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ABSTRACT 

In this project, a self-checking and -repairing carry-lookahead adder (CLA) is proposed with 

distributed fault detection ability. The presented design with self-checking and fault 

localization ability. The repairing operation utilizes the hot-standby approach with partial 

reconfiguration in which the faulty module would be replaced by an accurately functioning 

module at run-time. 

The proposed self-repairing adder with high fault coverage requires 161.5% area overhead as 

compared to conventional CLA design which is 35.3% less as compared to the state- of-the-art 

partial self-repairing CLA 

INTRODUCTION  

Among the fastest adders used in digital systems is the Carry-Lookahead Adder (CLA). For 

CLA, the summation circuitry for each bit can “lookahead” for their respective incoming carry 

bit. It means that each full adder in the cascade can run independently without waiting for the 

carry out of the preceding adder. The speed is therefore significantly improved, at the expense 

of hardware overhead. Therefore, traditional self-checking approaches like double modular or 

triple modular redundancy are not feasible for CLA due to their area overhead. The most 

common approach for designing self-checking CLA is the parity prediction scheme that can 

detect faults in either even or odd number of bits. 

In this paper, we propose a self-checking and -repairing CLA with distributed fault detection 

ability.The proposed design can detect and locate multiple faults simultaneously, with the 

condition that each module should have only one fault at a time. The fault recovery is achieved 

with a hot standby approach in which a spare module replaces the faulty one. The replacement 
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process is conducted with a novel partial reconfiguration concept in which the modified input 

values update the functionality of the circuits generating the internal carry bits. 

LITERATURE SURVEY 

1."An area-delay efficient multi-operand binary tree adder using modified carry select adder" 

by M. Singh, M. Sharma, and A. K. Verma (2016):  

This paper proposes an area-delay efficient MOBTA that uses a modified carry select adder 

(MCSA) as the building block. The proposed adder is shown to have a smaller area and delay 

than other existing MOBTAs while still maintaining a similar power consumption. 

2. "Low power and high-speed multi-operand binary tree adder" by A. Mittal, M. Gupta, and 

R. S. Anand (2017): 

This paper proposes a low-power and high-speed MOBTA that reduces power consumption by 

optimizing the carry propagation path and reducing the number of logic gates required to 

implement the adder. The proposed adder is shown to have a lower power consumption and a 

faster speed than other existing MOBTAs. 

3. "Low-Power Multi-Operand Binary Tree Adder Design Based on Signed-Digit Number 

System" by C. Li, Y. Li, and J. Li (2019):  

This paper proposes a low-power MOBTA design based on the signed-digit number system 

(SDNS). The proposed design reduces power consumption by exploiting the redundancy in the 

SDNS representation and using a carry-save adder (CSA) as the building block. 

4. "Design of low-power multi-operand binary tree adder using hybrid binary adder cells" by 

S. Patra, S. Pal, and D. K. Mandal (2020):  

This paper proposes a low-power MOBTA design using hybrid binary adder cells (HBACs). 

The proposed design reduces power consumption by optimizing the carry propagation path and 

reducing the number of logic gates required to implement the ADDER 

PROPOSED SYSTEM 

PROPOSED SELF-REPAIRING CARRY LOOK-AHEAD ADDER DESIGN 

A. CLA Topology And Operation 
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In CLA, all the internal carry bits are pre-computed in parallel to facilitate its operation. 

Typically, a CLA consists of two main blocks. 

The first block is the carry block (CBL), which generates the internal carry bits using carry 

generator (CG) modules. The second block is the summation block (SBL) which is 

responsible for generating the sum-bits using the sum generator (SG) modules, as shown 

in below Fig. 

 

Figure.2 CLA Block Diagram 

The CBL is designed using the basic concept of carry propagation and generation. The 

carry bit will be generated if both inputs are high (i.e., Gi = ai · bi), whereas the carry will 

be propagated if either one or both input bits are high (i.e., Pi = ai ⊕ bi or Pi = ai + bi). 

By combining these two operations, the ith carry bit can be computed. As inherent to the 

CLA, each carry bit should be generated in parallel using independent circuitry. 

This logic sharing is further extended to compute the sum-bits, which are equal to Pi ⊕ Ci-

1. Since each carry-bit is generated using an independent circuitry, the CBL is the most 

area- hungry and complex part of a CLA. Its area overhead and complexity becomes 

extremely high as the size of the adder increases. To address this issue, the block 

architecture of CLA is widely adopted in which multiple small-size CLA blocks are 

repeated to construct an adder for large input bit-width. As a result, the number of carry bits 

generated by each CBL is equal to the block size, as shown in Fig. 1(a). The final carry-out 

bit Cout generated by each CBL will be used as Cin for the next CBL. The 
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To reduce computational delay, the carry block should be designed such that Cin is the last 

element needed for computation. As soon as Cin is received from the previous block, the 

output could be updated immediately. The logic cell implementations in CG vary from CG0 

to CG3 depending on their respective Boolean equations. Meanwhile, except for the first 

CBL, each consecutive CBL will generate the carry-bits with an additional delay of two 

logic gates, i.e., X1 and X2  

                                                Figure.2 CG module block diagram 

B.Proposed Self-Checking CLA With Fault Localization 

To address this issue, we propose a hardware-friendly self-checking and fault localization 

approach for CLA, in which the ith sum-bit (Si) and carry-out bit (Ci) respectively generated 

by the SBL and CBL, are compared with the ith input bits ai and bi to determine any 

potential fault. Its operation can be summarized as: Si of the SBL and Ci of the CBL will 

be equal to each other, if and only if the previous carry-bit Ci-1 of the CBL and the ith input 

bits are all equal, that is: 

If (ai == bi == Ci-1) then Si = Ci otherwise Si != Ci. 

With the above conditional decision, an equality tester is required to check whether ai, bi and 

Ci- 1 are equal and produce a comparison output Eqt(i), followed by a checker to determine 

whether a fault happens.For an error-free adder, if E qt(i) = 1, Si and Ci must be equal; 

otherwise, they must be complementary. The Eqt(i) bit can be computed using (6), and the 

checker can be implemented. 

                                            Figure.3 SG module block diagram 
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Proposed Self-Repairing Cla With Partial Reconfiguration 

This awareness cannot be achieved without modifying the circuitry because each carry-bit 

has a unique equation. For example, the logic circuit to generate C2 requires the signal G0, 

G1, G2, P0, P1 and P2 as in (4). Suppose C1 gets faulty, then the values of G1, G2, P1, and 

P2 should be modified so that the circuitry for generating C2 becomes equivalent to that of 

C1. A simple shift operation is insufficient as it can only modify G2 and P2. Therefore, a 

partial reconfiguration is required with the shift operation so that the hot-standby approach 

becomes applicable for adder having independent carry circuits, such as the CLA. 

A 4-bit self-repairing CLA using the proposed approach is shown in Fig. As stated, ei represents 

the individual error of the SG/CG pair, it is therefore used to update the input bits of the faulty 

module to 1,0 and also to divert the input carry of the faulty module to the next SG. Since the 

logic cell of each CG has already been modified, the positions of all other proceeding carry-

bits will remain unchanged. Whereas Ef represents the universal error, whose value is a 

function of all individual ei. Ef will be high for all SGs after the faulty one, whereas its value 

remains low for all the SGs prior to the faulty one. Therefore, it is used to control the shift 

operation of the input and output bits. CGX and SGX in the spare modules that are used during 

the recovery process. 

      Figure.4 Block Diagram of Self-repairing carry look adder Schematic CG-X BLOCK 

STIMULATION & SYNTHESIS RESULTS 
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             Figure.5 Simulation Wave Result                       figure.6 Schematic SG-Eq-Tester 

BLOCK 

 

Figure.7 Schematic self-repairing CLA 

 

 

 

 

 

        Figure.8 Schematic SG BLOCK                         Figure.9  Schematic CG-0 BLOCK 
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ADVANTAGES 

Improved reliability: By using redundancy and fault tolerance techniques, the adder can 

operate with a higher level of reliability, even in the presence of faults. 

Reduced downtime: With the use of hot-standby topology, the adder can switch seamlessly 

between the active and standby circuits, reducing downtime and improving overall system 

availability. 

Improved fault tolerance: The adder is designed to detect and isolate faults, allowing for 

targeted replacement of faulty components without affecting the operation of the rest of the 

circuit. 

Increased accuracy: By ensuring that the adder operates correctly and reliably, the system can 

produce accurate results, which is critical in applications that depend on precise . 

APPLICATIONS 

Medical devices: The adder can be used in medical devices such as MRI machines and other 

imaging equipment, where accuracy and reliability are essential. 

Industrial automation: The adder can be used in industrial automation systems, such as 

robotic systems and process control systems, where high levels of accuracy and reliability are 

required. 

Financial applications: The adder can be used in financial applications, such as stock trading 

and financial modelling, where accuracy and reliability are crucial. 
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Communications: The adder can be used in communication systems, such as wireless 

networks and satellite communications, where reliable and accurate computations are required 

for signal processing and data transmission. 

CONCLUSION 

The designed approach uses the concept of self-checking and fault localization full adder in 

which the fault is detected by comparing the input and output bits. The proposed 8-bit self-

checking CLA requires 20.6% more area than conventional CLA, whereas it can detect and 

localize multiple faults at a time with the condition that a single module should not have more 

than one fault at a time. 

The time latency of conventional CLA will not be affected with the proposed self-checking 

approach because the checker is not affecting the actual computation process. 

FUTURE SCOPE 

Hardware security: The self-repairing approach can be extended to include hardware security 

features, such as tamper detection and response. This could be particularly useful for 

applications that require high levels of security, such as military and aerospace systems. 

Internet of Things (IoT): The self-repairing approach could be applied to IoT devices, which 

often have limited resources and require high reliability. By using partial reconfiguration, the 

adder circuitry could be dynamically adjusted to optimize performance and reduce power 

consumption. 

Machine learning: The self-repairing approach could be used to develop more robust and 

reliable machine learning algorithms. By incorporating fault localization and partial 

reconfiguration techniques, machine learning systems could continue to operate even in the 

presence of faults. 
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