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Abstract 

The Critical Path Method is one example of a network scheduling approach that is extensively used in the 

construction industry to establish project schedules. However, these timetables often lead to considerable resource 

variations, which make it impossible and expensive for contractors to carry out their work according to the schedule. 

Therefore, construction managers are needed to carry out resource-leveling operations in order to ensure that the 

resource profile is consistent. This study presents a unique optimization model that has been given the term Fuzzy 

Clustering Chaotic-based Differential Evolution for addressing Resource Leveling (FCDE-RL). In order to solve 

difficult optimization issues, we devised a method called Fuzzy Clustering Chaotic-based Differential Evolution, or 

FCDE for short. This method combines the traditional differential evolution algorithm with fuzzy c-means 

clustering and chaotic approaches. The chaotic environment was purposely created and maintained in order to avoid 

the new strategy from prematurely converging. In the meanwhile, fuzzy c-means clustering operates as numerous 

multi-parent crossover operators to make effective use of the information provided by the population in order to 

improve convergence. Experimentation and investigations have shown that the newly developed optimization model 

is a potential option that may help project managers cope with the issue of resource leveling in building projects. 

Key words: Construction Management; Resource Balancing; Fuzzy Clustering; Chaotic; Differential Evolution;. 

1. Introduction 
In the current economic climate, the capacity of a construction firm to successfully manage its resources is one 

of the most important factors determining whether or not it will continue in business [1]. Inappropriate 

management of resources might potentially drive up operating costs and perhaps give birth to financial and 

schedule issues. It is possible that the length of  the project will need to be extended due to the excessive 

resource demands at the construction site. Due to the fact that the contractor will not be able to complete the 

project by the date that was previously set, the owner is at risk of incurring financial loss since the facility will 

not be available [2]. In addition, delays in construction often result in arguments between the many parties 

involved, greater overhead expenses, a deterioration of reputation, and, on occasion, the collapse of the project 

[3, 4]. As a result, the management of available resources is an essential activity that must be carried out in an 

exhaustive manner throughout the planning phase. 

The resources used in the construction industry may be broken down into five categories: labor, equipment, 

materials, financial resources, and expertise. Proper management of these resources is essential to the successful 

completion of any project [2]. However, building schedules that are created using network scheduling algorithms 

often result in unfavorable variations of the resources, making it difficult, inefficient, and expensive for 

contractors to put such plans into action [5]. As a result, construction managers are obligated to carry out the 

process of schedule adjustment in order to minimize variations in resource use that are not essential to the 

successful completion of the project. 
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The changes in resource availability are, 

needless to say, a bothersome problem for the 

contractor [6]. The reason for this is because it is 

costly to employ people on a short-term basis 

and it is also expensive to lay off personnel in 

response to variations in the resource profile. In 

addition, if the resources are unable to be 

handled effectively, it is possible that they may 

surpass the supply capabilities of the contractor, 

which would result in a timetable delay. In 

conclusion, the contractor is responsible for 

keeping a certain amount of resources available 

even when demand is low. These factors 

unquestionably have a negative impact on the 

profits of building enterprises. 

 

The process of balancing out the availability 

of resources is referred to as resource leveling 

and has been the subject of in-depth 

investigation by a large number of scholars [5, 7, 

8]. When it comes to resource leveling, the goal 

is to reduce oscillations in the pattern of 

resource utilization as well as peaks in demand 

as much as possible [9]. This method attempts to 

stabilize the length of the project while reducing 

the amount of variance in the resource profile. 

This is accomplished by moving non-essential 

operations within their available floats. The 

problem of resource leveling in a building 

project may be tackled using a wide number of 

ways, ranging from mathematical methods to 

heuristic approaches and even evolutionary 

methods (e.g. Genetic Algorithm, Particle 

Swarm Optimization, Differential Evolution, 

etc.). 

Differential Evolution (DE) [10, 11] has, as of 

late, been generating an increasing amount of 

attention among academics, who have been 

investigating the capabilities of this algorithm in 

a broad variety of different applications. DE is a 

population-based stochastic search engine that 

has shown to be both successful and efficient for 

global optimization in the continuous domain. 

At each generation, it employs mutation, 

crossover, and selection operations in order to 

progress its population closer and closer to the 

global optimal. The DE method has been shown 

to have superior performance when compared to 

other algorithms in a number of different study 

papers [10, 12, 13]. In spite of the benefits that 

have been discussed so far, the original DE and 

many of its variations are nevertheless plagued 

by a number of problems. DE 

 

 

does not always lead to a convergent state that 

is optimal on a global scale. It is simple to 

become stuck in a local optimum, which might 

lead to a reduction in optimizing accuracy or 

even an unsuccessful attempt [14]. In DE, it's 

possible that the population isn't evenly 

distributed around the search space, and that 

some people are stuck in local solutions. It is 

possible that further generations will be 

necessary in order to converge toward an 

optimum or near-optimal solution [15]. DE has 

been demonstrated to have significant flaws, 

particularly if the global optimum should be 

determined by employing a restricted number of 

fitness function evaluations, which is one of 

DE's main limitations. It is effective at 

discovering the area of global minimum and 

exploring the search space, but it is sluggish 

when it comes to exploiting the solution [16]. 

One definition of chaos describes it as an 

irregular motion or a behavior that seems 

uncontrolled but is really controlled by 

predetermined factors. Systems that are chaotic 

are sensitive to even minute changes in their 

starting conditions, and these changes may have 

a profound impact on the results. It is 

particularly sensitive to the beginning 

circumstances, and this sensitivity is the quality 

that is often referred to as the instability in the 

so-called butterfly effect or in the sense of 

Liapunove [17]. An effective method for 

preserving the population variety in search 

algorithms may be derived from the chaotic 

systems' innate properties thanks to the nature of 

these systems. 

The process of clustering is considered to be 

both one of the most significant and difficult of 

all classification techniques. The ability to 

dependably locate actual natural groups within 

the data set is essential to the success of any 

clustering effort. By bringing cluster centers to 

the populations, a fuzzy c-means clustering 

method, which is a soft clustering technique, has 

been brought into DE in order to assist in 

tracking the development of the search process. 

The technique of grouping a collection of items 

into groups or clusters based on their similarities 

is referred to as fuzzy c-means clustering. This 

helps to speed up the optimization search in DE. 

As a result, the purpose of this study is to 

make use of fuzzy c-means clustering and 

chaotic approaches in order to overcome the 

challenges presented by the original DE. Instead 

of using random sequences, chaotic sequences 

have been used, and the results have been used 

in a way that is both highly fascinating and 

somewhat successful in order to avoid the new 

strategy from prematurely converging. In the 

meanwhile, fuzzy c-means clustering functions 
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as numerous multi-parent crossover operators to 

make the algorithms converge more quickly by 

effectively using the information contained 

within the population. The following is the 

structure of the paper: In the second half of this 

paper, a short literature review pertaining to the 

development of the novel optimization model is 

presented. In sections 3 and 4, an in-depth 

examination of the newly suggested 

optimization model provides the reader with an 

overall view of the framework. In section 5, a 

numerical experiment and result comparisons 

are used to illustrate how well the newly created 

model performs. In the very final part of this 

article, a discussion of the conclusions is 

included.. 

Literature review 

2.1 The Distribution of Resources 

Within the constraints of the needed project 

time and working under the premise that there is 

a limitless supply of resources, the goal of the 

resource-leveling issue is to bring down the peak 

demand for those resources while also evening 

out the consumption on a daily basis. Therefore, 

the problem of resource leveling may be 

formulated as an optimization issue in which the 

following cost function must be reduced in order 

to get the best possible solution [9, 18].]: 
T 

f  ( y  y )
2
 

i u 
i 1 

(1) 

where T signifies the period of the project, yi 

represents the entire resource needs of the activities 

conducted at time unit I and yu represents a uniform 

resource level supplied by. yi represents the total 

resource requirements of the activities performed at 

time unit i. 
T 

 yi 

y
u 
 i 1  

T 

 

(2) 

According to Son and Skibniewski [9], Eq. (1) can 

be rewritten as follows 
T T 

f   y2
  2 y  y  y2

 
i u i u 

i 1 i 1 

(3) 

 

 Since activity duration and rate of resource for 

each activity are fixed, yu and  yi
 

i 1 

are constant. Thus, the cost 

function can be expressed as 
T 

f   y2
 

i 
i 1 

(4) 

In its most basic form, Equation (4) is 

analogous to the minimum moment of the 

resource histogram around the time axis, as was 

discussed in earlier works [18, 19]. In addition, 

the goal function of the resource-leveling issue 

requires some adjustment in order to be fully 

resolved. This is due to the fact that the 

optimization process might potentially provide 

several scheduling solutions, or, to put it another 

way, resource profiles that have the same 

minimal moment of resource demand [9]. 

Despite the fact that the values of the cost 

function are same, the resource fluctuations may 

be somewhat different. Therefore, in order to 

determine which resource profile is the most 

desirable, it is necessary to take into 

consideration the differences in consumption 

levels that occur across successive time periods 

[20] and the point at which resource demand is 

at its highest [9]. A revised goal function for the 

resource-leveling optimization model is offered 

further on in the study.. 

2.1 Chaos Approach 

Chaos theory is a scientific theory describing 

erratic behavior in certain nonlinear dynamical 

systems. Chaotic mappings can be considered 

traveling particles within a limited range 

occurred in a deterministic nonlinear dynamic 

system. There is no definite regularity for such a 

traveling path. Such a movement is very similar 

to a random process, but extremely sensitive to 

the initial condition [21]. Chaotic sequences 

have been proven easy and fast to generate and 

store, there is no need for storage for long 

sequences [15]. Moreover, these sequences are 

deterministic and reproducible. Many 

researchers have adopted chaotic sequences 

instead of random sequences [22, 23]. 

The one dimensional logistic map is one of the 

simplest systems with density of periodic orbits 

Xn1  (1 Xn ) (5) 

In this equation, 

X   is the nth
 

 chaotic number where n denotes the iteration 

number. Obviously, 

   Xn (0,1) 

under conditions that initial X0 (0,1) and that 

X0 {0.0,0.25,0.5,0.75,1.0} . The variation of 

control 

parameter  in Eq. (5) will directly impact the 

behavior of X greatly. The domain area of control 

parameter 

has often been defined as [0, 4] . In the experiments 

  4 has been used. 

The logistic map that generate chaotic 

sequences in DE, named CDE which ensures the 

individual in population to be spread in the 

search space as much as possible for population 

diversity used in experiments. Incorporating 

chaotic map into DE is proven to enhance the 

global convergence by escaping the suboptimal 

solution. Figure 1 shows the main steps of 

generating chaotically population. 

http://en.wikipedia.org/wiki/Chaos_theory


 

  

2.2 Fuzzy c-means Clustering 
Clustering is a procedure that divides an 

existing collection of items into smaller 

subgroups or clusters on the basis of their 

similarities to one another. The goal is to 

partition the collection of data in such a manner 

that items that belong to the same cluster are as 

comparable to one another as is reasonably 

feasible, while objects that belong to separate 

clusters are as unlike to one another as is 

reasonably possible. Clustering algorithms can 

be broken down into two primary categories: 

crisp (or hard) clustering procedures, in which 

every piece of data is designated to exactly one 

cluster, and fuzzy clustering techniques, in 

which every data point is considered to be a 

member of each cluster to varying degrees 

depending on the algorithm [24]. The research 

literature presents a number of different 

clustering methods. In this particular 

investigation, the fuzzy c-means (FCM) 

clustering method [25] is used. 

It was possible for the FCM clustering 

approach used in DE, which was given the term 

FDE, to simply carry out an efficient 

convergence of DE. The FCM was included in 

this investigation with the purpose of tracing the 

primary current of population migration over the 

course of DE development. 

. Each cluster centers could be treated 

approximately as one of the items in the main 

stream of evolution, and replaced for population 

as candidate individuals. The FDE algorithm is 

illustrated in Figure 2. Where m is clustering 

period, NP is the population size, and k, the 

number of centroid [26], is an integer number 

from [2, 

NP] . 
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Figure 1 Chaotic approach 
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P=P – SetB + SetC 
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Figure 2 Fuzzy c-means clustering algorithm 

2. Fuzzy c-means Clustering Chaotic-based Differential Evolution (FCDE) 

The suggested method for FCDE 

optimization is broken down into its component 

parts and discussed in this section. Within the 

FCDE-RL framework, the FCDE serves as the 

primary search engine. It has been brought to 

our attention that our method was built on the 

basis of conventional Differential Evolution [10, 

11]. This was accomplished by combining the 

traditional DE with fuzzy c-means clustering 

and chaotic approaches. The chaos strategy 

successfully leverages the whole of the search 

space and supplies the essential variation in the 

DE population. As a direct result of this, the 

process of finding the global optimum requires 

an increased amount of time and iterations. By 

incorporating the cluster centers, the fuzzy c-

means clustering approach, on the other hand, 

helps the algorithm converge more quickly. 

These moving centers give a direction for the 

search of the global optimal, which improves the 

search algorithm's overall efficiency. The FCDE 

model takes advantage of the inherent qualities 

of both the chaos algorithm and fuzzy clustering, 

and then integrates those features with 

differential evolution. This allows the model to 

improve the overall search capabilities of DE 

when it comes to locating the best solutions for a 

specific search space. The suggested algorithm's 

big picture may be seen in the following 
illustration:  
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Figure 3 Fuzzy Clustering Chaotic based Differential Evolution (FCDE) 

 

 

3.1 Initialization 

FCDE commences the search process by 
randomly generating population size NP, 
Maximum of generation 

G
max 

number of D-dimensional parameter vectors 

Xi,g  
where i  1, 2,..., NP 

        and g indicates the current 

generation. In the original DE algorithm, NP 

does not change during the optimization process 

[11]. Moreover, the initial population (at g = 0) 

is expected to cover the entire search space 

uniformly. Hence, we can simply generate these 

individuals as follow: 

Xi,0  LB  rand[0,1]*(UB  LB) (6) 

Where x 

         is the decision variable i at the first 

generation. rand[0,1] denotes a uniformly 

distributed 

random number between 0 and 1. LB and UB are 

two vectors of lower bound and upper bound for 

any decision variable. 

3.2 Mutation 

The present population is used to generate a 

mutant vector for each target vector by selecting 

three vectors at random from the population. It 

is important to keep in mind that the size of the 

mutation scale factor, denoted by the letter F, 

has an effect on the search step of the mutation 

operator. The mathematical representation of 

this procedure is as follows:: 

Vi,g1  Xr1,g  F(Xr  2,g  Xr3,g ) (7) 

where r1, r2, and r3 are three random 

indexes lying between 1 and NP. These three 

randomly chosen integers are also selected to be 

different from the index i of the target vector. F 

denotes the mutation scale factor, which 

controls the amplification of the differential 

variation between  

Xr  2,g and Xr  3,g 
. Vi,g 1 

represents the newly 

3.3 Crossover 

The goal of the crossover stage is to increase 

the genetic diversity of the existing population 

by swapping target vector components with 

mutant vector components. During this step, a 

new vector that will be used in the experiment is 

created and given the name trial vector. The 

term "offspring" may also be used to refer to the 

trial vector. The trial vector may be constructed 

as shown in the following example:: 

U  
V j ,i,g 1,  if   rand j    Cr  or  j  rnb(i) 

j ,i,g 1 

X j ,i,g ,  if   rand j   Cr  and   j  rnb(i) 

 
(8) 

where the trial vector is denoted by Uj,i,g+1. The 

value of j indicates the position of the element in 

any vector. randj is a number that is completely 

random and lies between 0 and 1. The user is 

responsible for calculating the crossover 

probability, which is denoted by the symbol Cr. 

rnb(i) is an index that is picked at random from the 

range of 1,2,..., NP, and it ensures that at least one 

parameter from the mutant vector is taken into 

account. (Vj,i,g+1) 

3.4 Selection 

In this stage, the trial vector is compared to 

1. Initialization 

 g =1 



 

  

k 

the target vector [11]. If the trial vector can yield 

a lower objective function value than its parent, 

then the trial vector replaces the position of the 

target vector. The selection operator is expressed 

as follow: 

 
U i ,g   if    f (U i ,g )   f ( X i,g ) 

X
i ,g 1 

 

X i,g  if    f (U i,g )   f ( X i,g ) 

 
(9) 

3.5 Chaos Operator 

If the probability condition is satisfied, a 

percentage of the population is selected to do 

chaos. Mapping population to chaotic feasible 

region (0,1) and performs the logistic map 

following equation (5). Afterwards, map the 

chaotic variables to feasible region according to 

equation (10): 

X g  X min  cmj ( X max  X min ) 
j,i j k j j j  1, 2,..., D (10) 

where cm j are chaotic variables according to 

chaotic formula. 

 
3.6 Fuzzy c-means clustering 

approach 

Initially, the period of the clustering operator 

specified in the algorithm is 10. Consequently, 

the number of 

  clusters defined randomly in range of [2, 

population as feasible solutions. 

3.7 Stopping Condition 

NP ]. The corresponding centroids of each cluster 

are added to the 

Once the halting requirement has been 

satisfied, the optimization process will come to 

an end. This condition's kind is up to the 

discretion of the user. As a standard practice, the 

halting condition may be determined by either 

the maximum generation (Gmax) or the 

maximum number of function evaluations 

(NFE). When the optimization procedure is 

complete, the user will be given easy access to 

the final optimum solution.. 

3. Resource balancing via fuzzy c-

means clustering and chaotic-based 

differential evolution 

In the following paragraphs, the FCDE-RL 

optimization model will be discussed in detail (see 

Figure 4). It has been brought to our attention that the 

FCDE-RL was built using the FCDE as the searching 

engine as its foundation. This optimization model's 

goal is to reduce the amount of daily variation in 

resource use as much as possible while maintaining the 

same overall project length. 

In this investigation, we look at the possibility that 

resource leveling might be achieved by reducing, as 

much as possible, the variations that occur between the 

levels of resources that are required and those that are 

considered optimally uniform. The model necessitates 

the input of project information, such as the activity 

connection, activity length, and resource demand. In 

addition, the user is responsible for providing the 

search engine with the appropriate parameter settings. 

These settings include the maximum number of 

searching generations (Gmax), the population size 

(NP), the chaotic percentage (CF), and the period 

clustering (m). With these inputs, the scheduling 

module will be able to carry out the computation 

process and get a schedule based on the critical path 

method (CPM), as well as the early start and late start 

times for each activity. The model is able to function 

autonomously and does not need any input from a 

person since it has all o f the information that it require 

s 
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Figure 4 Fuzzy Clustering Chaotic based Differential Evolution for Resource Leveling (FCDE-RL) 

 
An initial population of possible solutions is 

generated using a uniform random generator 

before the search process can even begin. This is 

done so that the results of the search are more 

accurate. A solution to the issue of resource 

allocation may be described as a vector 

containing D components in the following way:: 

X  [ Xi,1, Xi,2 ,..., Xi, D ] (11) 

where D is the number of decision variable 

of the problem at hand. It is obvious that D is 

also the number of activities in the project 

network. The index i denotes the i
th
 individual in 

the population. The vector X represents the start 

time of D activities in the network. Since 

original DE operates with real-value variables, a 

function is employed to convert those activities’ 

start times from real values to integer values 

within the feasible domain. 

Xi, j  Round (LB( j)  rand[0,1] (UB( j)  LB( j))) (12) 

where X is the start time of activity j at the 

individual i
th
. rand[0,1] denotes a uniformly 

distributed random number between 0 and 1. 

LB(j) and UB(j) are early start and late start of 

the activity j. 

The search engine (FCDE) takes into account 

the result obtained from scheduling module and 

shifts noncritical activities within their float 

times to seek for an optimal project schedule. In 

the research, the following objective function 

and constraints are employed: 
T T 1 

f   ( y )2    y   y      y 
k k  1 k max 

k 1 k 1 

 
(13) 

Subject to 

STi  ESi  TFi ; STi  0 ; i 1,2,..., D (14) 

where T signifies the total amount of time that 

will be spent on the project and yk is the total 

amount of resources that will be needed for the 

activities that will be carried out during time 

unit k. The difference in resource use between 

two successive time periods may be measured 

using the formula (yk+1 - yk). During the course 

of the project's execution, the resource demand 

will reach its highest point, denoted by ymax. 

Weighting coefficients are denoted by the 

symbols,, and. The start time of activity I is 

denoted by the acronym STi. Both the early start 

and the total float of activity I are denoted by the 

notation ESi and TFi, respectively. D represents 

the total number of activities taking place 

throughout the network. 

When the searching procedure comes to an 

end, the best possible option will have been 

found. After that, the timeline for the project and 

the resource histogram that goes along with it 

are developed based on the best possible time to 

begin activities.. 

 Experimental Results 

In this part, the capabilities of the recently 

constructed FCDE-RL model are shown by 

using a building project that was taken from 

Sear et al. [27]. There are a total of 44 activities 

included in the project, and the length of the 

project as a whole is estimated to be 70 days 

(see Table 1). Within the scope of this 

investigation, the resource of particular 

importance is personnel. Figure 5 illustrates the 

resource profile of the project prior to the use of 

the resource-leveling method. 

Table 1 Project information 
 

Activit

y ID 
Duratio

n 

Predecessor

s 

Daily 

Resource 

Demand 

Early 

Start 

(ES) 

Late 

Start 

(LS) 

1 0  0 0 0 

2 10 1 5 0 0 
3 5 1 2 0 9 

4 15 1 3 0 3 

5 3 1 2 0 12 

6 10 1 2 0 8 

7 15 2 6 10 10 
8 7 3 10 5 14 

9 3 5 6 3 22 

10 3 5 2 3 15 

11 2 5 2 3 16 
12 3 9, 10, 11 6 15 18 

13 2 10 1 6 19 

14 2 8, 12 5 18 21 
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15 3 12, 13 2 18 21 
16 1 14 6 20 23 

17 1 15 7 21 24 

18 1 16 7 21 24 

19 4 7, 9, 17, 18 13 25 25 

20 2 15, 18 9 22 30 
21 2 19 4 29 29 

22 1 20 6 24 32 

23 3 21 8 31 31 

24 1 22 3 25 33 

25 4 23, 24 8 34 34 
26 2 25 7 38 38 

27 25 6 10 10 18 

28 3 23 6 34 52 

29 3 23 2 34 40 

30 3 26 9 40 40 
31 3 30 10 43 52 

32 3 30 3 43 46 

33 2 27, 29, 30 4 43 43 

34 0 32 0 46 49 
35 4 33 1 45 45 

36 3 34, 35 12 49 49 

37 3 36 12 52 52 

38 3 28, 31, 37 3 55 57 

39 5 28, 31, 37 8 55 55 
40 1 36 2 52 59 

41 3 38, 39, 40 10 60 60 

42 1 41 3 63 63 

43 6 42 3 64 64 

44 0 43 0 70 70 

 

5.1 Optimization result of FCDE-RL 

In this part of the article, the FCDE-RL model is used to cut down on the considerable resource swings. Table 

2 displays the parameter settings that were used for the FCDE optimizer. Figure 6 presents the revised resource 

profile for the project that was produced by FCDE-RL after its optimization. The ideal solution, as well as the 

optimal starting times for the activities, are shown in Table 3. The following is a listing of the best outcomes that 

may be achieved with the new model:: 

Fitness = 9486, Mx = 9201, RDmax = 23, RVmax = 7, and CRV = 55. 
 Where: Fitness   

1
 

 
 

 T 1 2
  
   
M   

1
 

 
 

 ( y )
2
 

; RD  y 
( yk ) 
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Table 2 FCDE-RL’s parameter setting 
 

Input parameters Notation Setting 

Number of decision variables D 44 

Population size NP 8xD 

The crossover probability CR 0.9 

2 

2 

T T 



 

  

Percentage of population to chaos CF 40-60% 

Period clustering m 0.1 

Number of centroid in clustering k [2, NP ] 

Maximum generation Gmax 3000 

Weighting coefficient 1 𝛼 1 

Weighting coefficient 2 𝛽 1 

Weighting coefficient 2 𝛾 10 

 
 

Table 3 Optimal Start Time (ST) for all activities found by FCDE-RL 
 

Activity 

ID 

Optimal 

ST 

Activity 

ID 

Optimal 

ST 

Activity 

ID 

Optimal 

ST 

Activity 

ID 

Optimal 

ST 
1 0 12 15 23 31 34 48 

2 0 13 15 24 31 35 45 

3 0 14 19 25 34 36 49 

4 0 15 18 26 38 37 52 

5 0 16 23 27 18 38 55 

6 0 17 22 28 43 39 55 

7 10 18 21 29 37 40 58 

8 8 19 25 30 40 41 60 

9 5 20 29 31 46 42 63 

10 15 21 29 32 43 43 64 

11 3 22 24 33 43 44 70 

 
5.1    Result comparisons 

Table 5 displays a comparison of the findings obtained using FCDE-RL with the project management software 

Microsoft Project 2007, which may be found here. When compared to the performance of the commercial 

software in terms of Mx, RDmax, RVmax, and CRV, it is evident that the performance of the new model is 

noticeably superior. This indicates that the new model has significantly mitigated the fluctuations in resource 

availability. 

Table 4 Result comparison between FCDE-RL and Microsoft Project 2007 
 

Methods Mx RDmax RVmax CRV 

FCDE-RL 9201 23 7 55 

Microsoft Project 2007 9717 24 14 125 

Standard DE (DE) [28], Genetic Algorithm 

(GA), and Particle Swarm Optimization are 

the three distinct algorithms that are 

employed for performance comparison in this 

study. The purpose of this study is to better 

validate the performance of the suggested 

model (FCDE-RL) (PSO). The optimization 

performance of each algorithm is evaluated 

based on the best result discovered (best), the 

average result (avg), the standard deviation 

(std), and the worst result (worst) after 20 

iterations of running the algorithm. This helps 

to determine how reliable and accurate each 

method is (see Table 5). 

According to what can be shown in Table 5, 

the performance of the recently constructed 

model is comparable to that of other models 

in terms of its accuracy and stability. The 

suggested method obtains the best results 

possible in each of the metrics that are used to 

quantify performance. The moment of the 

resource histogram, the highest resource 

demand, and the variance of resource across 

successive periods are all effectively reduced 

thanks to FCDE-efforts. RL's The new model 

is shown to be more accurate and stable than 

previous algorithms due to the fact that the 

average and standard deviation of the results 

acquired from FCDE-RL are both less than 

those obtained from the other methods. 
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Table 5 Result comparison between FCDE-RL and benchmarked algorithms 
 

Performance 

Measurement 

 

PSO 

 

GA 

 

DE1 

 

DE2 

 

DE3 

 

FCDE-RL 

 

Fitness 

Best 9591.0 9579.0 9548.0 9488.0 9488.0 9486.0 

Avg 9682.9 9609.3 9610.6 9508.5 9508.1 9494.5 

Std 79.8 14.1 44.1 17.1 10.2 7.5 

Worst 9940.0 9630.0 9713.0 9566.0 9522.0 9504.0 

 

Mx 

Best 9266.0 9251.0 9235.0 9201.0 9201.0 9201.0 

Avg 9320.3 9278.5 9280.8 9219.1 9216.9 9206.5 

Std 56.5 12.7 26.8 11.3 10.0 7.6 

Worst 9513.0 9303.0 9323.0 9251.0 9231.0 9221.0 

 

RDmax 

Best 24.0 23.0 23.0 23.0 23.0 23.0 

Avg 27.4 23.8 24.9 23.0 23.4 23.0 

Std 2.6 0.7 1.7 0.0 0.5 0.0 

Worst 32.0 26.0 29.0 23.0 24.0 23.0 

 

RVmax 

Best 7.0 7.0 7.0 7.0 7.0 7.0 

Avg 8.5 9.3 9.1 7.2 7.2 7.0 

Std 0.9 1.2 1.0 0.6 0.6 0.0 

Worst 10.0 12.0 10.0 9.0 9.0 7.0 

 

CRV 

Best 61.0 77.0 68.0 51.0 51.0 51.0 

Avg 89.1 92.8 81.3 59.3 57.2 56.3 

Std 12.1 9.0 10.8 9.9 3.5 2.8 

Worst 110.0 109.0 109.0 85.0 65.0 65.0 

 
 

Conclusions 
In this study, we describe the usage of FCDE as a 

solution to the issue of resource leveling. The merging 

of two distinct algorithms, fuzzy clustering and chaos, 

has shown to be an useful method for removing the 

shortcomings of the original DE. The unpredictability 

of the chaos algorithm boosted the population variety 

and prevented it from being stuck at a local optimum, 

while the fuzzy c-means clustering improved the 

convergence speed of the search method supplied by 

the shifting cluster centers. 

The FCDE-RL algorithm has been shown to be 

capable of producing accurate and consistent results 

via a series of experiments and result comparisons. 

When it comes to the resolution of big and 

complicated optimization issues in construction 

management, the improved performance of FCDE 

provides an alternative option. 
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