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ABSTRACT

Artificial intelligence, machine learning, human-machine interface, etc., have all seen consistent innovation
over the last several years. The use of voice commands to direct machines to do specific actions is rapidly
expanding. There are a plethora of built-in consumer devices, including Alexa, SIRI, Cortana, Google
Assistant, and the like. Unfortunately, computers can't have a genuine conversation like a person. It can't
read people's feelings or react to them. Research on emotion identification from speech is considered
cutting edge in the area of human-computer interaction. We must strengthen our system of human-machine
communication since manufacturers are crucial to our existence. Scientists are now interested in speech
emotion recognition (SER) as a means to enhance human-machine communication. If we want a computer
to do this, it has to be able to detect when people are feeling sad or angry and respond appropriately. The
quality of the features gathered and the kind of classifiers used determine how well the speech emotion
recognition (SER) system performs. Using just verbal cues, we set out to determine whether subjects were
furious, dissatisfied, neutral, or delighted. Here, audio clips of brief Manipuri speech taken from films
served as the training and screening datasets. Here, you'll use the Mel Regularity Cepstral Coefficient
(MFCC) function extraction method to train a CNN to identify various emotions in spoken English.

Introduction

Acknowledging the face, removing and classifying features, and using voice sounds to convey thoughts
and feedback are the three steps involved in automated facial emotion recognition. Despite significant
progress in human user interface technologies, including as the ubiquitous mouse and keyboard, automatic
voice recognition, and accessible interfaces for people with impairments, these essential interactive skills
are often disregarded. Consequently, consumers often encounter inadequate services. A better tailored
experience that met the user's needs and exceeded their expectations would be possible if computers could
detect these emotional signals. The six archetypal human emotions identified by psychological study are
shock, terror, disgust, frenzy, pleasure, and suffering. Nonverbal clues, such voice intonation and facial
expression, play a significant role in conveying emotional states.

An exciting new field of study, emotion interpretation may provide answers to many mysteries. Body
language and facial expressions are ways individuals communicate themselves emotionally, whether on
purpose or by accident. Vocal, creative, and aesthetic data are only a few of the many forms of information
that may be used for emotion analysis. The most reliable ways to read people's emotions, which include
their thoughts, have long been their speech and facial expressions. Discovering the underlying emotions
and sentiments is a daunting and difficult undertaking. In response, researchers from a wide range of fields
are focusing on improving methods for detecting emotional states in various electrical signals, including
those emitted by the voice and the face.
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Artificial intelligence, natural language modelling systems, etc., have been used to enhance the reaction to
various vocal-based techniques and speeches. Numerous fields might benefit from emotional analysis. An
example of this would be working together with human computer systems. Computers can improve
decision-making, emotion perception, and the rationality of human-robot interactions. We would find out
where emotion data comes from, how to identify emotions, what approaches are now in use for emotion
modelling, the pros and cons of these methods, and where future research may go from here. Our primary
focus is on studying tasks that involve evaluating emotions via speech and facial recognition. We searched
through a plethora of technical libraries that housed modern methods and equipment. We have reached all
of the critical market milestones and have discovered strategies that might lead to even better outcomes.

Literature survey:

Recognising Emotions via Speech and Facial Expressions in 2014

Understanding the interplay between people and machines is one of the most dynamic areas in information
technology. Asynchronous data from both unimodal and multimodal systems has been the backbone of
most research in this area thus far. All of the aforementioned issues with synchronisation contribute to the
overall complexity of the system and its impact on response time. In response to this issue, a novel
approach has been developed to gauge people's emotional states by analysing their facial expressions and
vocal inflections. The method makes use of two feature vectors: the relative bin frequency coefficient
(RBFC) for audio data and the family member sub-image based coefficient (RSB) for aesthetic data. Two
modalities are combined using a feature-level category based method using a support vector machine with
a radial basis bit. The proposed brilliant approach has generated exciting outcomes for a wide variety of
inputs, and it is also adaptable to asynchronous data. Relevant keywords include human-computer
interaction, AVTs, relative sub-image characteristics, and bin regularity coefficients.

Acknowledgment in 2016 via Facial Expressions and Vocal Expressions in Humans

Abstract-- There has been research on using computer systems to imitate human emotions from the
beginning of conversational separation. The goal of this work is to provide a hybrid system that can analyse
a person's facial expressions and vocal inflections to determine common human emotions including anger,
sadness, joy, boredom, disgust, and astonishment. When it comes to audio data, we use family bin
frequency coefficients, and when it comes to visual data, we use loved one sub-image based features.
Support Vector Devices trained with radial basis kernels are used in the classification process. The two
most crucial parts of an emotion recognition system, according to this study, are the proposed blend
approach and function extraction from facial expressions and speech. There are a few factors that could
impact the emotion detecting system, but they don't have much of an impact. The bimodal emotion
recognition system outperformed the unimodal method, according to calculated faces. Using the right
database resolves the problem. The results showed that when competing systems included one of the most
basic psychological groupings, the suggested emotion detection system performed better. Search Terms:
Support Vector Machines (SVM), Relative Sub-Image Based (RSB), and Dear One Bin Regularity
Coefticients (RBFC).
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In 2019, Deep Learning Will Power Emotion Recognition.

ABSTRACT Getting a sense of familiarity via vocal indicators is a crucial yet challenging part of HCIL.
Among the many approaches used in the literature on speech emotion recognition (SER) to de-
emotionalize signals are several well-established speech assessment and classification systems. Using Deep
Discovering is a more recent alternative to more traditional approaches in SER. This article covers some
recent research that has employed Deep Knowing approaches to identify emotions in spoken language and
gives a high-level introduction to these methods. Subjects covered in testimonials include data sources,
extracted emotions, acknowledgment of payments to spoken emotions, and related restrictions.

In 2020, we will be able to use CNNs based on facial expressions to acknowledge feelings.

Recent years have seen an explosion in research on facial emotion recognition, mostly because of its
practical applications and impact on human-computer communication. As the amount of hard datasets
continues to grow, deep learning methods are becoming more important. By examining the challenges of
emotion detection datasets and experimenting with different CNN techniques and configurations, we aim to
identify the seven human emotions—sourness, anger, fear, disgust, sadness, and shock—in a face scan. Our
primary dataset will be the one-of-a-kind, fascinating, and very difficult iCV MEFED (Multi-Emotion Face
Dataset). The following keywords are associated with this article: Convolutional Neural Network, Deep
Learning, FER, Information Preprocessing, Picture Recognition, Facial Expression Recognition.

Examining the framework:. i.Present configuration:.

Emotion prediction has been a challenge for conversational Al from the start. The authors of this research
suggest a hybrid method for gauging important emotions (including surprise, anger, sadness, boredom,
contempt, and discontent) from a speaker's words and expressions while they're talking. Relative in
regularity coefficients stand in for the auditory data, whereas relative sub-image tures denote the visual
data. A Support Vector Machine with a radial basis kernel is used for classification. Feature extraction
using facial expressions and speech is the most crucial component of the proposed fusion technique for
emotion identification systems, as per this research. There are a few things that can influence the emotion
detection system, but they don't have much of an effect. The results demonstrated that the bimodal system
achieved better results than the unimodal system when testing with purposeful facial expressions. Using the
right database solves the issue. The results showed that for the most basic emotional categories, the
proposed emotion recognition system performed better than the competitors.

part ii. future setup:.

Recent years have seen a surge in research into facial emotion recognition due to its importance and impact
on human-computer interaction. The proliferation of challenging datasets is making deep learning
technologies indispensable. Our goal is to recognise the seven human face emotions—angry, fear, disgust,
contempt, sadness, surprise, and happiness—by analysing Emotion Recognition Datasets and
experimenting with different CNN architectures and settings. We have chosen the innovative, fascinating,
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and very challenging iCV MEFED (Multi-Emotion Facial Expression Dataset) as our primary dataset.

Issues covered include: facial expression recognition, preprocessing data, CNNs, deep learning, image
recognition, and CNNs.

Results:

In order to identify emotions in spoken English, we trained a convolutional neural network (CNN)
model using the RAVDESS Audio Dataset and the Emotion Facial Expression images dataset.

Extracting MFCC properties from an audio collection is shown in the following code snippets;
comments are received in red.

|# "SpeechTrain.py - E\venkat\2021\September21\FaceSpeechEmotion\SpeechTrain.py (3.7.0)" - x
File Edit Format Run Options Window Help

AAAAAAAAAAAAA e

~
keras.models import model from json
© soundfile

path = 'Sp

nEmotionDataset'

=f extract_ feature(file_name, mfcc, chroma, mel): #extract features function
ith soundfile.SoundFile (file name) =

sound_file:
X = sound file.rsad(dtyps="flc

) #read sound data
sample_rate=sound file.samplerate #identifying sample rate from audic
if chroma:

stft=np.abs(librosa.stft (X))
result=np.array([])
if mfcc:

mfccs=np.mean (librosa.feature.mfoc(y=X, sr=sample rate, n mfcc=40).T, axis=0) fextracting mfcc data from audio files
result=np.hstack((result, mfccs)) #add extracted features to result variable
if chroma:

chroma=np.mean(librosa.feature.chroma_stft(S=stft, sr=sample rate).T,axis=0)
result=np.hstack((result, chroma))
if mel:

mel=np.mean(librosa.feature.melspectrogram(X, sr=sample_rate).T,axis=0)
result=np.hstack((result, mel))
sound_file.close()

return result #return result to caller function

for root, dirs, directory in os.walk(path):
for j in range(len(directory)):
name =

path.basename (root)

"idirectory[§] not in error: $looping all audi
mfcc = extract_feature (root+"/"+directory
X train.append (mfec) #adding emotion
arr = directory[j].split("-")

if mame+

features data to

¥ train.append(int (arr[2])) #finding emotion values from dataset file name from position 2

Print(name+” "+root+"/"+directory[jl+" "+str(mfcc.shape)+” "+str(int(arr[2])))

v
Ln: 41 Col: 51
— 1428
H O Type here to search A - -

£ ~ Bz

12-09-2021 E

Annotations describing how to extract audio characteristics are shown in red on the top screen. The
CNN-trained X and Y data are shown on the bottom screen.
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|.& "SpeechTrain.py - E\wenkat\2021\September2 1\FaceSpeechEmotion\SpeechTrain.py (3.7.0) - x
R

loaded model_json = json_file.read()

classifier = model_from
classifier.load weights ("mo

classifier._make predict_fw
print(classifier.summary())

£ = open('mode ry.pckl
data = pickle.load(f)
f.clos=()

acc = datal'a

accuracy = acc[8] * 100

assifier = Sequential() #creat s
#creating CNN laver with 32 rons or filters and g nape size and
2D(32, 1, 1, input_shape = (150, 1, 1), activation =
to extract important features from dataset

(pool_size = (1, 1}))

data will be filtered by cnn 32 times
il

h 32 filters
2D(32, 1, 1, activatien =

2dd (Dense (output_dim
er has to predict values as per given in
2dd (Dense (output_dim = ¥_train.shape[l], activation = 'softmax’))
#print summary of CNN
print(classifier.summary())

i1 CNN model
pile (optimizer
#sctar CNN with giwen X
nist = classifier.fit (X train, ¥ train, batch_size=16, epochs=100, shuffle=Tru:, verbose=2)

, metrics = ['a

classifier.
model_jsen
ith open("™

jsonFile.write (model_json)
jsonFile.clos
£ = open|('model/spes

ve_weights('mods
classifier.to

bty -
Ln: 111 Col: 47

- 1431
ﬂ QO Type here to search / - ! ~ B 7B o000 B

The algorithm we used to train the convolutional neural network (CNN) on the speech dataset was
also used to train the CNN on the face picture dataset, as shown above. The images from the 'Face'
dataset that can be viewed on the screen below are stored in the 'Dataset' folder.

< MusicTools  Actor02 - X
Home  share  view Flay (1]
« v » ThisPC > Local Disk (E:) » venkat > 2021 > Sep 1 » FaceSpeechEmotion » SpeechEmotionDataset » Actor 02 v & Search Actor_02 »r

Name £ Title Centributing artists ~ Album -
# Quick access
8] £3-01-01-01-01-01-02.wav
QneDrive (8] 03-01-01-01-01-02-02.wav
@] 03-01-01-01-02-01-02.wav
@] 03-01-01-01-02-02-02.wav
1 2D Objects
8] 03-01-02-01-01-01-02wav
B Deskiop 8] 03-01-02-01-01-02-02.wav
|5 Documents [g] 03-01-02-01-02-01-02.wav
& Downloads 8] 03-01-02-01-02-02-02.wav

v & This PC

D Music 8] 03-01-02-02-01-01-02.wav
=] Pictures 8] 03-01-02-02-01-02-02.wav
B Videos 8] 03-01-02-02-02-01-02.wav

6] 03-01-02-02-02-02-02.wav
6] 03-01-03-01-01-01-02.wav
6] 03-01-03-01-01-02-02.wav
Libraries o] 03-01-03-01-02-01-02.wav
8] 03-01-03-01-02-02-02.wav
o] 03-01-03-02-01-01-02.wav
=4 Homegroup 8] 03-01-03-02-01-02-02.wav
o] 03-01-03-02-02-01-02.wav
8] 03-01-03-02-02-02-02.wav
6] 03-01-04-01-01-01-02.wav
0] 03-01-04-01-01-02-02.wav
6] 03-01-04-01-02-01-02.wav
6] 03-01-04-01-02-02-02.wav
6] 03-01-04-02-01-01-02.wav
8] 03-01-04-02-01-02-02.wav
o] 03-01-04-02-02-01-02.wav
o] 03-01-04-02-02-02-02.wav

., Local Disk (C:
5 Local Disk (E)

¥ Network

60items 1 item selected 419 KB
7 1435
“12-09-2021

O Type here to search

Each wav file is linked to a number separated by a '-' sign; the ID is 03, the gender is 01, and the
emotion is the third position value from 1 to 8 on the above screen.

After you double-click the "run.bat" file to start the project, you will see this screen To upload the
dataset, click the "Upload Facial Emotion Dataset" button on the previous page. This will bring up the
next screen. You may upload a dataset by going to the previous page, finding the "Dataset" folder, and

688



http://www.ijasem.org/

ISSN2454-9940

CIENCE ENGINEERING AND MANAGEMENT www.ijasem.org

Vol 18, Issue.2 May 2024

(J.u ') INTERNATIONAL JOURNAL OF APPLIED
$

then clicking the "Select Folder" button. To read all of the photos in the dataset, resize them to the
same size, eliminate the MFCC functions, and finally build an experienced model, click the
"Preprocess Dataset" button on the top screen.To begin training the Facial dataset using CNN, click
the "Train Facial Emotion CNN Algorithm" button; this will bring up the following page, which
displays the processed datasets along with the total number of pictures and audio recordings in each.
After training the CNN using face photographs, it attained an accuracy of 96.52%; to train it using
audio features, click the "Train Speech Emotion CNN Algorithm" button. We achieved an accuracy of
96.72% using CNN Speech Emotion in the above screen. To see the graph below, click on the
"Accuracy Comparison Graph" button.

(%) Figure 1
CNN Face & Speech Emotion Accuracy Comparison Graph
1.0
—&— Face Emotion Accuracy L & °
- b 4 & . s v
Face Emotion Loss - b v * > T
—e— Speech Emotion Accuracy
—8— Speech Emotion Loss
0.8
> 0.6
e
=1
o
<
0.4 4
0.2 4 "/\,/4_\"‘\_"_/.\‘\
T T T T T
[} 2 4 6 8
Iterations/Epoch
# €I $Q=

O Type here to search

Both algorithms' loss values dropped to zero, and the x-axis shows the date, while the y-axis shows
the accuracy and loss values. In the graph above, the blue line reflects accurate speech, whereas the
green line shows accurate facial expressions. To get the results shown below, upload a picture of your
face and then click the "Predict Facial Emotion" button.

After choosing and uploading the '5.jpg' picture in the previous screen, click on the 'Open' button to
get the following outcome:

We may now try out other images to see whether they match the "Fearful” predicted expression on the
previous screen.
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Uplaad Fiol Kanecine Ditiosed | NN Facial Exprossies Trasing Moded Acowrse
maddemcnd 2

[T S ——— 0 X ey

Prvgeacess Daty

Fociol

You may add more photos and rate them similarly; the main page will provide you a "happy" mood
prediction. After you've uploaded the audio recording, click the "Predict Speech Emotion" button to
get the result that you see below.

Here is the outcome of choosing and uploading the "2.wav" file on the previous screen 'Calm' is the
anticipated emotion for the audio track you submitted in the previous screen; now try out another file.

You can see the outcome of the prediction in the preceding screen after uploading the "5.wav" file.

(PR, | ;- S g

The uploaded file is shown with an emotion prediction of "angry" on the above screen; you may

upload and test more files in a similar fashion.

Conclusion:

A new dual-channel expression recognition algorithm based on AI idea and emotional
perspective is proposed in this study. The first step of the suggested algorithm uses the
Gabor attribute of the ROI region as input as functions derived using CNNs miss fine-
grained changes in the expressive regions of the face. In order to fully use the detail
feature of the active face region, the initial face picture is used to segment the active face
area. Then, the characteristics of this area are extracted using Gabor change, with a greater
emphasis on the detail summary of the local region. A channel focus network built upon
deep separable convolution is presented in the second route to minimise overfitting,
reduce network complexity, and enhance the straight bottleneck framework. By focusing
more on the extraction of critical characteristics and boosting the accuracy of emotion
detection, an effective interest module is designed to include spatial information into the

depth of the attribute map. Competitive efficiency was achieved on the FER2013 data sets.
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Furthermore, this research will serve as a manual for advancing people's agency and

proves that Zeng Guofan's perspective on human resource management is sound.
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