

 ISSN2454-9940www.ijsem.org
 Vol 5, Issuse.4 Oct2017

Applications of Deontic Logic in Computer Science:

A Concise Overview

Mohd Irshad , Gayatri , Mohd Afzal

Abstract

Actual and ideal system behavior are both considered within the scope of deontic reasoning. In this article, we

provide a comprehensive overview of the many eighties-era uses of deontic logic in computer science, along

with a methodology for categorizing such uses. A growing number of uses are emerging for deontic logic,

which involves instructing a computer to forbid, allow, or oblige users to do certain actions. We analyze the

scenarios where this is possible and the ones where it is acceptable.

 Introduction

Ideal and real conduct may be reasoned

about using deontic reasoning. Deontic

logic is a kind of modal logic that includes

operators for permission, obligation, and

prohibition. It was created beginning in the

1950s by scholars including Von Wright

[62, 64], Castan eda [12], and Alchourro'n

[1]. The set of ideas developed by Hohfeld

in 1913, which includes operators for duty,

right, power, obligation, etc. [20], might be

formalized to include more operators.

Normative law and normative legal

reasoning have long been studied through

the lens of deontic logic. Therefore, it is not

surprising that the first interest in using

deontic logic in computing sprang from the

field of law. Many articles on the use of

deontic logic in the optimization of legal

automation may be found in the

Hosted every other year since 1987, this

conference has recently published many

papers on the topic of deontic logic's

potential solutions to AI-related legal

issues.

Deontic logic has been around for a while,

but it's only lately been understood that it

has applications outside legal analysis and

legal automation. Any field where we wish

to reason about both the ideal and real

behavior of systems might benefit from the

use of deontic logic. We will look at the

design of fault-tolerant systems, the

definition of security rules, the automation

of contracts, and the specification of

normative integrity requirements for

databases as examples of practical uses of

computer science.

First, we provide a short, approximately

historical overview of the ways in which

deontic logic has been used in computer

science (section 2). In the third part, we

adopt a more methodical stance and attempt

to group all conceivable applications into a

small number of broad categories. By doing

so, we can establish some order in the prior

study and find potential new areas of

application. Finally, we consider some of

the restrictions on deontic logic's

applicability that arise from its unique

character as a medium to dictate human

conduct.

Asst. Professor

Department of CSE
mohdirshadislclg@gmail.com, gayatri12islclg@gmail.com, mdafzal9islclg@gmail.com,

ISL Engineering College.
International Airport Road, Bandlaguda, Chandrayangutta Hyderabad - 500005 Telangana, India.

mailto:mohdirshadislclg@gmail.com
mailto:gayatri12islclg@gmail.com
mailto:mdafzal9islclg@gmail.com

1 A chronological survey of

applications

1.1 Legal automation

When we talk about "legal automation," what we

mean is the use of technology to facilitate activities

traditionally associated with the law. All the way

from EDI and information retrieval to providing

legal counsel, this may cover a wide variety of tasks.

In this paper, we focus on the latter category and

investigate how deontic logic might be used to

automate the provision of legal counsel. When it

comes to using computers to provide legal advice,

there are two schools of thought: the factual school

of thought, which makes no difference between

reality and ideality, and the deontic school of

thought, which does make such a distinction. We

next briefly address this distinction before turning to

some concrete instances of deontic techniques.

1.1.1 The factual and deontic

approaches to legal automation

In 1957, Layman Allen [3] noted that

formal logic may be used to spot

loopholes in laws and extrapolate

reasonable outcomes from existing

regulations. In turn, this may aid

lawmakers in removing unnecessary

ambiguities and streamlining the language

of statutes. Allen used first-order logic

without deontic operators to explain this

idea in two publications published in the

early 1980s [4, 5]. His method has been

applied in genuine legislation [18] in the

state of Tennessee.

In 1985, the logic programming group

at Imperial College implemented a section

of the British Na- tionality Act of 1981 in

the computer language Prolog [54].

Legislation is seen as a series of

definitions rather than a set of duties,

permis- sions, and prohibitions given by

authorities in this method of formalizing

the law. So, a set of rules in Prolog

formalizes the idea of British citizenship

as stated by the 1981 U.K. statute. This is

another case of formalizing legislation in

accordance with the facts, like Allen's.

Other instances of the fact-based

strategy include legal expert systems,

which often fail to accurately portray the

rationale behind the distinction between

ideal and real-world contexts. Thorne

McCarty's TAXMAN [38] system, for

instance, models the legal issues

underlying company reorganization under

U.S. tax law. The basic idea behind the

approach is to define the definitions of

these notions and apply them to the

realities of a reorganization to determine

whether or not the reorganization may be

regarded as a tax-free transaction.

The field of legal automation is rife

with such instances of fact-based

techniques. The depiction of law in

computer systems is an area that Marek

Sergot [53] examines in depth, including

both factual and deontic methods.

Although his focus in another survey work

[52] is on the factual approach, he does

address philosophical concerns with

formalizing and automating legal advice

regardless of methodology, including the

deontic one. Below, in Section 4, we

address a few of these concerns.

Andrew Jones [24] observed that the

factual method is acceptable so long as the

only goal is to ascertain how the legal

definitions of concepts relate to the

specific situation being investigated.

Clarifying what the legislation really says

or means may be aided by a structure

designed along these lines (according to

the interpretation used in formalizing the

text of the law). However, the capacity to

consistently articulate breaches of these

concepts is a characteristic of deontic

logic, but it is lacking in this method.

Sergot [51] brought out the requirement

for such logic in the depiction of law as

logic programs in 1982. Jones provides an

example of relatively straightforward

normative assertions whose formalization

necessitates confronting some of the most

intractable difficulties in deontic logic. In

a nutshell, Jones demonstrates the

following restrictions from the Imperial

College library: where is a patron and is a

loanable item:.

should return by the due date 1.

No disciplinary action will be taken

against you if you return your book before

the due date.

Third, disciplinary action will be taken

anyone someone does not return by the

specified date.

For the moment, assume the following is

correct: If (4) fails to return by the specified

date, we have an instance of what is known

as Chisholm's dilemma, or the paradox of

contrary-to-duty imperatives, in the field of

deontic logic [13]. Paradoxically, a fair

formalization of these phrases suggests that

there is both a responsibility to discipline

and an obligation not to discipline. To avoid

this paradox, one must either reduce the

case to a simple one (because the truth of

sentence 4 renders the truth of sentence 2

trivial), or solve some of the most difficult

issues in philosophical logic, such as the

formalization of counterfactual

conditionals. Some of the concerns involved

are critically surveyed by Tomberlin [57],

and in a recent study, Jones and Po rn [25]

present a resolution of the contradiction

using a modified understanding of duty. In

his discussion, Meyer [43] provides a

potential answer based on dynamic

reasoning. However, this problem is still

being investigated and is far from being

settled.

Jones and Sergot provide further analysis of

reasons for the use of deontic logic in the design

of normative system behavior [26].

1.1.2 Examples of deontic approaches

From the middle of the 1970s onwards, at

Imperial College, a group headed by Ronald

Stamper used a deontic method in a project

called LEGOL. The LEGOL project aimed

to create more realistic representations of

reality via the use of conceptual modeling

techniques during the creation of

information systems inside businesses. For

this purpose, the "traditional" approach to

formal modeling based on denotational

semantics was judged insufficient, thus a

new method was devised that focuses on

behaviors and social norms instead. LEGOL

may be categorized as a legal automation

project due to one of its use cases, which is

the representation of law in computers. The

project's output is a language for specifying

models of information systems that is

similar to relational algebra but includes

operators for dealing with time [27]. One of

the linguistic expansions includes operators

for handling deontic ideas like right,

obligation, privilege, and culpability [55].

However, nobody followed through on the

plan to use deontic reasoning. The search

for an adequate semantics for the modeling

of business processes continues, but now at

the University of Twente, where Stamper

has relocated and started a new project.

Research that followed the TAXMAN

project is another early example of using

deontic logic for the computer

representation of legal reasoning. One of the

problems with the TAXMAN project's

initial, factual approach was that it couldn't

adequately depict the contrasts between

ideal and real situations of the world. The

computerization of corporation tax

legislation still necessitates this distinction.

For instance, the permissions and

responsibilities incumbent on the business

and its securityholders are the sole way to

distinguish between certain types of stocks

and bonds [40]. So, McCarty developed a

form of dyadic deontic logic and reported

on it in articles published in 1983 and 1986

[40, 41] to expand his method to include

deontic reasoning in law. His deontic

operators are embedded in a language that

also includes constructions for describing

activities. Language for Legal Discourse

(LLD) [42] is a subset of a broader general-

purpose language that also includes

components for describing categories and

subcategories, events, and timestamps. To

illustrate the Lisp-like syntax of LLD,

consider the following rule [41, page 323]:

"Any business that holds cash has a duty to

give cash to all its investors." The word

"oblige" is an oxymoron.

(own ? Company X, Inc. (cash ?Y)) Publish

a dividend (distribute-dividend?) company

X)

Named variables X and Y are denoted by

their respective letters, whereas anonymous

variables are indicated by question marks.

The ESPLEX system, presented in a 1987

work by Biagioli et al. [10], is yet another

example of the use of deontic logic to legal

automation. The ESPLEX system is rule-

based. under Italy's agricultural tenancy

law, which dates back to 1982. In ESPLEX,

for instance, you may use a Prolog-like

syntax to provide a condition under which

evicting a tenant is allowed.

Allowed (cancellation, tenant,

lease): condition (tenant

farmer) > procedure (tenancy

termination).

In order for the rule's conclusion to hold, the

prefix cond specifies a necessary predicate,

and the prefix proc specifies a necessary

legal process stated elsewhere in the system.

No reasoning behind Biagioli et

almethodology .'s is provided.

In 1985, Layman Allen and Charles Saxon

[7] demonstrated how to use Hohfeld's

conceptual framework to develop a formal

language for conducting in-depth, exact

analyses of legal documents for the purpose

of disambiguation. Ideas like as right,

responsibility, privilege, authority, liability,

and immunity are included here, as are

variations on the more basic deontic

concepts of permission, obligation, and

prohibition. In this book, they demonstrate

how their method may be applied to a

specific set of rules—the Imperial College

Library Regulations [6]—and demonstrate

that there are, in fact, 2560 potential

interpretations of these rules. They provide

a mechanism for producing alternative

interpretations (called MINT) that may aid

those who issue rules (in government and

commercial organizations) in finding

ambiguity and clarifying the wording of the

rules.

Next, we'll talk about how these systems are

supposed to be put to work in practice.

LEGOL was created for the express purpose

of defining normative features in business

models. McCarty's focus is on the real

practice of lawful thinking [42]. Although

the paper's [10] purpose for ESPLEX is not

specified, it seems to be an expert system

shell that may be used to construct expert

systems in numerous areas of law. It is

expected that these expert systems will be

utilized to provide guidance on how to

apply the law to specific situations. Finally,

Allen's work is not focused on assisting

with the application of law to real issues,

but rather on assisting lawmakers in the

planning and writing of texts that represent

law in both public and private spheres. In

Section 3, we'll talk in detail about the many

contexts in which advice-giving systems

might be useful.

1.2 Authorization mechanisms

(Minsky and Lockman 1985)

One way in which actors are given the

green light to act is via the process of

authorization. In computer science,

authorization procedures are used to

safeguard sensitive resources, such as those

found in operating systems and databases,

as well as to preserve the confidentiality of

personal information. Existing authorisation

methods, as highlighted by N. Minsky and

A. Lockman [45] with considerable force in

1985, are flawed due to the absence of the

idea of an obligation. In the first place, the

idea of having to do something is important

in its own right, whether or not one has

been given permission to do so. Locking

data at the start of a database transaction,

for instance, prevents other users from

making changes to the data while the

transaction is in progress. When the begin

transaction event is executed, it is assumed

that the transaction will be committed or

rolled back within a reasonable amount of

time.

or a reversed deal. This means that if a

person acts in a specific way, he will be

obligated to do further action.

Minsky and Lockman believe that granting

rights with no conditions attached is

generally insufficient as an authorisation

method. The following illustrations are

provided.

Permissions to conduct actions, such as

reading a file or updating a database field,

are often provided without imposing any

obligations on the actor at the time of the

action being performed. Nonetheless, such a

duty often exists by implication. For

instance, if I am allowed to borrow books

from a library, I will be responsible for

returning those books after I have finished

reading them. This responsibility has to be

spelled out in the same way that the

privilege of borrowing books is defined.

A computer system's limitations may be

temporarily disregarded, but doing so will

result in the need to restore them. Assume,

for the sake of argument, that we want to

authorize someone to assign workers to

positions, with the proviso that critical

positions would never be empty for more

than five days. We therefore would want to

be granted authorization to assign positions

while also requiring that if an individual is

released from a critical position, a

replacement be found by the following

weekend.

Let's pretend we give someone permission

to do things in set 1, and then give that same

individual permission to do things in set 2

on their own. There may be situations in

which carrying out an activity from one set

prohibits carrying out an action from the

other set, meaning that these permissions

may not be additive. If we can condition our

permissions such that carrying out an

activity from one set imposes a duty on the

grantee to refrain from carrying out an

action from another set, then we will have

achieved our goal. one person's response to

another's activity.

The language Minsky and Lockman suggest

would allow for the "stringent" expression

of permissions. As an example, the

employee allocation authorization may be

stated as

can where and

 requiring to do

or else

by

In cases when the employee's position is essential

to the operation of the department, this indicates

the authority to release them from duty;

nevertheless, if this release is carried out, it will

trigger a responsibility to fill the position by the

following weekend. It is assumed that there is a

system in place to ensure that promises are kept.

The enforcement mechanism acts if the duty is

broken.

Syntactic structures for dealing with layered

commitments, deadlines, triggers, and negative

actions are proposed by Minsky and Lockman

(refraining from action). They provide no logical

justification for these constructions, simply an

informal semantics.

Specification of the System 2.3 (Khosla

and Maibaum 1987)

In VDM, a system's behavior is explicitly

defined with the use of preconditions and

postconditions. Preconditions are used to

define both the possible outcomes of an

activity and the conditions under which that

action may take place. Commonly, when

describing database transactions,

preconditions are used to guarantee that, if

satisfied, a set of static limits on the

database's allowable states will not be

violated.

Khosla and Maibaum [29, 28] note that this

calls for two separate preconditions to be

applied, and they recommend keeping them

that way. First, the postcondition of an

action must specify the setting in which the

action is performed before the result can be

stated. If that were all that preconditions did,

then the lack of one for an action would

signify not that it could happen whenever it

wanted to but rather that its result was

unaffected by its context. In addition, you

may utilize preconditions to define the

circumstances under which an action is

permissible. Due to the absence of a prior

required and sufficient condition, this action

may occur at any moment.

To distinguish between the two uses of

preconditions, Khosla and Maibaum propose

limiting the former to the statement of an

action's outcome and the latter to the

language of deontic logic. If the permission

to do an action can be defined separately

from the action's preconditions and

postconditions, then it may be easier to

specify the action's consequences. Second,

keeping this difference allows for the

specification of fault-tolerant systems, which

are required whenever unwanted behavior,

such as hardware failure, cannot be removed

completely. Therefore, deontic logic may be

used to outline the steps that need be taken

to undo or at least lessen the effects of bad

system behavior.

According to Khosla and Maibaum, Deontic

Action Logic is an extension of modal action

logic (DAL). A more colloquial description

of DAL is that it "bans" or "allows" any and

all possible system conditions. To begin, if

the system is in a permissive state, any acts

that lead to other permissive states are

likewise permitted, and all actions that lead

to additional forbidden states are prohibited.

Furthermore, it is not specified whether or

not actions that cause a system to enter an

illegal state are permitted. If the system is in

an unlawful condition, we could forbid all

activities, permit just those that lead to

legality, or selectively permit certain

behaviors that do not get the system closer to

legality.

In [29], Khosla and Maibaum detail a DAL-

based telephone infrastructure. This

specification makes a few assumptions,

including:

Without specifying the context in which they

will be carried out, the first three axioms

determine the outcome of three actions. To

indicate that the called phone (the callee) is

busy in case (1), to indicate that the called

phone (the callee) is ringing in case (2), and

to ring its bell in response to the signal in

instance (3), the called phone will sound a

tone. In the last two axioms, we see what the

call system should do when it determines

that the called party is busy (4) or available

(5). (5). (5). For this reason, the busy signal

is sent to at the intervals defined in (4). After

the connect operation, the exchange must

inform the calling party () that the called

party is ringing, and the calling party must

simultaneously send a bell-ringing signal to

the called party ().

DAL employs modal action logic and has

operators like parallel composition,

sequential composition, and choice to

incorporate actions into more complex

processes. In a similar vein of research, Jose'

Fiadairo of INESC has been collaborating

with Tom Maibaum [16] to include deontic

specification into a generic specification

language. Why this reduction to temporal

logic is problematic is something we explore

in our companion piece on deontic logic

[44].

"2.3 The Use of Electronic

Contracting" (Lee 1986)

It was noted in 1984 by Kimbrough, Lee,

and Ness [30] that workplace papers often

have both informational and performative

significance. For instance, the information

included in an order placed by a client and

sent to a supplier is useful since it includes

the customer's name and address as well as

product identifiers. It also has performative

value since it comprises a query to the

provider to deliver products, which the

supplier ought to respond, and a

commitment of the consumer to pay for the

items when they are provided. A signature

or other measures of authentication are

often used to express this performative

value.

These days, with the help of workplace

information systems, computers may be

used to store and even alter both instructive

and functional documents. For instance, if

the client and provider are linked by an EDI

network, the order to restock the client's

inventory may be transmitted to the

provider at regular intervals, such as the

month's end. Therefore, it is crucial for the

advancement of office information systems

to conduct a study of both the informational

and the performative structure of these

papers.

However, the performance features of the

information system are not addressed by the

conventional approaches of information

construction. The performative structure of

the data or of the manipulations of the data

is not explicitly represented in data models,

which instead utilize a subset of first-order

logic to express the structure of the data.

Therefore, conventional approaches need

refinement in order to include performative

considerations.

The general logic of the performative

function of information systems should be

based on speech act theory and might be

some type of illocutionary logic [49].

However, some sorts of performative

activities might be codified using less heavy

tools. Deontic logic's potential as a

representational framework is briefly

discussed by Kimbrough et al.

framework for contract-related performance

obligations. For example, key acts in contracting

whose logic must be expressed include

Oblig

e Some action not obligated becomes obligated Waive Some obligated action becomes not obligated Permit A forbidden action becomes permitted Forbid A permitted action becomes forbidden.

Lee figured out how to

implement this in a

contracting-monitoring

system in 1988 [32].

Contracting challenges often

revolve on the portrayal of

processes and real-time in

order to achieve deadlines.

Lee employs Von Wright's

[63] logic of change to

represent processes in his

logic, and Petri nets to

provide them with a

semantics. Time limits are

represented using the logic of

absolute time proposed by

Rescher and Urquhart [47].

Deontic operators are

introduced using a variation

of Anderson’s [8] reduction

of conventional deontic logic

to alethic logic. To make this

multi-hued specification

language actionable, a

Prolog-like language is

derived from it, and then a

natural language interface is

tacked on. Using it, contracts

like these may be formally

specified.

Jones agrees to pay \$500 to

Smith by May 3, 1987.

Following that,

Smith agrees

to deliver a

washing

machine to

Jones within

30 days.

The system may them be questioned as

follows:

?- at 5-may-1987 whatif nothing.

to which it responds with

Part Jones defaults at May 4, 1987,

because Jones failed to pay $500 to Smith

by May 3, 1987.

The specification language is not provided

with a formal semantics or inference

mechanism. In addition, Sandra Dewitz [15], a

Ph.D. student of Lee's, focuses on automating

contracts using EDI networks.

In the same year (1988), Lee released another work

([31]) that examined administrative structures via the

lens of normative rules. He uses the same kind of

language to specify the rules for issuing parking

permits on a college campus, and then demonstrates

how a rule-based system can be used to determine

whether or not actors are authorized to carry out a

given set of operations, and, if so, how this

authorization derives from the rules.

2.3 Constraints on the Deontic Integrity

(Wieringa, Meyer and Weigand 1989)’

Database integrity constraints are

mathematical rules that the database's

states and state transitions must satisfy in

order to be properly defined. For instance,

It is a static restriction that a person's

age in years cannot be less than zero.

Salary freezes and no pre-employment

terminations are also examples of dynamic

limitations. In a 1989 study, we suggest

that there is a significant split between

what we term essential constraints and

what we call deontic constraints. Knowing

that each database stores information

about a specific slice of the actual world

helps to shed light on the discrepancy.

Real-world necessary restrictions are

formulae that can't be broken by the world

as it really exists. One such limitation is

that a person's age must be positive and

cannot be negative. In other words, it is an

analytic fact that follows logically from

the meaning of the words used to describe

the constraint, and as such, it cannot be

broken in the actual world. For the same

reason, the restriction that no one may be

laid off before he is recruited is only a

mathematical certainty that has no bearing

on actual conduct. Given the present state

of our language, these are analytic facts

that do not impose any constraints on the

states or behaviors of the actual world;

nonetheless, they may be used to restrict

the conceivable states and behaviors of the

database. For the same reason that a

record in a historical database of a fire

event that was not preceded by a hiring

event is not a realistic portrayal of reality,

neither can an age field in the database

include a negative value. Obviously, such

a database is in error.

The set of required constraints for a

database model may be

enlarged to include all conceivable

states of the universe in which our

interests lie, as well as all empirical facts

that are not analytical truths. For instance,

in all of the states of the globe we care

about, the maximum age of a living

human being, as measured in years, is 150.

However, it is true in the sense that our

experience has led us to believe it, and it is

theoretically falsifiable by the existence of

an universe in which it is not (without that

being a result of a change in our use of our

language). Nonetheless, for the sake of

data modeling, we may consider this

constraint as if it were a purely analytical

fact, as it holds true in all possible world

states that the database will ever reflect.

As such, we may also use it as a restriction

on the database's potential states,

dismissing any condition in which a

person is given an age greater than 150.

Obviously, this is only possible if we

leave plenty of room between ourselves

and the point at which empirical truth

could cease to be true. For instance, using

the factual reality of the assertion that a

person cannot have an age exceeding 100

as a restriction on the potential states of

the database is too risky. It is reported that

this limitation slowed down the whole

database system of a major insurance firm

in the Netherlands since one of their

customers had reached the ripe old age of

101.

In [59], we make the case that many

or perhaps most of the illustrative cases of

database constraints

published in the literature are

normative assertions that apply to the

actual world and that may be broken in the

real world, not essential truths in the sense

stated above. In light of the

aforementioned limitation that salaries

must not be cut (a favorite example of

many database researchers). When the

world breaks such a restriction, it is not

because we have redefined terms or

because an empirical generalization has

been disproved; rather, it is a breach of a

standard in the actual world. Therefore, it

is a limitation of the physical universe,

rather than a set of truths.

about the external world. It is

expected that deviations from this standard

will be represented in any database

containing information about this region.

Most importantly, it must be able to

portray this as an aberration rather than

just another real truth. Since the

distinction between a pay increase and a

decrease is a reality of the world in which

we are engaged, its absence would be a

disservice to the numerous possible

applications we have in mind. As a result,

deontic logic emerges as the best choice

for defining such restrictions in a database.

1 We use an Anderson-like reduction of

deontic logic to dynamic logic, as detailed

in our companion study of deontic logic

[44]. This approach resembles the

reduction of DAL to action logic proposed

by Khosla and Maibaum. Therefore, we

classify every nation as either restricted or

liberated. In contrast to DAL, our

reasoning prohibits any activity that would

lead to an illegal state of the world and

approves any action that would lead to a

legal state of the world. Furthermore, we

describe the cause of the violation in the

violation predicate, which allows us to

identify the most effective means of

resolving the problem and to provide more

helpful error messages. Also, the

relationship between the three modal

operators (permission, prohibition, and

obligation) is defined with extensive use

of the idea of action negation. Other

distinctions include the semantic structure

we describe for specifications, and the

usage of propositional negation (to

guarantee deterministic processes).

Another research of ours [61] investigates

the issue of deontic constraint inheritance

in a taxonomic structure. Actors, initiative,

and action negation are the focus of recent

studies [60].

We have a specification language that

allows us to declare limitations like as

. Every behavior has a necessary

condition. When this condition holds, we

state that a violation flag has been raised

because has not returned in a timely

manner. According to subsection (7),

everytime the violation flag: is raised, on

must pay a fine of $. According to the

rule, the violation flag is reduced when the

book is returned.

We should probably refer to deontic

integrity requirements as "real-world

constraints" instead, as they impose

limitations on the physical world rather

than on a database. Since they only serve

to limit the data in the database and not

the world at large, necessary database

constraints should be referred to by that

name alone. However, the phrase

"integrity constraint" is so deeply rooted

in the lexicon of the database community

that we continue to use it, modifying it

with the adverbs "deontic" and

"necessary" to indicate whether we are

referring to real-world restrictions or

database constraints.

Figure 1: The structure of computer

applications.

Privacy in Data Storage (2.3) (Glasgow,

MacEwen and Panangaden 1989)

Database security rules are analyzed using deontic

logic by Glasgow, MacEwen, and Panangaden [17].

They use a hybrid of epistemic logic (with both

positive and negative introspection) and deontic logic

(where the "user is authorized to know that") For, we

provide the following axioms, where denotes "user

knows that."

2 A systematic view of applications in

computer science

Looking at the structure of any

computer program, as illustrated in

figure 1, provides a basic systematic

framework for understanding the

aforementioned applications of

deontic logic to computer science as

well as additional conceivable

applications. It's safe to say that

every computer system ever built

has the capacity to store and alter

data. Databases, expert systems,

knowledge-based systems, decision-

Object
system

Users
Organization

Computer
system

support tools, operating systems,

etc., all fall under the umbrella of

"computer system." Data that is of

relevance to us may be found in the

types of computer programs that

symbolize a slice of the actual

world. The object system of the

application is the representation of

the world. Users provide data into

the system, make demands of it, and

consume its output (answers). A

company's users and its IT

infrastructure together form a

subsystem. It's possible that certain

components of the object system

may be internal, while others will be

external to the business. (It might be

the computer system itself or

comprise components of it.)

By examining the domain whose behavior is given

in deontic logic, we may use this framework to

categorize the uses of deontic logic in computer

science. All of the described actions are both real

and ideal examples of such actions. As a result,

we may categorize apps as follows.

Six, computers that can recover from

errors without crashing.

7. Common patterns of action among

users.

8. Typical actions inside a company.

For (a), we need a definition of the

policy.

(a) Typical organizational conduct (e.g.

contracting).

Nine, the object system's typical actions.

In particular: (a) legal enunciation.

The articulation of legally-minded

thought (b).

Normative rule specification as deontic

integrity constraints (c).

Aside from the aforementioned

contexts, (d) several more uses. The

potential applicability to scheduling

issues is further upon below.

More in detail, the list of possible

applications is as follows.

1. Fault-tolerant computer systems.

There is no such thing as a

completely bulletproof computer

system, and there are times when

we need to outline procedures for

dealing with hardware failure or

other deviations from the norm.

Fault-tolerant computer systems

may exhibit less-than-ideal

behavior that is nonetheless

contextually relevant. You may

look at this use of deontic logic as

the definition of managing

computer-generated exceptions.

Khosla and Maibaum's method is

one such implementation. Some of

the scenarios described by Minsky

and Lockman, in which restrictions

on a computer's behavior are

momentarily relaxed, also come

under this category.

2. Normative user behavior. Users act

in a wide variety of ways, many of

which are undesirable. They could

make typos, enter information that

conflicts with what's already in the

system, ignore the system's requests

for information, raise queries they're

not meant to, etc. While some of this

activity may be picked up by the

computer system, other instances

may not, therefore it's important to

differentiate between the two. that

which is expected of the user and

what the user could really do. This

would enable us to more easily

express desirable user behavior, as

well as what should happen in the

event that the user does not act as

expected. The statement of how to

deal with user-generated mistakes

may be seen as an example of

deontic logic in action here. None of

the preceding apps even touch on

this topic. Third, deontic logic's

applications to businesses may be

broken down into two categories: (1)

those that deal with the conduct of

workers, and (2) those that deal with

the conduct of the business itself.

For (a), we need a definition of the

policy. Deontic logic, which

considers the organization as a

whole, may be used to provide

guidelines for the conduct of its

various parts, such as individuals or

departments. This is done in the form

of organizational policies, which are

intended to serve as a set of rules for

conduct. Deontic logic is useful

because policymakers often wonder

what will happen if their policies

aren't implemented. For instance,

deontic logic may be used to

eliminate any ambiguity in the

policies and to investigate the effects

of altering their specifications.

Policies are not laws since they are

issued by private entities, but their

application is comparable to that of

the legal area.

Deontic logic is used as a subset of

policy specification for defining

security policies. Even yet, this does

not imply that deontic reasoning is

utilized to code safe computers. An

attribute of trustworthy computer

systems is that they forbid any

deviation from the established

security guidelines. On the other

hand, deontic logic may be used to

create the security rules, investigate

the effects of those policies, and

even provide proof that a given piece

of software adheres to the policy by

disallowing any actions that would

be considered malicious. Examples

from Minsky and Lockman, as well

as Glasgow et alstudy, .'s fit into this

category of uses.

That which is considered to be the

"b" norm in a certain organization.

By using deontic reasoning, we may

also provide guidelines for how an

organization should act in its

external context. Consider Lee's

view of the contracting process.

Organizational conduct should be

lawful, hence this may be seen as a

subset of the legal application of

deontic reasoning.

Four, in deontic logic, describing

how the object system ought to act.

The object system is a portion of the

physical world that must have its

details encoded in a computer. This

category includes anything from a

library to an elevator system, and

serves as a catch-all for the

applications we haven't yet

discussed. In light of the

aforementioned evaluation, we have

discovered the following programs.

Law is defined in deontic logic (a).

Without the use of computers,

deontic logic has a wide range of

applications in the legal system.

Figure 1 depicts the object system in

this kind of application, which

comprises of humans and a computer

network. of rules and regulations

governing their actions. The

principles of certain deontic logic are

used to codify and manipulate facts

and laws in order to arrive at

conclusions. A legal advising system

like this might be utilized in a

number of contexts, such as a

teaching tool for law students, during

the drafting of legislation, or while

implementing new laws. The second

kind of application is shown by

Allen's work and the planned usage

of ESPLEX. There are examples of

each of these applications in Sergot

[53]. Section 4 will address a

problematic fourth use case:

providing legally binding advice via

the system. There, we'll also talk

about issues with the naive

perspective of law application

previously presented, which affect

even the more limited advice-giving

usage of deontic logic in legal

automation.

Second, using deontic logic as a

model for legal reasoning. McCarty's

method of legal automation differs

greatly from that of his predecessors

since it attempts to mimic the way in

which human attorneys and judges

genuinely reason. Here, the

formalized object system is not a set

of rules and authorities but rather a

mental operation being carried out

by a small group of experts. Since

this mental process is concerned with

truths and standards, deontic

reasoning might prove beneficial. On

the other hand, the computer

system's representation of the object

system in this instance cannot be

mistaken for a representation of law.

To the contrary, it reflects the

evolution of legal professionals'

conceptualizations of the law.

Deontic logic is not being used here

to dictate conduct in the object

system (thought process activity),

but rather as a vehicle for expressing

empirical hypotheses regarding the

nature of this behavior (thinking

about normative systems).

Constraints on deontic integrity must

be specified (c). An easy example of

formalizing rules that pertain to

humans in the object system is the

declaration of deontic integrity

constraints. Both our own

application and the examples

provided by Minsky and Lockman fit

into this category. (d) Diverse usages

As a potential use not previously

stated, it may also be used to

timetable conflicts. In such

situations, jobs and resources must

be assigned with a set of restrictions.

Many databases, for instance, need

to execute processes at regular

intervals (once a week, for example),

in accordance with certain

restrictions that impose a sequential

order on the execution of the

processes and, in certain cases, a

deadline on the actual time that a

process is performed. Because

computers are imperfect devices, it is

important to define the behavior

expected in the event that a

constraint is broken. Interesting

applications include the assignment

of tasks to machines, the parking of

planes at airports, the seating of

passengers on planes, the response of

police to incidents, and the

distribution of other types of widgets

and fidgets, all subject to normative

scheduling constraints that may be

disregarded in practice.

Finally, a comment on the above

categorization is warranted. In every

conceivable context, Specification

of both normative and behavioural

standards is central to deontic logic.

However, the stated uses are not

limited to those that need a

computer-executable implementation

of the deontic logic specification.

However, although this

recommendation holds especially

water in the context of fault-tolerant

systems and legal automation, it is

still technically unnecessary. Even if

these systems aren't computerized, a

deontic characterization of their

behavior might be valuable.

Therefore, we separate the use of

deontic logic for describing system

behavior from its use in computer

programming. These two situations

coincide if the system is specified in

an interpreted form of deontic logic.

However, in most situations, this is

not the case, and distinguishing

between them is helpful.

 Discussion: directing human

behavior by computer

The majority of computer science's uses for

deontic logic include the field's ability to prescribe

human action. Applications in which norms

relevant to human conduct are stated in deontic

logic include the specification of user behavior

norms, organization policies, organizational

behavior, legislation, deontic integrity restrictions,

and even certain scheduling difficulties. The

unique scenario arises if the specification is

implemented in a computer, at which point the

machine may actively derive human rights, duties,

and restrictions. There has never been a case like

this one before in which deontic reasoning has

been put to use. However, allowing computers to

take charge of human affairs is not a novel

concept in computer science, even though the

implementations haven't been very problematic up

to this point. According to Sergot [53], even a

payroll computer uses the law to compute tax

deductions and thereby establishes an individual's

legal entitlement. The usage of traffic lights is

only one example that shows how far back the

concept of computers prescribing human behavior

goes. However, if we get to the point where we

can implement deontic logic requirements in

computers, the scope and complexity of this usage

of machines expands enormously. Therefore, the

feasibility and acceptability of using computers to

guide human affairs should be included in any

comprehensive examination of the uses of deontic

logic in computer science. The potential and legal

basis for this action are discussed. The possibility

to direct human affairs by computer

We will focus our conversation on

the controversial topic of using AI

to make decisions for people, which

has sparked heated debate in the

areas of AI and the law.

Nonetheless, the topic is equally

applicable to the enforcement of

corporate regulations on employees

or to any of the other uses of deontic

logic in computer science where the

application of standards for human

conduct is automated. A common

misconception amongst computer

scientists is that the process of

applying law to facts is conceptually

identical to how a computer follows

instructions to process data. This is

the perspective we used while

compiling the following

comprehensive list of ways in which

deontic logic has been applied to

computer science. However, the

reality is more complicated, and in

order to evaluate the likelihood of

utilizing computers to influence

human behavior, we must simply to

the discrepancies between how

humans and computers might

interpret standards (such as rules)

and apply them to data. For a human

judge to properly apply the law to a

set of circumstances, both the facts

and the law must be read in light of

one another. 2 Law in The

Netherlands may be found in a

variety of government-issued

statutes, judicial precedents,

generally recognized norms of

society, and even a few international

treaties. In each given situation,

only a subset of this will apply, and

even then, the applicable parts will

be found in the form of broad

generalizations that will need to be

narrowed down to fit the specifics.

A selection is chosen from the many

possible sources of law, and those

sources are construed such that they

apply. Decisions and analyses are

made in the context of the evidence

under consideration. On the other

hand, as information analysts are

well aware, everything is

interconnected in the end, and a

decision must be made based on a

theoretically endless collection of

potentially relevant data in every

given situation. If a police officer

sees a car parked illegally on a

sidewalk, he or she will record the

vehicle's license plate number and

the date and time of the observation,

but not the color of the car, the

temperature outside, or the width of

the sidewalk, unless any of those

details seem pertinent. As an added

bonus, the legal definitions of any

words used in the observation will

be included. For instance, the word

"vehicle" has a specific legal

meaning that is laid down. To make

the applicable law applicable, it is

necessary to choose some of the

many possible relevant facts and

interpret those facts in light of the

law. The applicable laws provide

the lens through which all decisions

and interpretations must be made.

Let's compare this to what occurs

when we teach a computer to take a

digitized version of the law and

apply it to a digitized version of the

facts. Starting with the British

Nationality Act [54], corporate tax

law [38], or latent damage law [11],

a specific topic of law is chosen to

examine. This decision is made not

by a court considering

circumstances that may constitute a

breach of law, but rather by a legal

professional (or a knowledge

engineer) considering the

practicality of expressing this area

of the law in a computer. We'll

discuss the factors that go into this

determination, such as the level of

technical difficulty and the degree

to which it stands alone from the

rest of the law. Whatever criteria are

used, they are applied before any

particular set of facts is chosen to

represent a certain instance.

The next step is to create a digital

version of the statutes and caselaw

that have already been codified.

This translates into an exercise in

interpretation, but not in the light

of facts to be tested (as they aren't

ready), but in the light of one or

more people's understanding. For

instance, the Latent Damage Law

system represents the thinking of

P.N. Capper [11], while the British

Nationality Act was coded in

Prolog in accordance with the

knowledge of F. Sadri [54].

Third, when the system is applied

to facts, these facts have to be

presented to the system in some

form suitable for storage and

manipulation. The individual

carrying this out must use their own

judgment in this regard. The system

has to be given with the information

on the basis

2

This is discussed in great detail in a

textbook used as an introduction to

the philosophy of law at various

Dutch colleges [2]. Sergot [53, pp.

18-3 1] provides a helpful

description of debate, often confined

to the philosophy of law, about

whether judges do nothing more

than apply laws to facts, and situates

this debate within the framework of

the computer representation of law.

For a more in-depth analysis, check

out Susskind's dissertation [56].

Given words known to the system,

and because these terms are

computer representations of

previously interpreted terms stated

in the law, this is quite different

from the actual interpretation of

events in light of the law that

happens in practice.

At last, the computerized application

of law to the computerized analysis

of facts. In the end, all a computer

does is apply instructions to data,

but this process is better understood

when characterized at a higher level

as the manipulation of data in

accordance with particular

principles. The rules in question

could be those of a specific branch

of first-order logic, like declarative

Prolog, or of a branch of first-order

logic that is less well-known, like

procedural Prolog (which includes

mechanisms like cut that are not

well-understood), a rule-based

mechanism, or a variant of deontic

logic. Whatever the method, it's

important to note that it's not meant

to, and in fact doesn't, reflect how

judges and attorneys really think

about the law.

It's important to note that the prior

decisions and interpretations (of

facts and laws, of manipulating

rules) that have played a part are

now invisible. This is why many

people believe that a computer's

application of law to a computer's

representation of facts is more

objective and less prone to bias than

a judge's application of law to facts.

Of course, this is not the case;

rather, the employment of a

computer only renders the decisions

and interpretations invisible [33].

We should not state that the

computer lacks bias or is objective,

but rather that its partiality and

subjectivity are hardwired into it.

Simply said, the path that leads to a

computer applying (a computer

representation of) law to (a

computer representation of) facts is

quite different from the one that

leads to a human judge applying law

to facts. When a computer model of

the law is applied to a computer

model of the facts, just as when a

judge applies the law to facts,

choices are made and interpretations

are made. However, the choices

made by the computer model of the

law are independent of the choices

made by the computer model of the

facts, and both are hidden once the

model of the law has been applied to

the model of the facts. In the

absence of a human translator, a

computer model of the law may be

applied to a model of the facts,

creating the appearance of

objectivity.

Now that the differences between

computerized legal processing and

computerized legal representation by

machines have been established, it

remains unclear how the latter may

contribute to the former. The

following circumstances may be

distinguished that, in one way or

another, sidestep the issues caused

by the dissimilarities between a

human judge's application of law to

facts and a computer representation

of law applied to a computer

representation of facts.

In most cases, the chosen domain of law

has little bearing on other fields of law

that may be represented in a computer.

This helps keep the system's size

reasonable and prevents conflicts with

words stated in other portions of the

legislation. This need is met by all of the

aforementioned examples of domains of

law (corporate tax law, agricultural

tenancies, and British citizenship) chosen

for computer representation.

Using the computerized version of the law

takes nothing in the way of common

sense. As a result, we can sidestep the

challenge of communicating with AI,

which is often considered to be among the

field's most intractable issues.

computerized model of human common

sense. For a further discussion of this

topic, you may like to see Thorne

McCarty [39].

The chosen field of law has a clear

meaning that is accepted by other lawyers.

By doing so, we may sidestep the issue of

a mysterious interpreter injecting bias into

the system under the appearance of

objective technology. This is a necessary

condition, as stated explicitly by Sergot

[53].

The chosen domain of law is immutable,

or at least immutable in the sense that it

may be altered via a continuous

jurisprudential process. This saves us the

trouble of teaching the computer to

engage in social learning as if it were a

human being. Another challenging issue

in AI is learning, and social learning is

much more difficult. On a more practical

level, picking stable areas of law

facilitates system maintenance by

reducing the need to manually update a

computer representation of law. 3

Conclusions

Following a chronological overview, we

categorized (though not exhaustively) the

various uses of deontic logic in computer

science as follows: the specification in

deontic logic of fault-tolerant systems; the

desired behavior of users; the policies of

businesses (including security policies); the

actions of organizations; and so on (i.e.

contracting),

scheduling under normative restrictions,

legal reasoning, and limits on normative

integrity.

In all of these scenarios, the discrepancy

between the specified and actual behavior is

important, and we have the option to

program to the specification. We concluded

by noting that many uses of deontic logic in

computer science involve the robotic

production of normative statements about

individuals. We pointed out that the

question of who has the authority for these

automated decisions and who is responsible

for them should be resolved before such

systems are actually used, and we identified

routine problems that satisfy a number of

conditions as potential applications of this

kind of automation.

Exciting in the use of deontic logic in

computer technology is the combination of

difficult philosophical questions of law with

practical concerns of social morality. This

motivates the need for further

multidisciplinary studies of these topics and

how they relate to one another.

References

Source: [1] C.E. Alchourro'n and E. Bulygin.

Systems of Norms. 1971, Springer.

Algra, N.E., and van Duyvendijk, K. Legal primer:

introductory lessons in law and legal studies from

the textbook An Introduction to Law and Legal

Studies. 4e druk. Samsom Tjeenk Willink, H.D.

As cited in [3] L.E. Allen. Symbolic logic is a

precise instrument for working with legal texts.

The year 1957 saw Yale Law Journal's 66th

volume cover the pages 833-879.

Language, law, and logic: Plain drafting for the

digital era [4], by L.E. Allen. Computing Law and

Policy, edited by B. Niblett, pp. 75–100. In 1980,

Cambridge University Press published this.

Allen, L.E. Aiming for a standardized vocabulary

to better define the framework of legal discussion.

The article may be found in volume 2 of A.A.

Martino's Deontic Logic, Computational

Linguistics, and Legal Information Systems (pages

349-407). 1982, North-Holland. Presented here are

revised and edited versions of talks presented

during the international conference "Logic,

Informatics, Law," held in Florence, Italy, in April

1981.

Allen, L.E., and Saxon, C.S., [6]. A-Hohfeld is a

language for constructing expert systems that

provide interpretation help by means of a strong

structural representation of knowledge from the

legal area. The present volume.

Allen, L.E., and Saxon, C.S. A codified and

updated version of Hohfeld's essential legal ideas

is used to analyze the logical structure of legal

norms. Automated Analysis of Legal Texts, edited

by A.A. Martino and F.S. Natali, pages 385–450. It

was published in North-Holland in the year 1986.

This volume contains revised and abridged

versions of talks presented at the Second

International Conference on "Logic, Informatics,

Law," held in Florence, Italy, in September 1985.

Anderson, R.A. [8]. normative system analysis in

formal logic. Pages 147–213 in The Logic of

Decision and Action, edited by N. Rescher. Dated

1967 by the University of Pittsburgh Press.

Theresa Bench-Capon and Marcel Sergot [9].

Intent on representing open texture in the law in

terms of a set of rules. Published on pages 39–60

in C. Walter (ed.), Computer Power and Legal

Language. 1988, Quorum Books.

A. Tiscornia, D. Biagioli, and C. Biagioli. The

ESPLEX Paradigm is a rule and conceptual based

model for expressing legislation. Pages 240–251 of

The Proceedings of the First International

Conference on Artificial Intelligence and Law. In

ACM (May 1987).

According to [11] P.N. Capper and R.E. Susskind.

Expert Methods in Latent Damage Law. Dated

1988 by Butterworths.

As stated by H.-N. Castan eda [12]. Putting one's

thoughts into action. What Institutions Stand on

Philosophically. In the year 1975, Reidel published

it.

A quote by R.M. Chisholm (see footnote #13).

Contrary to deontic reasoning and moral

imperatives. Analyses, 24(33):36 (1963).

For more reading, see [14] C. Ciampi (editor).

First volume on the intersection of AI and LIS.

1982, North-Holland. Presented here are revised

and edited versions of talks presented during the

international conference "Logic, Informatics,

Law," held in Florence, Italy, in April 1981.

[15]

Dr. S. D. Dewitz. Using information technology as

a legal mediator in contracts based on a

performative network. Collaborative Work, Social

Communications and Information Systems, edited

by R.K. Stamper, P. Kerola, R. Lee, and K.

Lyytinen, pages 271-293. A 1991 publication from

North-Holland.

Fiadeiro, José, and Maibaum, Timothy (16). Legal

norms should give way to temporal logic.

It will appear in the Journal of Logic and

Computing.

John Glasgow, Gordon MacEwen, and Peter

Panangaden [17]. Databases are secured by

permission-based security. Database Security II:

Status and Prospects, edited by C.E. Landwehr,

pages 197-205. 1989, North-Holland. Database

Security: Outcomes from the IFIP WG 11.3

Workshop, Kingston, Ontario, Canada, October

1988.

Referenced in [18] G.B. Gray. Tennesseans have

had some practice in enacting statutes in a standard

format thanks to their state legislature's history.

Pages 467-493 of Computer Power and Legal

Reasoning, edited by C. Walter. 1984, West

Publishing Co.

H.J. van den Herik [19] Can a Machine Have

Morality? The year 1991 for Gouda Quint B.V.

W.N. Hohfeld, page 20. Concepts fundamental to

the law and the process of deciding cases.

Journal of the Yale Law School 23 (1913): 16–59.

[21] Proceedings of the First Annual Conference

on the Intersection of AI and the Legal System.

May 1987, Association for Computing Machinery.

[22] Proceedings from the 2016 AI and Law

Conference, held in London. From June 25-28,

1989, ACM held its annual conference.

[23] Proceedings from the 2018 AI&CJ

International Conference. Date: June 25-28, 1991,

Association for Computing Machinery.

AJI Jones, 24. Moral reasoning and the

codification of legal precedent. Published in Ratio

Juris 3 (1990):237-244.

To paraphrase, [25] A.J.I. Jones and I. Po rn. There

are three levels of ideality: the ideal, the sub-ideal,

and deontic. Synthese, 1985, 65:275–289.

As cited by A.J.I. Jones and M. Sergot [26]. This

book focuses on the function of deontic logic in

defining normative structures.

Jones, Patrick Mason, and Robert Stamper [27].

Complex rule specification in LEGOL 2.0, a

relational specification language. The Journal of

Computer-Based Information Systems 4 (1979):

157–169.

The idea originated with S. Khosla [28]. A

Deontological Method for Defining Systems.

Thesis for a doctoral degree in computer science,

Imperial College London.

Credit goes to S. Khosla and T.S.E. Maibaum [29].

State-based system description and prescription.

Pages 243-294 in Temporal Logic in Specification,

edited by B. Banieqbal, H. Barringer, and A.

Pnueli. This was published by Springer in 1987.

The 398th issue of Lecture Notes in Computer

Science.

S.O. Kimbrough, R.M. Lee, and D. Ness [30]. The

PIE framework's first component is made up of

systems that are both functional and empathetic.

1984: pages 141-148 in L. Maggi, J.L. King, and

K.L. Kraenens's Proceedings of the Fifth

Conference on Information Systems.

Reference: [31] R.M. Lee, Bureaucracies as

Deontological Systems. In 1988, ACM published

volume 6 of its Transactions on Office Information

Systems, which had articles 87-108.

[32] R.M. Lee. The logical framework for digital

agreements. Systematic Approaches to Decision

Making, 4(1-2):27-44 (1988).

Source: [33] M. Lupoi. Computerized decision

making as a legitimate legal authority. North-

Holland, 1982, "Artificial Intelligence and Legal

Information Systems," edited by C. Ciampi.

Presented here are revised and edited versions of

talks presented during the international conference

"Logic, Informatics, Law," held in Florence, Italy,

in April 1981.

Citation: [34] A.A. Martino (editor). North-

Holland, 1982. Deontic Logic: Computational

Linguistics and Legal Information Systems.

Presented here are revised and edited versions of

talks presented during the international conference

"Logic, Informatics, Law," held in Florence, Italy,

in April 1981.

The modifying editor was A.A. Martino (35).

Proceedings of the Third International Conference

on "Logic, Informatics, Law," Florence, Italy,

1989.

Martino, A.A., and Natali, F.S., editors. Machine-

Readable Legal Text Analysis. It's 1986 in North

Holland. This volume contains revised and

abridged versions of talks presented at the Second

International Conference on "Logic, Informatics,

Law," held in Florence, Italy, in September 1985.

Referenced in: L.V. Mazel [37].

Fully automated, as an example of practical use.

Trias Automatica, edited by E.M.H. Hirsch Ballin

and J.A. Kamphuis, pages 89–94. For the 1985

edition, see Kluwer.

McCarty, L.T. Analysis of the Artificial

Intelligence and Legal Reasoning Experiment

TAXMAN. During the month of March in 1977,

the Harvard Law Review was published at Volume

90:837-893.

L.T. McCarty, cited in footnote [39]. The features

that should be included in a digital legal advisor.

Presented at the 1980 National Conference on

Artificial Intelligence, Stanford, August. Presented

at the First Annual National Conference on

Artificial Intelligence, pages 298–300,

Proceedings.

Permissions and Duties, by L.T. McCarty. From

1983's Eighth International Joint Conference on

Artificial Intelligence (IJCAI), held in Karlsruhe,

West Germany, the paper was published on pages

287–294. Kaufmann.

According to L.T. McCarty (reference number 41).

An unofficial introduction to permissions and

duties. Automated Analysis of Legal Texts, edited

by A.A. Martino and F.S. Natali, pages 307. It was

published in North-Holland in the year 1986.

papers presented at the 2nd International

Conference on "Logic, Informatics, Law," edited

and revised for publication. Sept. 1985, Florence,

Italy.

[42]

Essential elements of a language for legal

discussion (I) by L.T. McCarty. Pages 180–189 in

The Proceedings of the Second International

Conference on Artificial Intelligence and Law.

June 25–28, 1989, Association for Computing

Machinery.

In reference to: [43] J.-J.Ch. Meyer. An easy way

out of the 'deepest' conundrum in deontic

reasoning.

1987's "Logic and Analysis: New Series" (Vol.

30:pp. 81–90).

According to Meyer, J.-J.Ch., and Wieringa, R.J.

A synopsis of deontic logic. The present volume.

A.D. Lockman and N.H. Minsky [45]. Adding

responsibilities to rights is one way to guarantee

honesty. Pages 92-102, 1985 IEEE International

Conference on Software Engineering.

As cited in [46] M.A. Nieuwenhuis. TESSEC is an

Advisory System for the Uniform Commercial

Code. 1989 Ph.D. diss., University of Twente.

To cite: [47] N. Rescher and A. Urquhart. Time-

Based Reasoning. 1971, Springer.

J. Searle [48]. Expressions of the Verbal Mind. An

Exposition on the Theory of Language. The year

1969 saw the publication of this work by

Cambridge University Press.

A reference to the work of J. Searle and D.

Vanderveken [49] is in order. The Ilocutionary

Logic Foundations. Oxford University Press, 1985.

J.R. Searle, page 50. Classification of nonverbal

behaviors. Pages 1–29 in Expression and Meaning.

Oxford University Press, 1979.

Law as a Logic Program: Future Prospects, by M.

Sergot [51]. Logic Programming, edited by K.L.

Clark and S.-A. Ta rnlund, pages 33–42, Academic

Press, 1982.

Referencing M. Sergot's Representing Legislation

as Logic Programs [52]. Machine Intelligence 11,

edited by John E. Hayes, David Michie, and John

Richards, pages 209-260. Dated 1988 by

Clarendon Press.

The representation of law in software: A review

and comparison, by M. Sergot [53]. Published in

T.J.M. Bench-(ed. Capon's Legal Knowledge

Management Systems. In 1990, Academic Press

published.

Reference: Sergot, F. Sadri, R.A. Kowalski, F.

Kriwaczek, P. Hammond, and H.T. Cory (54).

Applying logic to the British Nationality Act. 1986

saw a focus on pages 370-386 for the ACM's

Communications journal.

[55] R. Stamper. A computerized model of the

rules of law; sometimes known as LEGOL.

Com[puter Science and Law, edited by B. Niblett,

pages 45-71. In 1980, Cambridge University Press

published this.

According to R.E. Susskind (reference 56). A

Legal Analysis of Expert Systems. A publication

of Oxford University Press.

[57]

It was J.E. Tomberlin. There are conditional duties

and imperatives that go counter to what one ought

to do. Nouˆs, 16:357–375, 1981.

[58]

To wit: R.J. Wieringa. Here are three ways in

which conceptual models are used in the

development and management of IT systems. The

Case of E.D. Falkenberg Reference: Information

System Concepts: A Deep Dive, edited by P.

Lindgreen, pp 31-51. 1989, North-Holland.

R.J. Wieringa; J.-J. Ch. Meyer; H. Weigand [59].

Defining bounds on the kinetic and deontological

integrity. Reference: Data and Knowledge

Engineering, 4:157–189 (1989).

Wieringa, R.J., and Meyer, J.-J.Ch. Normative

system definition including actors, actions, and

initiative. Report IR-257 from the Department of

Mathematics and Computer Science at the

University of Amsterdam's Vrije Universiteit,

published in October 1991. Postmarked for

publishing.

According to Wieringa, Weigand, Ch. Meyer, and

Dignum [61], R.J. Integrity restrictions, both

dynamic and ethical, that are inherited. 1991,

3:393-428 in the Annals of Mathematics and

Artificial Intelligence.

(G.H. von Wright, Deontic Logic, p. Mind, 60:1–

15, 1951.

From the works of G.H. von Wright (ref. And then

what? North-Acta Holland's Philosophica Fennica

Volume 18 from 1965.

According to G.H. von Wright (referenced in

[64]). Theory of Action and Deontic Logic: A

Dissertation. Volume 21 of Acta Philosophica

Fennica, published in 1968 by North-Holla

