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Abstract— Human 3D pose estimation is a fundamental problem in computer vision and 

has garnered significant attention in recent years due to its broad range of applications. This 

paper presents a comprehensive study of state-of-the-art deep learning techniques for human 

3D pose estimation from 2D images or videos. The primary objective is to provide an in-

depth analysis of the advancements, challenges, and future directions in this exciting field. 

We begin by reviewing the historical context of human pose estimation, tracing the evolution 

of techniques from traditional computer vision methods to the current dominance of deep 

learning-based approaches. We discuss the underlying concepts of pose representation, joint 

detection, and the importance of data annotation, emphasizing the pivotal role of large-scale 

datasets in training robust deep models. Our work delves into the architectural choices for 3D 

pose estimation networks, comparing various convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and transformer-based models. We explore the trade-offs 

between accuracy and efficiency and highlight the influence of architectural design on the 

overall performance. 

Keywords-3DPose, 2D Pose,Deep Learning, Convolutional Neural Network. 

I. INTRODUCTION  

In the realm of computer vision, the quest to 

decipher human motion and pose from 2D 

images or videos is transforming the way 

we interact with technology. Human 3D 

pose estimation, the art of uncovering the 

intricate dimensions of body movement, has 

leaped forward with the power of deep 

learning. This project delves into the 

captivating world of Human 3D Pose 

Estimation, exploring the innovative 

potential of deep neural networks and their 

impact on fields like robotics, healthcare, 

and more. 

This project embarks on a captivating 

journey into the realm of Human 3D Pose 
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Estimation, with a keen focus on 

harnessing the transformative power of 

deep neural networks. Our aim is not only 

to unravel the complexities of this 

technology but also to showcase its 

profound implications across a spectrum 

of domains, ranging from the precise 

choreography of robots to the 

personalized care in healthcare, and even 

the immersive experiences of the 

entertainment industry. 

As we delve deeper into this exploration, 

we will dissect the core methodologies, 

delve into the architectural intricacies, 

and uncover the pivotal role of datasets 

and annotations in training these 

intelligent systems. Our journey will also 

venture into the subtleties of training 

strategies, optimization, and the critical 

evaluation metrics that underpin the 

accuracy and usability of 3D pose 

estimation models. 

 

However, to make more accurate 

predictions about human behaviours, we 

need more than a few body key points. To 

that end, 3D whole-body pose estimation 

aims to detect face, hand and foot key 

points in addition to the standard human 

body key points of classical 3D human 

pose estimation. 

 

II. LITERATURE REVIEW  

Transition to 3D 

• The transition from 2D to 3D was 

accelerated by works like "VNect" 

(Mehta et al., 2017), which used CNNs to 

predict 3D poses from 2D joint locations. 

Benchmark Datasets 

• Datasets like "Human3.6M" and 

"MPII Human Pose" provided annotated 

data, enabling model training and 

evaluation. 

Multi-Stage Networks 

• "Stacked Hourglass" (Newell et 

al., 2016) introduced multi-stage 

networks, significantly improving 

accuracy. 

Transfer Learning 

• Transfer learning with pre-trained 

models on datasets like ImageNet reduced 

data requirements and improved 

convergence. 

Recent Trends 

• Transformer-based models, such 

as "Vision Transformer" (ViT), have 

gained prominence for capturing spatial 

dependencies. 

 

III. METHODOLOGY   

we describe the making of the H3WB 

dataset. Our objective is to build a key 

point-based 3D whole-body dataset 

including key points on the body, the face 
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and the hands, and propose a benchmark. 

We use the same key point layout as COCO 

Whole Body dataset with 133 key points. 

 

To that end, we build on the widely used 

Human3.6M dataset for which we provide 

3D whole-body key points. The H3WB 

building process is as follows: First, we use 

an off-the-shelf 2D whole-body detector 

combined with multi-view reconstruction to 

obtain an initial set of incomplete 3D whole-

body key points. Next, we implement a 

completion network to fill in the key points 

missed by the multi-view geometric 

approach. Then, we develop a refinement 

method for the hands and the face to obtain 

more accurate key points. Finally, we 

perform quality assessment to select 25k 3D 

whole-body poses with high confidence and 

the 100k associated images from 4-view. 

 

 

 

Table1.Over view of Human3.6M Dataset. 

 

1. Convolutional Neural Network:  

• Create a neural network model by 

extracting the features from the 2D image 

or video. 

• Design the model architecture 

with multiple dense layers, incorporating 

appropriate activation functions such as 

ReLU and sigmoid.  

• Compile the model with Adam 

optimizer, binary cross-entropy loss 

function, and accuracy as the metric.  

2. Training the initial model:  

• Train the model using the training 

set.  

• Specify the number of training 

epochs and batch size to iterate over the 

dataset and update the model’s 

parameters. 

 

The occluded or undetected key points 

(cyan key points) are reprojections after 

3D multi-view reconstruction. Notice that 

these reprojections do not always align 

with the images, like the right hand in the 

last view, which is probably due to 

OpenPifPaf not being perfectly accurate. 

 

Size Dataset Keypoints Hand Face Body 

Human3.6M[ 36 ] M 3.6 17 17 
3 DPW [ 71 51 k ] 24 24 
LSP

[ 
41 10 k ] 14 14 

3 DHP [ 71 ] > 1.3 M 17 17 
Panoptic[ 42 1.5 M ] 15 15 

MTC[ 77 834 K ] 20 20 

InterHand2.6M[ 57 2.6 ] M 21 21 
FreiHAND[ 85 k ] 37 21 21 

RHD[ 84 44 K ] 21 21 
MTC[ 77 111 ] K 21 21 

TotalCapture[ 43 M 1.9 ] 127 21 16+16 74 
ExPose[ 18 ] 33 K 144 25 15+15 89 

H3WB 100 k 133 23 21+21 68 

http://www.ijsem.org/


ISSN2454-9940 

www.ijsem.org 

           Vol 18, Issuse.1 March 2024 

 

 

 

 

 

 

 

289 

 

we use an off-the-shelf 2D whole-body 

detector combined with multi-view 

reconstruction to obtain an initial set of 

incomplete 3D whole-body key points. 

Next, we implement a completion network 

to fill in the key points missed by the 

multi-view geometric approach. Then, we 

develop a refinement method for the 

hands and the face to obtain more accurate 

key points. Finally, we perform quality 

assessment to select 25k 3D whole-body 

poses with high confidence and the 100k 

associated images from 4-view. 

 

Initial 3D whole-body dataset with OpenPifPaf 

We run the 2D whole-body detector from 

OpenPifPaf [47] on all the 4 views from the 

training set of Human3.6M. Since the cameras 

of Human3.6M are well calibrated, we can 

reconstruct key points in 3D using standard 

multi-view geometry. 

 

The OpenPifPaf 2D whole-body detector can 

miss key points due to self-occlusions (hands, 

feet) or unfavourable camera viewpoints 

(facial landmarks). However, the four-view 

setup allows us to recover missing key points 

and obtain a complete 3D whole-body pose, 

provided each key point appears in at least two 

non-opposing views.  

 

An example of this process is shown in Figure 

2. Using this method, we obtained 11,426 fully 

complete 3D whole-body poses with all 133 

key points and 26,333 incomplete 3D whole 

body poses where all key points appear in at 

least one view, resulting in a total of 37,759 

3D whole-body poses with each key point 

appearing in at least one view. 

 

 

 

 

 

 

Fig1.OpenPifPaf detects most of the non-

occluded key points inside the image 

(orange key points). 

 

IV. IMPLEMENTATION  

1. LOAD THE HUMAN3.6M 

DATASET USING PANDAS AND 

PERFORM DATA EXPLORATION.  

2. PREPROCESS THE DATASET  

3. SPLIT THE DATA SET INTO A 

TRAINING SET AND TEST SET 

4. BUILD A NEURAL NETWORK 

MODEL USING THE  

5. CNN AND OpenPifPaf.  
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                                      Fig2:Architecture 

 

 

We use the H3WB dataset to propose a 

benchmark and the associated leader board. We 

split the dataset into training and test sets. The 

training set contains all samples from S1, S5, 

S6 and S7, including 80k {image,2D,3D} 

triplets. The test set contains all samples from 

S8, including 20k triplets. The test set labels 

are retained to prevent involuntary overfitting 

on the test set. Evaluation is accessible only by 

submitting results to the maintainers. We do 

not provide a validation set. We encourage 

researchers to report 5-fold cross-validation 

average and standard deviation (see 

supplementary). 

The corresponding benchmark has 3 different 

tasks: 

➢ 3D whole-body lifting from complete 2D 

whole-body skeletons, or 2D→3D for 

short. 

➢ 3D whole-body lifting from 

incomplete 2D whole body 

skeletons, or I2D→3D for short. 

➢ 3D whole-body skeleton prediction 

from image, or RGB→3D for short. 

 

 For each task, we report the following 

MPJPE (Mean Per Joint Position Error) 

metrics: 

 

i.MPJPE for the whole-body, the body 

(key point 1-23), the face (key point 24-

91) and the hands (key point 92133) 

when whole-body is cantered on the root 

joint, i.e. aligned with the pelvis, which 

in our case is the middle of two hip 

joints, 

ii.MPJPE for the face when it is cantered 

on the nose, i.e. aligned with key point 1, 
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iii.MPJPE for the hands when hands are 

cantered on the wrist, i.e. left hand aligned with 

key point 92 and right hand aligned with key 

point 113. 

We propose a second task where we want to 

obtain 3D complete whole-body poses from 

2D incomplete pose. This task aims to 

simulate the more realistic  

case when there are occlusions and the 2D 

whole-body detector outputs an incomplete 

skeleton. We do not provide masks for the 

training skeletons to allow for online data-

augmentation.  

Instead,we propose a masking strategy as 

follows: 

1. With 40% probability, each keypoint has a 

25% chance of being masked, 

2. with 20% probability, the face is entirely 

masked, 

3. with 20% probability, the left hand is entirely 

masked, 

4. with 20% probability, the right hand is 

entirely masked. 

 

• M

ethod 

All Bod

y 

Face / 

aligne

d† 

Hand 

/ 

aligne

d‡ 

H3WB 

SMPL-X[60] 

188

.9 

166

.0 

208.3 

/ 23.7 

170.2 

/ 44.4 

CanonPose[72]∗ 186

.7 

193

.7 

188.4 

/ 24.6 

180.2 

/ 48.9 

SimpleBaseline [53]∗ 125

.4 

125

.7 

115.9 

/ 24.6 

140.7 

/ 42.5 

CanonPose[72] w 3D 

sv.∗ 

117

.7 

117

.5 

112.0 

/ 17.9 

126.9 

/ 38.3 

Large 

SimpleBaseline[53]∗ 

112

.3 

112

.6 

110.6 

/ 14.6 

114.8 

/ 31.7 

Jointformer[52] 88.

3 

84.

9 

66.5 / 

17.8 

125.3 

/ 43.7 

H3WB+T3WB 

CanonPose[72]∗ 

164

.7 

161

.1 

174.5 

/ 21.5 

150.8 

/ 43.6 

SimpleBaseline [53]∗ 115

.3 

114

.8 

109.4 

/ 15.8 

125.1 

/ 33.5 

Jointformer[52] 81.

5 

78.

0 

60.4 / 

16.2 

117.6 

/ 38.8 

 Table2.Comparing different methods for 

I2D→3D on H3WB test set.Results are 

shown for the MPJPE metric in mm. 

 

Multiple Persons. Compared with single 

human pose estimation, estimating 3D poses 

of multiple persons is more challenging. When 

estimating multi-person from a monocular 

image, the additional challenge is the 

occlusion caused by nearby individuals. When 

estimating 3D poses of multiple persons from 

multiple views, the main challenges include 

the larger state space, occlusions and cross-

view ambiguities, as shown in Fig. 2. Besides, 

most existing methods are based on two-stage 

frameworks which suffer from problems in 

efficiency, while single-stage methods (Nie et 
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al., 2019) have been proposed to solve this problem, 

they are far from mature. 

 

Triangulation is another fundamental method for 

reconstruction in computer vision. EpipolarPose 

(Kocabas et al., 2019) uses the epipolar geometry 

method to recover the 3D pose from the 2D poses 

and uses it as a supervision signal to train the 3D 

pose estimation model, as shown in Iskakov et al. 

(2019) first propose a baseline method that feeds the 

2D joint confidences and 2D positions of all views 

produced by the 2D pose detector to the algebraic 

triangulation module to obtain the 3D pose. The 

drawback of this method is that images from 

different cameras are processed independently. 

Therefore, a more powerful triangulation procedure 

is proposed by them. During processing, the feature 

maps are not projected into 3D volumes and the 

volumes from multiple views are aggregated and 

processed by a 3D CNN to output 3D heatmaps. 

SMPL-Based Model: For the shape model, 

recent works use the skinned multi-person 

linear (SMPL) model (Loper et al., 2015), as 

shown in Fig. 6, to estimate 3D human body 

joints (Bogo et al., 2016). The human skin is 

represented as a triangulated mesh with 6890 

vertices, which is parameterized by shape and 

pose parameters. The shape parameters are 

used to model the body proportions, height and 

weight, while the pose parameters are used to 

model the determined deformation of the body. 

The 3D pose positions can be estimated by 

learning the shape and body parameters. 

 

We use statistics from the training set to 

adjust the test predictions. We calculate a 

scaling factor using the ratio of 

3D to 2D bounding boxes. The formula 

is:  

Xfinal = Xunit × 

 where Xunit is the normalized 

prediction, σ3d is the average size of the 

3D training boxes, σ2d is the size of the 

current 2D box, and σ2d is the average 

size of the 2D training boxes. 

Since Simplify-X has 144 key points 

with a different layout, we use 

interpolation to transform between the 

Whole-Body skeleton and SMPL-X and 

run SMPL-X’s optimization for 2,000 

iterations (4 minutes/sample). 

We present the results in SMPLify-X 

performs the worst, showing that 

parametric models struggle more than 

discriminative approaches. Simple 

Baseline is a solid method, and Large 

Simple Baseline improves its 

performance further. Canon Pose can be 

improved with additional 3D supervision, 

but still performs worse than Large 

Simple Baseline. Canon Pose also 

predicts the camera view, and the 

uncertainty in this prediction can lead to 

more error. Joint former achieves the best 

results among all methods, but still has 

room for improvement. All methods 
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perform worse on our benchmark than on 

Human3.6M because of pelvis cantering, 

which creates higher numerical error on 

extremities like hands and face, the parts that 

contain most of the whole-body key points. 

 

H3WB annotations 

To download the H3WB dataset annotations 

click here. The zip file contains following: 

• 2Dto3D train.json has the 

training annotations for 2D→3D and I2D→3D 

tasks. Since this file is too big, we split it into 

4-parts to ease the training and data loading 

pipeline. We provide the splitted files as well. 

• RGBto3D train.json has 

the training annotations for RGB→3D task. 

• 2Dto3D test 2d. json and 

I2Dto3D test 2d. json include test instances for 

2D→3D and I2D→3D tasks, respectively. 

• RGBto3D test img.json 

includes test samples for RGB→3D task. 

3DPW (3D Poses in the Wild, von Marcard et al. 

(2018)) is the first dataset in the wild with 

accurate 3D poses for evaluation. It is created by 

utilizing information from IMUs and a hand-held 

phone camera. A 3D pose estimation method 

named video inertial poser (VIP) is used to 

integrate the images and IMU readings of all 

frames in video sequences. The VIP has been 

validated on the Total Capture dataset, which has 

an accuracy of 26 mm and is accurate enough to 

create the dataset for image-based 3D pose 

estimation. For tracking single subjects, 17 IMUs 

would be used, while 9–10 IMUs would be 

used to simultaneously track up to 2 

subjects. Then, the video and IMUs data are 

synchronized by a clapping motion as in 

Pons-Moll et al. (2011). In total, the dataset 

contains up to 18 clothing styles and actions 

such as walking in cities, going up-stairs, 

having coffee, or taking the bus. Compared 

with Total Capture, there are more subjects 

in a scene. 

 

V.RESULTS 

 

 

Fig3.3d Pose from 2d. 

VI.CONCLUSION 

In this paper, we introduce the H3WB 

dataset, which extends the Human3.6M 

dataset with 2D and 3D keypoint 

annotations for body, face, and hands, 

containing 100k images with 133 keypoints 

with an average accuracy of 17mm. We 

propose three tasks based on this dataset: 

3D wholebody lifting from complete 2D 

keypoints, 3D whole-body lifting from 
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incomplete 2D keypoints, and 3D whole-body 

prediction from monocular images. We evaluate 

several baselines on these tasks and demonstrate 

promising accuracy, but with room for 

improvement. Lifting from incomplete 2D 

skeletons and direct estimation from monocular 

images remain challenging, and we hope that our 

dataset and benchmark will spur future research 

in these areas. 

 

Human 3D Pose Estimation is a computer vision 

and deep learning task that involves determining 

the three-dimensional positions of key anatomical 

points or joints on the human body from two-

dimensional images or video frames. It is a 

fundamental problem with numerous applications 

in fields such as robotics, healthcare, sports 

analytics, entertainment, and more.  

The primary goal of Human 3D Pose Estimation 

is to reconstruct the 3D positions of human body 

joints or landmarks in a coordinate system that 

corresponds to the physical world. These joints 

typically include key points like the head, 

shoulders, elbows, wrists, hips, knees, and ankles. 

The result is a representation of the human body's 

posture and movement in a 3D space. 

 

2D Pose Estimation: In the initial stage, a 2D 

Pose Estimation model is employed to detect and 

localize body joints in a 2D image or video 

frame. This step provides the 2D positions (x, y) 

of the joints. 

 

Depth Estimation: To convert 2D joint 

positions into 3D coordinates, depth 

information is needed. Depth estimation 

techniques, such as stereo vision or depth 

sensors (e.g., RGB-D cameras), are used to 

infer the depth (z-axis) of each joint. 

3D Pose Reconstruction: With the 2D 

positions (x, y) and depth information (z), 

the 3D pose of the human body is 

reconstructed. This involves transforming 

the 2D coordinates into a 3D space using 

geometric principles. 
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