditioning. Numerical tests, however, have 

revealed that there exist procedures that enable us to 

precisely determine the inverses and eigenvalues of 

these matrices. Particular linear system solving 
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