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Abstract 

Increases in driver convenience, safety, and efficiency are all possible with the advent of vehicle ad hoc networks. However, current 

communication, storage, and processing capabilities of the connected automobiles are not being fully used to fulfill the service demands of 

Intelligent Transportation Systems (ITS). Vehicular Cloud Computing (VCC) has potential since it brings the efficiencies of the cloud to 

vehicular networks. In this study, we provide a strategy for dividing up computing power that increases the VCC system's expected reward. 

The incentive for the system may be computed by taking into account not just the revenues and costs of the VCC system, but also the resource 

variability upon which these numbers are based. The optimization problem may be modeled as an infinite horizon Semi-Markov Decision 

Process after the state space, action space, reward model, and transition probability distribution for the VCC system have all been created 

(SMDP). An iterative procedure is used to determine the optimal strategy. Specifies the steps to do when a certain condition is met. Numerical 

results suggest that the SMDP-based strategy may significantly improve performance while keeping complexity under control. 

 

INTRODUCTION 

RECENTLY vehicular networks have gained 

extensive attention from both academia and industry. 

A variety of smart sensors and devices are installed 

on vehicles targeting at data acquisition and 

processing [1] [2]. Meanwhile, various wireless 

communications Technologies can be applied to 

provide the inter-vehicle connectivity. There are 

usually two types of communication paradigms for 

vehicle services, i.e., Vehicle-to-Vehicle (V2V) and 
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Communications [3]. V2I communication enables 

vehicles to connect to Internet via a roadside base 

station, e.g., either by Dedicated Short Range 

Communication (DSRC) or cellular networks [4] [5]. 

With supporting the vehicle-related data gathering 

and processing, vehicular networks can notably 

improve the transport safety, relieve the traffic 

congestion and increase the quality of driving 

experience [7] [8] [9]. As computing and 

communication technologies have been rapidly 

Developed [6], the vehicles with powerful computing 

abilities are advocated to be regarded as service 

providers rather than being only service consumers. 

As a result, the concept of Vehicular Cloud 

Computing (VCC) has been proposed, that jointly 

makes use of computation, communication and 

storage resources in Vehicle Equipments (VEs) [10], 

e.g., on-board computer/communication devices or 

Mobile User Equipments (MUEs) carried by 

passengers. In general, services in the VCC system 

can be divided into four types according to the 

function of the resources, i.e., “Network-as-a-Service 

(Naas)”, “Storage-as-a-Service (Stash)”, “Sensing-as-

a-Service (Seas)”, and “Computation-as a- Service 

(Camas)” [10]. Nowadays, since the computing 

ability of vehicles is rapidly increased in order to 

enable them to act as providers of computing 

services, only Camas is the interest of this paper and 

is further studied. In the current paper, we propose 

the deployment of a layered-cloud computing 

architecture for the VCC system in order to provide 

satisfactory services to the VEs. The proposed 

architecture includes not only a Remote Cloud (RC) 

such as a traditional centralized cloud but also 

Vehicular Clouds (VCs) that can be regarded as one 

of computing capability providers besides the RC.  

Vehicles are produced by different vendors and thus 

Have inherently different computation resources. In 

order to deal with this issue, the virtualization 

technique has to be developed to abstract and slice 

the heterogeneous physical resources into virtual 

resources, which are shared by multiple VEs in the 

VCC system. In this paper, each vehicle in a VC is 

assumed to have virtualized Resource Units (RUs). 

RELATED WORK 

A few of works on the VCC have been carried out to 

enhance the services capabilities of VEs. VCC is very 

similar to a Mobile Cloud Computing (MCC) system 

but it brings in new characteristics. In [11], the VCC 

system is divided into three architectural frameworks, 

namely Vehicular Clouds (VCs), Vehicles using 

Clouds (Vices), and Hybrid Clouds (HCs), 

respectively. Moreover, it has been pointed out that 

in order to form the VCs can effectively deal with 

services locally produced and improve the experience 
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of VEs [12]. In [13], the Parked Vehicle Assistance 

(PVA) is proposed to overcome sparse/unbalanced 

traffic and greatly promote network connectivity by 

considering the parked vehicles as static cloud nodes. 

Also, the parked cars are utilized to sense vehicles 

that are not in line-of-sight in order to improve safety 

[14]. A two-tier data center architecture that 

leverages the excessive storage resources in parking 

lots has been studied in [15]. Furthermore, the main 

focus of works in [17] and [18] is the security of the 

VCC system. There are also certain works in the 

literatures on the resource allocation problem to 

improve the computing capability of the VEs in the 

VCC system. A game-theoretical approach is 

presented for effective resource management in 

roadside cloud set to provide services to several 

vehicles [16]. Similarly, a distributed and adaptive 

resource management is proposed for optimal 

exploitation of Cognitive Radio and soft-input/soft 

output data fusion in Vehicular Access Networks [19] 

[20], in which the energy and computing limited car 

smart phones are enhanced by offloading their traffic 

to the local or remote cloud. However, both of them 

have not considered that vehicles can share the 

resources between each other. Consequently, a 

scheduling model is presented, in which the 

unpredictable available computation resources in the 

VCC system are also considered [21]. The current 

paper attempts to deal with the limitations of the 

previous works and proposes a resource allocation 

scheme to better serve the VEs (especially MUEs) in 

the VCC system that is consisted of RC and VCs. 

Although computation resource allocation in a 

mobile cloud computing system was studied in [22], 

this scheme cannot be applied in the VCC system due 

to variability feature of the available resources in 

VCs. Moreover, different from the model in [21], the 

requests in this paper can be allocated with more than 

one RUs and processed in parallel. Furthermore, 

although node mobility is considered in traditional 

mobile cloud computing to achieve effective job 

scheduling, the total long-term expected reward of 

system still cannot be obtained in a satisfactory 

manner as 

Shown in [23] [24]. 

VEHICULAR CLOUD COMPUTING 

SYSTEM 

A. System model 

Fig. 1 shows a typical VCC system, in which vehicles 

in movement constitute a dynamic VC. In particular, 

VEs that act like smart phones can enjoy vast 

computing power by submitting the service requests 

to the VCC system in order to save the energy and 

enhance the processing speed. A vehicle is assumed 

to have one basic computation RU in the VCC 

system. When a service request arrives at the system, 

it has to make the decision of whether accepting it by 

the VC or transferring it to the RC. If the request is 

assigned to the VC, the decision of allocating how 

many RUs to it has to be made based on current 

available resources. Otherwise, a transfer decision is 

made instead, and then the service request may be 

submitted to the RC. For the sake of illustration, an 

example is also given in Fig. 1. Requests by VE A 

and VE B are accepted from the VC while the request 

by VE C is obliged to be transferred to the RC. After 

VE A and VE B are admitted, 3 RUs and 2 RUs are 

allocated to them, respectively. All the decisions are 

made to achieve the specified objective in the VCC 

system. The list of important notations of this paper 

is given in Table I. 

Assume that there are M available RUs in the VC, 

which varies with the arrival and departure of 

vehicles. K is the maximal number of the vehicles 
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that the VC can support, i.e., the number of RUs in 

the VC cannot exceed K. Each arrival service request 

can be allocated with I RUs, where 

 

Fig. 1. Illustration of a typical VCC system. 

I ∈  {1; 2; NR}; NR 6 M. The arrival rates of service 

requests and vehicles follow Poisson distribution 

with _p and 

_v, respectively. Let _p denote the computing service 

rate of the request in case of only one RU allocated. 

Then, the service time of a request is 1=imp in case 

that I RUs are allocated. In addition, the departure 

rate of vehicles is denoted as _v. Considering the 

dynamic characters of the service requests and 

vehicle arrivals, the action of the current epoch may 

directly lead to considerable change of next state so 

as to has serious impacts on the system expected total 

reward. In other words, the action to maximize the 

reward of the current epoch may become unwise in 

the long run especially when the resources in the VC 

are relatively scare. Therefore, our objective in this 

paper is to maximize the long-term expected total 

reward by properly allocating the resources in the 

VCC system. 

B. System States 

The system state s reflects the current requests with 

different number of RUs, the available resources in 

the VC and the event of requests and vehicles. 

Therefore, the state set can be denoted by S, i.e., 

 

Where Ni is the number of service requests that have 

been allocated with i RUs, and e represents an event 

in the set 

E ∈  E = {A; D1; D2; DNR; B1; B−1}. Here A 

denotes the arrival of the service request, Di means 

the departure Of a request assigned with Me RUs, B1 

and B−1 describe the arrival and departure of a 

vehicle, respectively. Thus, the Number of occupied 

RUs in the VC is NΣR I=1 I · in, which satisfies NΣR 

I=1 I · in 6 M. Moreover, the number of system states 

can be denoted by N. 

C. Actions 

In this model, several possibilities of action a can be 

taken in the action set A, i.e. 
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When an event occurs, the VCC system decides 

which action a(s) needs to be taken from the action 

set As based on the current state s, i.e., 

 

Completes and departs from the VCC system or a 

vehicle arrives at and leaves the VCC system, and no 

action is required except the information of the 

available RUs in the VCC system has to be updated. 

When receiving a request, one of two actions may be 

chosen either to accept with I RUs from the VC, i.e., 

either a(s) = I, or to transfer it to the RC, a(s) = 0. 

D. Rewards 

Given an action a, the system reward under the 

current state s is denoted by 

 

Where k(s; a) is the instant revenue of the VCC 

system by taking action a understate s in case that 

event e occurs, which consists of both the income and 

cost of the VCC system. Since the main benefits of 

the VCC system are to save the power consumption 

and speed up the processing rate of VEs [26], the 

income has to include the effects of both of them 

[27]. 

Meanwhile, the cost of the system is the transfer 

expense to send and receive the request. G(s; a) is the 

expected system cost before the next decision epoch. 

Furthermore, k(s; a) of the VCC system can be 

described by 

 

The details of the revenue function are explained as 

follows: 

1) When a service request is admitted to the VC, the 

instant revenue [wee (El − P · _1) + waded (Dl − 

1=imp − _1)] can be earned by the system. (El −P · 

_1) and (Dl −1=i_p −_1) are the saved energy and 

time when processing the computing task in the VC, 

respectively. _e and _d are the price of per unit 

energy and time. Different weights, i.e., we and wd, 

can be predefined according to different purposes, 

where we + wd = 1. The transfer expense is denoted 

as _1, which is the cost of the VCC system to receive 

the computing task from the VEs and send back the 

results. More specially, since the request has already 

been accepted by the VC, the VE can enjoy the 

service by transmitting the task to the VC and 
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receiving the feedback from it, which consumes P · 

_1 energy and _1 time at this stage. For the purpose 

of analysis, the transmitted power and received 

power are assumed to be identical [28]. If the request 

Is allocated with i RUs by the VCC system, the 

service time spent for finishing the task is 1=i_p. 

 

TABLE II 

TRANSFORMATION OF ACTIONS AND CORRESPONDING 

STATES. 

Where _ (s; a) is the expected service time from the 

current state to the next state in case that action a is 

taken under State s, and c(s; a) is the cost rate of _ (s; 

a) in case that action a is selected. Moreover, c(s; a) 

can be characterized 

By the number of occupied RUs in the VC due to its 

limited computing capability, i.e. 

 

 SMDP-BASED SCHEME FOR 

VEHICULAR CLOUD 

COMPUTING 

In our analysis, the state transition is determined by 

the action a understate s. Let us consider the system 

state s = (1; 1; 1; M; A) as an example and the 

corresponding state transition under different actions 

is shown in Table II. Furthermore, the state transition 

probability under different actions plays an important 

role on the acquired optimal policy. Thus, in this 

section, we first derive the state transition probability 

matrix. Then, the reward function is revised since a 

discounted model is utilized. Finally, we provide the 

optimal policy that can be found by utilizing the 

value iteration algorithm. 

A. Transition Probability 

Under a given state s and an action a, the expected 

service time between two continuous decision epoch 

is denoted by _ (s; a). Thus, the mean event rate for 

specific s and values is the sum of rates of all the 

events in the VCC system, which can be expressed 

by 

 

Where _v is the departure rate of vehicles, and (M_p 

+_v) is the total arrival rate of requests and vehicles. 

Since _p is the arrival rate for requests per vehicle, 

the arrival rate of requests of the VCC system can be 

denoted byM_p. The departure rate of requests is 

explained as follows. When a vehicle joins or leaves 

the VCC system, the total number of occupied RUs 

by the existing requests is not changed, which can be 

denoted by NΣR j=1 jnj . Thus, the departure rate of 

vehicles can be computed as NΣR j=1 jnj_p. When a 

request arrives, the number of occupied RUs can be 

given by (NΣR j=1 jnj+i) no matter which action 



59 
 

taken by the VCC system. Thus, the corresponding 

departure rate Is computed as (NΣR j=1 jnj_p + i_p). 

When a request is served and leaves the system, the 

number of occupied RUs becomes (NΣR j=1 jnj−i). 

The departure rate of request is (NΣR j=1 jnj_p−i_p). 

Next, P (s′|s; a) is defined as the transition 

probability from state s to state s′ under an action a, 

which can be calculated under different events, i.e. 

 

 

B. Discounted reward model 

Assume that the time between two decision epochs is 

exponentially distributed, i.e. 

 

Since the system state does not change between 

decision epochs, the expected discounted reward is 

defined based on The discounted reward model found 

in [29] [30] 

 

C. Solution 

A discounted model is applied to obtain the 

maximum total long-term expected discounted 

reward [30]. With a stationary policy _: S → A, the 

total long-term expected discounted reward can be 

given by 

 

 

 

TABLE III 

SYSTEM PARAMETERS IN THE VCC SYSTEM. 
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Since the proposed model is the infinite SMDP with 

finite state and action spaces, the value iteration can 

be used to solve the optimization problem given by 

(21). A detailed description is provided in Algorithm 

1. 

 

In our paper, the norm function is defined as ||~v|| = 

max |~v(s)| for s ∈  S. Since the operation in Step 2 

corresponds to a contraction mapping, the 

convergence of the value iteration is ensured by 

Banach Fixed-Point Theorem [29]. Thus, the function 

~vk(s) converges in norm to v~_ ∗ (s). Note that the 

convergence rate of the value iteration algorithm is 

linear with the rate ~ _. 

 

 CONCLUSION AND FUTURE WORK 

In this research, we present a Semi-Markov decision 

process-based method for allocating computing 

resources in a Vehicular Cloud Computing system 

with an unlimited time horizon (SMDP). To 

maximize the VCC system's projected total reward 

over the long run, an optimum decision making 

strategy is developed through the iteration process. 

Experiments demonstrate that when _p is large or K 

is low, anticipate reward outperforms alternative 

allocation schemes by a substantial margin. In 

addition, the complexity of the SMDP-based system 

is less than that of the SA scheme. We hope that 

further study will allow us to build more robust and 

practical schemes by examining the impact of 

parameter tolerance on the best scheme in the VCC 

system. Keeping in mind that a VCC system's size is 

growing fast makes this an even more difficult task... 
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