

 ISSN2454-9940www.ijsem.org

 Vol 12, Issuse. 3 July 2021

Symbolic Model Validation for Component Connectors Based
on Channels

Mr.P Viswanatha Reddy , Mr.D Sanjeeva Reddy , Mrs.G S Gowthami Kumari

Abstract

This study details the theoretical underpinnings and empirical findings of a model checker for channel-network-modeled

component connections in the Reo calculus. To reason about the data flow and coordination rules in a network, the

specification formalisms use a branching time logic. The Model checking for CTL-like logics is based on versions of

traditional automata-based methodologies. In this implementation, binary decision diagrams are used to symbolically

depict the network and the available I/O-operations. The effectiveness of our model checker has been shown by applying it

to a few cases

Keywords: binary decision procedures, data streams, constraint automata, and branching time

logicDiagrams

Introduction

Over the last 15 years, several coordination

languages and models have emerged, each of

which offers a formal description of the glue

code used to connect components and which

may be used as a springboard for formal

verification. For the exogenous coordination

language Reo [2], we focus on the latter

component here. Through a chain of operations

that generate channel instances and connect

them in (network) nodes, Reo's glue code is

acquired as a network of channels.

 Reo network semantics have been supplied in a

variety of coherent forms. Accept and offer

predicates codify whether and which data items

may be written or read at a node, respectively,

across a variety of network setups, as described

in [2]. The timed data stream semantics of [5] is

demonstrated to be compatible with the

operational semantics of a Reo network

provided in [6] using a version of labelled

transition systems called constraint automata.

While Reo is a beautiful formalism for

synthesizing component connections using

simple composition operators, it may be

challenging to make sense of Reo networks that

have numerous nodes and channels. Therefore,

a vital part of using the Reo framework for

complicated situations is having tool support for

assessing the coordination mechanism

described by a Reo network. The (bi)simulation

and language equivalence testing algorithms in

[6] and the temporal logic specification

algorithms in [3,10] are examples of verification

algorithms for Reo networks based on their

constraint automata semantics.

Assistant Professor1,2,3

Department of CSE

Viswam Engineering College (VISM) Madanapalle-517325 Chittoor District, Andhra Pradesh, India

 ISSN2454-9940www.ijsem.org

 Vol 12, Issuse. 3 July 2021

Reo Constraint and automata

Here, we provide a high-level overview of Reo, a

coordination language with a semantics based

on operational constraint automata.References

[2,6] provide further information. In Reo, an

exogenous coordination language, complicated

component connections are formed in a

compositional way by organizing in a network of

channels. When it comes to coordinating and

interacting with other nodes in a network, the

glue code is provided by Reo networks. Reo

uses a loose concept of channels and allows for

any form of peer-to-peer interaction. The

channels in a Reo network need to have a user-

defined semantics and two channel endpoints

that are either sink or source ends. Data is

written into the channel at the source end and

read out at the sink end.

Three basic kinds of channels that will be used
as examples are graphically shown in the image
above. There is a source and a drain in
synchronous and FIFO channels, respectively.
Writing and reading must be done at the same
time through synchronous channels.done at the
same time. The FIFO channel seen in the center
has a single buffer cell and is hence referred to
as a FIFO1 channel. As long as there is no data
in the buffer, writing from the source end is
permitted. When you write d, it is saved in the
buffer. If the buffer is full, data may be read from
the sink end, and the item will be removed from
the buffer. The synchronous drain provides a
powerful route for the development of
sophisticated Reo coordination principles. It has
two inputs but no outputs. Both ends of a data
item are being erased at once, making
simultaneous writing impossible.

Sets of channel terminations are represented by
the nodes in a Reo network. There are three

types of nodes that result from Reo's join
operator: source nodes, sink nodes, and mixed
nodes. Each type is determined by whether or
not all of the channel ends that coincide on a
node A are source ends, sink ends, or a
combination of both. Connecting components to
a network via input and output ports, or source
and sink nodes. The admixed vertices Logic that
Forks in Real Time Here, we provide a temporal
logic based on branching time, which may be
used to reason about the control and data flow
in a constraint automaton. This reasoning,
known as Branching Time, CTL [11,12], PDL
[15], and TDSL [3,9,4] are all components of
Stream Logic (BTSL). Similar to CTL, formulae
may employ the route quantifiers and to refer to
the configurations of a component connector
(states of a constraint automaton) using atomic
propositions ap AP. Until, a standard operator
for expressing path attributes, or the PDL/TSDL-
like modality __, where is a regular expression
providing sequences of I/O-operations at the
nodes, are the two most common ways to define
a path. BTSL, you'll need a tuple (AP,N) where
AP is a collection of atomic propositions and N is
a set of nodes. BTSL syntax is divided into three
tiers, marked by the capital Greek letters and for
state formulas, the tiny greek letter for run
formulas, and the letter for normal I/O-stream
expressions. Model Validation in Symbolic BTSL
4 As input, the BTSL model validation issue
requires a Reo network, which may also
includes a BTSL formula that has to be verified,
and constraint automata that describe the
interfaces of the components that make up the
links between the network's source and sink
nodes. Connected system components'
automata to the network's sink or source nodes,
the environment in which the network functions
is described. Since certain transition instances
(concurrent I/O-operations) may become
impossible owing to the behavioral interfaces of
the components, they may limit the non
determinism in the automata for the network.
When node A, which is both a sink and a
source, is connected to a port on a component,
A is said to be a mixed node. As a result, the
component's automata might also reduce the
number of possible terminal states. When these
automata are ignored, the analysis will take into
consideration all possible interactions between
the sink and source nodes even if nothing is

 ISSN2454-9940www.ijsem.org

 Vol 12, Issuse. 3 July 2021

known about the prospective behaviors of the
components that will be managed by the
network.

network, maybe within of the ecosystem
provided by the automata for the components.
The second stage is to prove or disprove that a
certain BTSL formula is true for all beginning
states of the created constraint automata. Yes,
without a doubt forms of formulas The model
checker may either provide a witness (such as a
run with |=) or a counterexample (such as a run
with _|=) for the formula being tested. We
provide a symbolic BTSL model checker in the
next section. After briefly outlining the
fundamentals of the BTSL model checking
technique, we move on to describe the symbolic
implementation of this method. Five Instances,
With Outcomes A handful of instances were run
via the BTSL model checker. Here, we will
report on There are two examples of this. All
testing was performed on a Pentium IV with
1.8GHz of processing power and 1.5GB of RAM
running Mandriva Linux with kernel 2.6.12. The
program was developed in C++ and GCC4.0.3
was used to build it; the JINC [18] library was
used to create the binary decision diagrams. 5.1
(Philosophers at Dinner) as an Example The first
provides a Reo model of the classic
philosophers' dinner (see Fig. 5 in [1]).

...to the philosopher's right. An FIFO1 channel

and synchronous drain represent the chopsticks

in this analogy. Figure 6 depicts the philosopher

and chopstick interface constraint automata.

In Table 1, we see how effectively the symbolic

join-operation can be used to build the

BDDrepresentation of the constraint automaton

A for the whole system. The "size" column

provides a count of philosophers. The In the

table below, "time" represents the amount of

time required during synthesis, whereas

"reachable time" indicates the amount of time

required to calculate the reachable fragment of

A. The other two columns detail the largest BDD

created throughout the symbolic computation

and the size of the BDD generated for A.Since

there is a run in which all philosophers accept

the left chopstick and then wait indefinitely for

the missing right chopstick, the second formula

cannot hold. Using a backward iteration of 798

times, we have discovered this impasse.

analysis. The stalemate may be identified in only

403 steps and 13.92 seconds using forward

analysis to compute the reachable section first.

Mutual exclusion: Example 5.2 The component

connection seen in Fig. 7t is used as an

example two.

 ISSN2454-9940www.ijsem.org

 Vol 12, Issuse. 3 July 2021

hat provides a critical action bottleneck of no

more than k processes per time instance for a

set of n parallel processes (P1,..., Pn)

.

In this case, we assume that each component's

Pi has a behavioral interface represented by the

constraint automaton shown in Fig. 7. The

generated BDD-representation findings are

summarized in Table 3. where n is the total

number of processes and k is the maximum

permissible critical section occupancy. There are

more than 5 10119 possible configurations in

this CA if you have 200 processes and k = 60.

The Final Six

The study aimed to provide light on the

reasoning behind and operation of our Reo

network model checker. Two examples have

been provided to demonstrate the speed with

which our model verification method can

process extremely large networks with up to

101200 configurations. We feel that our model

checker offers a significant contribution for

formal reasoning regarding exoge neous

coordination models, especially in light of the

vast variety of applications of the Reo framework

(see, for example, [13,20,9]). Our

implementation will be expanded to reason

about real-time constraints using the logic TDSL

[3] or a branching time version thereof, and

about dynamic reconfigurations using the logic

considered in [10] or other formal frameworks for

Reo's dynamic operations, in addition to further

efficiency optimizations and case studies.

References

[1] F. Arbab, Abstract Behavior Types: A Foundation

Model for Components and Their Composition, In

[7],33-70, 2003.

[2] F. Arbab, Reo: A Channel-based Coordination

Model for Component Composition, Mathematical

Structures in Computer Science, 14(3):1-38, 2004.

[3] F. Arbab and C. Baier and F. de Boer and J.

Rutten, Models and Temporal Logics for Timed

Component Connectors, In Proc. SEFM’04, IEEE CS

Press, 2004.

[4] F. Arbab and C. Baier and F. de Boer and J.

Rutten, Models and Temporal Logics for Timed

Component Connectors, Software and Systems

Modelling (to appear), 2006.

[5] F. Arbab and J.J.M.M. Rutten, A coinductive

calculus of component connectors, In Proc. 16th

WADI

 ISSN2454-9940www.ijsem.org

 Vol 12, Issuse. 3 July 2021

volume 2755 of LNCS, pages 35-56, 2003.

[6] C. Baier and M. Sirjani and F. Arbab and

J.J.M.M. Rutten, Modeling Component Connectors

in Reo by Constraint Automata, Science of Computer

Programming, 61:75-113, 2006.

[7] F.S. de Boer and M.M. Bonsangue and S. Graf

and W.-P. de Roever, Formal Methods for

Components and Objects, LNCS 2852, Springer,

2003.

[8] R. Bryant, Graph-Based Algorithms for Boolean

Function Manipulation, IEEE Transactions on

Computers, C-35, 1986.

[9] D. Clarke and D. Costa and F. Arbab, Modeling

Coordination in Biological Systems, In Proc. of the

Int. Symposium on Leveraging Applications of

Formal Methods, 2004.

[10] Dave Clarke, Reasoning about Connector

Reconfiguration II: Basic reconfiguration Logic, In

Proc. FSEN’05, Teheran, Electronic Notes in

Theoretical Computer Science, 2005.

[11] E. Clarke and E. Emerson and A. Sistla,

Automatic Verification of Finite-State Concurrent

Systems Using Temporal Logic Specifications, ACM

Transactions on Programming Languages and

Systems, 8(2):244-263, April 1986.

[12] E. Clarke and O. Grumberg and D. Peled, Model

Checking, MIT Press, 1999.

[13] N. Diakov and F. Arbab, Compositional

Construction ofWeb Services Using Reo, In Proc.

International Workshop on Web Services: Modeling,

Architecture and Infrastructure (ICEIS 2004), Porto,

Portugal, April 13-14, 2004.

[14] E. Emerson and C. Lei, Modalities for Model

Checking: Branching Time Strikes Back (extended

abstract), In Proc. 12th Annual ACM Symposium on

Principles of Programming Languages (POPL), pages

84-96, SIGPLAN, ACM Press, 1985.

[15] M. Fischer and J. Ladner, Propositional dynamic

logic of regular programs, Journal of Computer and

Systems Sciences, 18:194-211, 1979.

[16] G. Hachtel and F. Somenzi, Logic Synthesis and

Verification Algorithms, Kluwer Academic

Publishers, 1996.

[17] K. McMillan, Symbolic Model Checking,

Kluwer Academic Publishers, 1993.

[18] J. Ossowski, JINC, a bdd library (to be

published), www.jossowski.de

.

[19] I. Wegener, Branching Programs and Binary

Decision Diagrams. Theory and Applications,

Monographs on Discrete Mathematics and

Applications, SIAM, 2000.

http://www.jossowski.de/

