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Abstract  

In order to create CTSSAR images, a modified version of the Omega-K method is shown here. As with traditional SAR imaging 

techniques like RD and CS, the curvature of a circular trajectory makes it challenging to get access to the two-dimensional frequency 

spectrum for CTSSAR using the principle of stationary phase (POSP). To achieve precise data focus, we first use series reversion and 

the POSP to obtain the analytic point target spectrum, upon which we build a modified Omega-K algorithm. In order to maintain 

sufficient terms in the two series expansions for a suitable range approximation, one might regulate the precision. Extensive theoretical 

and experimental work has shown that the fourth-order approximation is the most appropriate. In addition, the suggested approach is 

compared to the back projection algorithm and other methods with varying estimated orders in order to gauge its computing efficiency. 

The computational load of the suggested method is shown to be the lowest. The suggested approach is validated by simulations, which 

provide sharp images.  

Keywords:  

Synthetic aperture radar (SAR) using a circularly sweeping trajectory (CTSSAR), series reversion, and the Omega-K method  

Introduction  

Synthetic aperture radar (SAR) has found 

widespread application in both military and civilian 

contexts due to its effectiveness in both day and 

night and all-weather situations. Typical SAR 

systems travel in a straight line, above or below a 

predetermined ground plane [1-4]. The curved path 

SAR has gained increasing interest among 

researchers in recent years. Gradually becoming 

one of the hotspots in the area of radar signal 

processing [5] is an imaging mode known as 

circular SAR (CSAR), whose radar equipment 

travels along a circular route. When the sensor is in 

CSAR imaging mode, the antenna beam may be 

directed to highlight a specific area of the ground, 

much like the "circular spotlight" mode of a 

conventional spotlight. CSAR's ability to reach 

subwavelength resolution in the ground plane 

because to its 360° aperture is only one of several 

benefits it offers over conventional RADAR. 

Furthermore, the information of the interested 

object from multiple azimuth directions is provided 

by the multi-aspect observation of CSAR, allowing 

for a 3D reconstruction to be realized [6-14]. 

Although CSAR has several benefits, the imaging 

area is limited. The typical ground-plane imaging 

region is several hundred meters in height and 

diameter [15]. As a result, it may be used for 

detailed imaging of a specific region. Many 

scientists are curious in the novel circular trajectory 

scanning SAR (CTSSAR) imaging technique [16]. 
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 Because the platform's antenna beam is set at an 

angle perpendicular to the flight velocity away 

from the center of the circular trajectory, the 

resulting antenna footprint sweeps through an 

annular landscape as the platform travels in this 

mode. CTSSAR is quite similar to both the 

spotlight SAR and the CSAR, with the exception of 

the track's form, which is what sets it apart from a 

regular strip map. This is why we like to refer to 

CTSSAR as a circular strip map. CTSSAR is better 

suited for rapid broad area imaging despite the fact 

that it may need sacrificing some image detail in 

the azimuth direction in exchange for its faster 

scanning speed in azimuth compared to the 

conventional strip map mode. As a result of 

CTSSAR's curved trajectory, the target's range 

function contains trigonometric functions denoted 

by a radical. Adopting the traditional idea of fixed 

phase prevents a correct analytical expression of 

the 2D spectrum, which impedes the development 

of efficient frequency domain-based algorithms for 

CTSSAR imaging. With this in mind, Sun et al. 

[16] use a quadratic approximation to the range 

function to get the spectrum and create an imaging 

technique. The effect of the curved trajectory may 

be ignored and satisfactory results obtained if the 

synthetic aperture is small and the azimuth 

resolution is low. However, the high-order range 

components are disregarded by the quadratic 

approximation approach. In the event that the 

 

 

 

 

 

figure 1 Imaging geometry of the CTSSAR 

integration time is long and the azimuth resolution 

is high, the range errors introduced by this 

approximation will be large enough to defocus the 

image. The back projection (BP) algorithm shown 

in [10] is a classical time-domain algorithm, which 

can get rid of the problem of spectrum derivation in 

the frequency-domain-based algorithms and be 

implemented easily with arbitrary geometries. But 

the disadvantage is that each pixel must be 

compensated individually, leading to a heavy 

computational burden. 

Signal model for CTSSAR 

 The imaging geometry for CTSSAR is shown in 

Figure 1. The radar platform moves along a circular 

path of radius ran with height Ch on a plane 

parallel to the ground plane. As the radar moves, its 

beam is in the plane perpendicular to the flight 

velocity all the time. When the radar platform 

moves around a whole circle cantered at the origin 

point O of the spatial coordinate, the beam-

illuminating scene will be an annular area with 

inner radius OB and outer radius OC. The 

coordinate of radar platform A is denoted by (ran 

cos θ, ran sin θ, Hc), where the aspect angle is θ. 

Assume that there is an arbitrary point target P 

located at (rp cos θp, rp sin θp, 0). For simplicity of 

the following derivation, let us define that the slow 

time is zero when θ = θp, namely, the beam center 

crossing time. The angle velocity is denoted by ω, 

and the slow time is represented by η. So, we have 

θ = θp + ωη. Thus, the instantaneous range R(η) 

between the radar and the target P can be obtained 

based on the law of cosines as shown in the 

following expressions 



 

 

Defining 

 

we perform Taylor expansion to the instantaneous 

range neglecting the terms whose order are higher 

than the fourth order. The expression can be written 

as 

 

Where  

 

Assume that the transmitting radar signal is linear 

frequency modulation signal, the pulse width is Tp, 

and the rate of frequency modulation is γ. The echo 

from P can be presented by 

 

where σp is the coefficient of reflectivity, ar( • ) 

and aa( • ) are the range envelope and azimuth 

envelope, respectively, c is the speed of light, and λ 

is the wavelength according to the center 

frequency. Now, convert the echo signal shown in 

(5) to the range frequency azimuth time domain. 

 

where fc is the carrier frequency, fτ is the range 

frequency, and Ar(fτ) represents the envelope of 

the range frequency. Now let us try to figure out 

the 2D spectrum using the stationary phase method 

as follow, first azimuth FFT is performed to (6), 

yielding 

 

 Simulation results  

In SAR imaging, the negligible high-order term 

error should satisfy the criterion that the maximum 

double range phase error is less than π/4 rad for the 

range approximation errors [19]. Herein, it is 

necessary to select an appropriate approximated 

order. On one side, if the approximation order is 

too small, the precision will not be large enough to 

focus the image data. On the other side, too large 

an approximation order will surely bring certain 

extra computation, but it will not be the main 

computational consumption in the practical use for 

the reason that it is too small compared with the 

primary computational operation and it can be 

precalculated and set in the RAM. Nevertheless, 

more important is that if higher-order range 

approximation is adopted, the derivation of the 2D 

spectrum will become very complex and difficult 

when using MSR [17], especially for the case that 

the order is larger than fourth-order, the condition 

under which it is very complicated for calculating 

the 2D spectrum. In addition, it is widely accepted 

that the computational complexity of the time 

domain BP algorithm is 

 

Figure 2 Nearest point imaging result using the proposed 

method. (a) 2D impulse response. (b) Azimuth impulse 

response. (c) Range impulse response. 



 

Figure 3 Farthest point imaging result using the proposed 

method. (a) 2D impulse response. (b) Azimuth impulse 

response. (c) Range impulse response. 

O(N3 ) [15]. Taking the complex multiplication 

into consideration, as illustrated in [19], the number 

of floating point operations (FLOPs) is used here to 

estimate the computation load of the algorithm. An 

FFT or IFFT of length N requires 5 N 

log2(N)FLOPs. A complex phase multiplication 

requires six FLOPs. It is assumed that Na is the 

number of input lines (azimuth samples); Nr is the 

number of input range samples per line. Thus, 

according to the algorithm flowchart, there are four 

FFT (or IFFT) operations and two complex 

multiplication operations: 

 

Therefore, let Nr = Na = N, the computational 

complexity of our algorithm is O(N2 log2(N)), 

which is a tremendous improvement for the 

computational efficiency. In the following 

simulation, corresponding computational 

processing time experiments will be carried out 

with related analyses. Now let us discuss how large 

the order is needed to satisfy the request of imaging 

quality. Here, we choose a series of typical 

parameters. Assume that the parameters of the 

flight platform are Hc = 2000 m, ra = 4000 m, rp = 

5154.7 m, v = 100 m/s, and the wavelength λ = 

0.03 m, now compute the quadratic approximation 

errors and the quartic approximation errors in one 

synthetic aperture, as shown in Figures 3 and 4, 

respectively. The dashed line denotes the location 

when the phase error is π/4 rad, and the solid line 

indicates the phase errors introduced by different 

range approximations in the integrated synthetic 

aperture time. 

Besides, the cubic approximation errors are not 

considered here for the fact that the odd terms are 

all zero. It can be seen clearly from the figure that 

the maximum value of the quadratic approximation 

errors is about 1.7 rad, larger than π/4 rad indicated 

by the dashed line in the figure, which implies that 

the approximated errors introduced by quadratic 

approximation cannot be ignored, or the 

degradation of the image focusing may occur. 

However, the maximum quadratic approximated 

errors is about 3 × 10–3 rad, far less than π/4 rad, 

so the dashed line does not noted in the figure. 

Thus, it is obvious that the expression in (15) is 

more applicable than the quadratic approximated 

one. In order to verify the effectiveness of the 

proposed algorithm in this article, let us compare 

our algorithm with the quadratic approximation 

method in terms of image quality. The simulation 

parameters are shown in Table 1, there are three 

target points Pn, Pm, and Pf in the scene, and their 

coordinates are Pn(0, 4854.7, 0), Pm (0, 5154.7, 0), 

and Pf(0, 5454.7, 0), respectively. The imaging 

results of the two algorithms for the same scene 

center point is shown in Figures 5 and 6 to compare 

the two algorithms, where (a) is the 2D impulse 

response of the target point, (b) is the azimuth 

impulse response, and (c) is the range impulse 

response. From the figure, we can see that the 

quadratic approximation is not able to represent the 

enough phase variant information and the focusing 

is not satisfied. In contrast, the algorithm proposed 

in this article keeps the range up to fourth-order 

and presents more range-variant information in the 

2D frequency domain. So, it is possible to 

table 2 Image quality parameters using the 

proposed method 

 

 

Figure 4Comparison of different imaging method for a 

selected point target. (a) Quadratic range model. (b) Our 

proposed range model. (c) BP. (d) Higher-order range model 



have access to the accurate image with high 

resolution. Figures 7 and 8 are the imaging results 

of the nearest point and the farthest point using our 

method, respectively. It is obvious that not only the 

center point, but also other points in different range 

are all well focused, which prove the feasibility of 

the proposed method successfully. Table 2 lists the 

image quality parameters to the three points of our 

algorithm. Besides, the theoretical range resolution 

and azimuth resolution are 0.443 and 0.125 m, 

respectively [16]. It can be seen from Table 2 that 

each parameter is close to the theoretical one, 

which indicates satisfactory imaging results and 

further validates the effectiveness and feasibility. 

To further illustrate the superiority of the proposed 

algorithm over other imaging methods, some 

imaging results are provided and computational 

experiments are implemented here. Figure 9 

indicates the contour plots of different imaging 

method for a selected point target Pm, where 

Figure 9a delineates the imaging result for the 

quadratic range approximated algorithm, Figure 9b 

shows the contour of the proposed algorithm based 

on quartic range approximation, Figure 9c 

represents the result of BP algorithm, and Figure 9d 

is the image for higher-order range approximation 

(sixth-order is used here). It is obvious that the 

quadratic approximation is not precise enough to 

focus the image in CTSSAR and the time domain 

BP algorithm seems to be trusted to 

 

Figure 5 Phase errors caused by each parameter errors. (a) 

Height. (b) Radius. (c) Angle velocity 

do this to perfection. However, it is challenging to 

apply to real engineering usage because of the 

excessive computing burden. In contrast, our 

suggested approach can get access to a perfect 

outcome while still being very efficient 

computationally. The picture obtained using a 

higher-order approximation is sharp, but it scarcely 

outperforms the one shown in Figure 9b. It thus 

seems that an additional higher-order 

approximation is not required in CTSSAR 

processing, confirming the correctness of our 

estimate. In addition, the difficulty in deriving the 

2D spectrum increases with the estimated order. 

The computational loads are assessed to verify our 

algorithm's computational efficiency. The time 

domain BP methodology takes 14676.80 seconds to 

run in our experiment, whereas our suggested 

algorithm takes just 40.43 seconds, and the higher-

order approximation method (here, we utilize sixth-

order approximation to simulate) takes 48.58 

seconds. Figure 9a displays the clearly defocused 

result achieved using the quadratic approach, which 

only takes 26.67 s. Since the BP algorithm is too 

slow for imaging, the quad ratic method is 

inadequate, and the higher-order method takes 

slightly longer than the proposed method (though 

the procedure can be optimized in practice, as was 

previously mentioned), it is clear that the proposed 

method is superior. The higher-order 

approximation also introduces significant 

computational challenges to the MSR-based 2D 

spectrum derivation. After looking at how the 

suggested algorithm stacks up against other 

common imaging techniques, it is clear that it is the 

best option for CTSSAR. 

Conclusions 

 The CTSSAR imaging geometry model is initially 

constructed in this article, followed by the 

disclosure of imaging challenges and impediments. 

Next, MSR deduces the point target range function 

and its 2D frequency spectrum, analyzes the 

estimated phase errors, and verifies the result with 

relevant tests, all while providing a solution to the 

challenge of selecting the approximation order. The 

generated spectrum is used to inform the 

development of a refined Omega-K technique. In 

order to account for the high-order term that the 

circular track introduces, the algorithm begins with 

a compensation. Sub-images are created by first 

performing range compression and RCMC in the 

2D domain, then azimuth compression, and then 

combining all of the obtained sub-images to create 

the final picture. The suggested approach is more 

precise than the quadratic approximation method. 

The simulation tests towards the article's 

conclusion verify the practicability and efficacy of 

the suggested strategy. 
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