

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

752

Analyzing Source Code for Defects using Deep Learning

Mupparam kalpana 1,Noone Swathi 2, Vemireddy Ganesh Reddy 3,

Associate Professor 1,2,UG Students3,

Department of CSE

BRILLIANT GRAMMAR SCHOOL EDUCATIONAL SOCIETY'S GROUP OF INSTITUTIONS-INTEGRATED

CAMPUS Abdullapurmet (V), Hayath Nagar (M), R.R.Dt. Hyderabad.

Abstract— A slew of software apps have flooded our

everyday routines as information technology has advanced

rapidly. It's certain that a lot of code will be generated during the

development of these applications. Researchers in the academic

sector are interested in learning how to identify and evaluate

numerous faults in the source code, such as API/Function call

mistakes, array abuse, and expression syntax error, among

others. Researchers have attempted to employ deep learning

algorithms in AI to automatically extract and evaluate aspects of

source code because artificial intelligence (AI) technology has

achieved remarkable achievements in the areas of image

processing and natural language processing. As a result, we take

a look at the most current deep learning-based algorithms for

analysing source code defects. The automated extraction of

source code fault characteristics is possible using deep learning-

based code defect analysis approaches, as opposed to

conventional methods. As a result, human specialists are no

longer required to pre-define code features, which helps to

reduce mistakes caused by people. An intriguing and hard

development path is the use of AI in defect analysis of source

code. We feel this has a wide range of potential.

Keywords- vulnerability detection; deep learning;

AST; PDG; source code defect analysis

INTRODUCTION

People's everyday routines have changed

dramatically as a result of the fast advancement of

information technology. Although a plethora of apps

have made our lives easier, bugs in software often

pose unknown security dangers. Moreover, with the

rise of open-source initiatives, code reuse is no longer

an unusual practise. API/Function call mistakes,

array abuse, and expression syntax issues, among

other source code flaws, are critical to preventing

destructive assaults by hackers and ensuring user data

security. Many academics and specialists are working

to enhance the current methods for detecting and

analysing source code defects, both in academia and

in industry. Natural language processing (NLP)

approaches may be used to analyse source code

defects since the language of source code is

fundamentally a textual language. A number of

methods have been used by academics to extract

certain syntactic aspects or code patterns from the

source code, such as data dependency and function

dependency. In the field of source code defect

analysis (SCDA), researchers apply both traditional

machine learning techniques and deep learning

algorithms. SCDA models have been constructed

using Machine Learning [1]. The majority of ML-

based SCDA approaches rely on the extraction and

comparison of features from both faulty and non-

defective code. ML-based approaches collect

important characteristics from the source code and

use one or more classifiers to assess the recovered

features to determine if the source code includes

vulnerabilities. Naive Bayes, SVM, and Random

Forest are just a few of the common machine learning

classifiers. The standard ML-based SCDA

approaches, on the other hand, have certain glaring

flaws. Notably, human specialists are required to

predefine aspects of source code, such as vocabulary

and grammatical structure information, in order for

this sort of approach to work. Because of this, DL

technology has been brought into the area of SCDA.

When compared to more conventional machine

learning techniques. Automated extraction of source

code features using DL algorithms may be

accomplished via the use of several convolutional

and activation layer layers. When it comes to

machine learning, there are no human specialists

involved, which essentially eliminates the risk of

human mistake [2]. Essentially, source code is a kind

of textual data. Regardless of whether it is a machine

learning algorithm or a deep learning method, the

ability to represent the source code is a necessity for

implementing SCDA. Previous approaches used

token fragmentation and information retrieval to

accomplish SCDA, such as clone detection [3]-[6],

vulnerability prediction [7]-[8], bug location [9], and

so on. But this code representation approach has the

problem of being unable to take into account the

intricate structural information included in the source

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

753

code. Some DL-based approaches use alternative

representations of source code before further

analysis, such as Abstract Syntax Trees (AST),

Bytecodes, Program Dependency Diagrams (PDD),

etc. For the purpose of this work, we focus on current

DL-based approaches for source code defect analysis

(SCDA), which are particularly useful for automated

code defect analysis and vulnerability identification.

In general, there are three types of DL-based SCDA

techniques to choose from: AST-based, PDG-based,

and other DL-based. When compared to other

techniques of representation, the AST

In Figure 1, you can see an overview of the process

of detecting source code defects using deep learning.

In Section II, we provide an overview of the

fundamental principles and models of deep learning.

AST-based, PDG-based, and other DL-based

approaches are discussed in length in Section III of

this paper. Section IV sums up the most widely

utiliseddatasets and assessment measures. Section V

concludes with a look to the future and the

conclusion.

II. CONCEPTS OF DEEP LEARNIN

In the field of machine learning algorithms, deep

learning is a relatively recent development that uses

artificial neural networks to solve issues. To begin,

the DL approach was used to classify images, but it

has since been extended to a wide range of additional

applications in the domains of computer vision,

natural language processing (such as voice

recognition and conversation robots), and pattern

identification in computer vision (NLP).

Figure 2. Diagram of artificial neural networks.

There are many layers in an ANN [10], including the

input layer, the hidden layer, and the output layer, as

seen in Figure 2. In addition, training and testing are

also components of the issue solution process based

on deep learning. Instead of requiring experts to pre-

define the features of defect source code as in

traditional SCDA methods, feature extraction through

deep leaning can reduce human labour and

effectively avoid human error in the manual

definition of features.

Figure 3. Diagram of Recurrent Neural Networks.

Since most of the neural network models in the area

of natural language processing are equally relevant to

SCDA since the source code is essentially textual

information. Recurrent Neural Networks (RNN) have

a simple design as seen in Figure 3 [11]. The vectors

of tokens of source code may be used as input to

RNNs, and the encoded feature vector corresponding

to the input code fragment is typically the final

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

754

output. LSTM [12] and GRU [13] are two more great

deep learning models that may be used for SCDA.

DEEP LEARNING-BASED SCDA METHOD

In this part, we'll take a look at some of the more

recent SCDA DL-based projects. To begin, we'll look

at both AST and PDG approaches separately in two

separate subsections. In the next section, we provide

several more DL-based strategies for identifying

vulnerabilities.

AST-Based Methods

Analysis of source code defects is often performed

using an Abstract Syntactic Tree (AST), a tree

representation of the source code's abstract syntax

structure. The nodes in the AST tree generally reflect

a structure in the source code when used to describe

the source code. In particular, the parenthesis in

nested statements, which are not shown as nodes, will

not be represented by the AST. There are several

alternative aggregation approaches for code clone

detection that have been studied in [14] by the

authors. For code clone detection, in [14], an AST-

based recursive neural network is suggested using

static source code. An exploratory paper like this one

[14] may be considered since it not only studies

model selection and hyperparameters, but also studies

the effect of pretrained embeddings representing

nodes in ASTs. To solve the issue of class imbalance,

we've found that error scaling works well. In the

preprocessing step, the original AST of source code

is transformed to a binary tree, which may increase

AST depth and lose essential association information

between nodes. This is an evident disadvantage of

this technique. Tree-LSTM (Tree-LSTM) was

suggested by authors in [15] as a way to forecast

bugs in source code. For the Tree-LSTM model in

[15], the AST representation of the source file was

used. Method [15] constructs an AST from the root

of the AST since it represents an entire source file.

The benefit of using the Tree-LSTM approach is that

it can automatically learn all of the characteristics.

However, the Tree-LSTM model's limitations are

also readily apparent. A potential consequence of

[15]'s AST representation of source code is that

connected information between code fragments may

be lost. For source code representation, an AST-

based Neural Network (ASTNN) was developed.

Authors in [16] attempted to break each big AST into

a series of little statements, and employed a

bidirectional RNN model to integrate the chain of

statement vectors into a larger AST. Most

importantly, it sought to break apart the huge ASN

into smaller statements and then encoded vectors in

terms of statement trees, which is the key

contribution to the ASTNN technique It is possible

that the relationship between statement trees may

have been lost by integrating the encoded vectors of

the succession of statement trees into one vector

representation, however this was not the case.

PDG-Based Methods

Researchers strive to build PDGs and extract

information from them because of the fact that major

source code faults are common during the process of

function call. Two types of PDG are routinely used:

data flow graphs (DFGs) and control flow diagrams

(CFDs) (CFGs). It was recommended that graphs be

used to describe both the semantic and syntactic

structure of source code since the existing approaches

did not consider utilising the code's known syntax as

a priori knowledge, such as the same variable or

function at remote places. With regard to

"VARNAMING" and "VARMISUSE" tasks [17,18],

in order to encode the programme graph, the graph-

based deep learning approaches, built upon Graph

Neural Networks (GGNN), were used. When it

comes to constructing programme graphs of source

code, the technique in [17] provides a detailed

explanation of the process, but it also shows how to

extend deep learning models training to enormous

graphs. In addition, the route constraint issue is a

study area that demands particular attention when

employing Fuzzing approach for software testing.

Since most Fuzzers can't handle route constraints

including deeply nested conditional statements

effectively, writers in [19] developed a Matryoshka

technique to deal with this issue. In the Matryoshka

approach, all of the control flow dependent

conditional statements are found using post-

dominator trees, both inside and between procedures.

Taint flow dependence was removed from control

flow dependent conditional statements in order to

simplify the number of calculations and prevent

modifying every byte. With the Matroshka approach,

numerous route constraint-solving methodologies

may be utilised, and the gradient descent algorithm is

used to identify solutions. The Matryoshka approach

obviously considers both the control and data

dependence of the source code in SCDA, even if the

authors in [19] did not mention it. Prior to data

collection, a static analyzer was used to identify

open-source routines and build a big data set. And the

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

755

C/C++ source code's Control Flow Graphs (CFGs)

were utilised to extract features. Differently, each

node in the function's CFG represents a fundamental

block rather than a statement in a function. Method in

[20] may be characterised in two ways: first, build-

based techniques and source-based methods were

utilised for feature extraction; second, both random

trees classifier of standard ML algorithm and

TextCNN-based model of DL algorithm were

examined for source code evaluation. The Data Flow

Graphs (DFGs) of source code, however, are not

examined in this manner. In addition, researchers in

[21] employed a deep learning-based detection

system (VulDeePecker) for vulnerability

identification since the attributes of vulnerabilities

were described by human experts in an existing

technique. VulDeePecker uses Data Dependency as

the semantic information in source code, as opposed

to method in [20]. VulDeePecker's key disadvantage

is that only the DFG in the PDG is addressed, and the

function of the CFG is not studied, which raises the

question of whether the semantic information of

CDG may enhance the performance of vulnerability

detection, as the authors point out. The CFG and

DFG were utilised to extract source code information

from SySeVR [23]. Deep neural networks

(Bidirectional-LSTM) were used to investigate how

to encode vulnerability patterns and accomplish

SCDA as a result of the successful use of DL in

image processing [23]. First, the AST was used to

extract syntactic information from source code, and

then, the CFG and DFG of source code were used to

extract semantic information from source code.

BLSTM is exclusively trained on semantic

information taken from PDG in SySeVR's BLSTM,

which may raise the issue of whether syntactic and

semantic information retrieved from PDG are

complimentary or not. Authors in [22] performed a

comparison research to analyse the effect of

numerous aspects, such as the selection of DL models

and the affect of different imbalanced data processing

approaches, on the vulnerability identification

process. According to [22], the data persistence and

control reliance of PDG objects are two separate

ways that semantic information is manifested in a

programme. Similar to DL models, this technique is

limited by the characteristics it has learnt.

Other DL-Based Methods

Multiple approaches for classifying vulnerabilities

were used by writers in [24], including TF-IDF, IG

and Deep Neural Networks, to lower the risk of

attack and better manage the vulnerabilities (DNN).

For each word in a vulnerability description, the TF-

IDF is used to calculate its frequency and weight; the

IG is used to identify features; and the DNN model is

utilised as a vulnerability classifier. One of the

advantages of the approach in [24] is that it compared

classification performance between DNN and SVM,

Naive Bayes and KNN, confirming the usefulness of

the deep learning model under certain tasks. To name

only a few of the topics covered by the SCDA, there

is code cloning and vulnerability categorization and

mining. With the concept of "transfer learning,"

researchers may apply various DL-based approaches

to certain SCDA paths and see whether they provide

any surprising outcomes.

EVALUATION METHODS

DataSets National Vulnerability Database (NVD)

[25] and Software Assurance Reference Dataset

(SCRD) [26] are the most often utilised vulnerability

data sources. Vulnerability management principles

developed by the U.S. government in 2000 are

housed in the National Vulnerability Database

(NVD). The Common Vulnerabilities and Exposures

(CVE) List was used to build this dataset. CVEs that

have been published to the CVE Dictionary are

typically the ones that are analysed by this tool. As a

result, NVD will be the first to get any CVE updates.

Users and researchers may benefit from this dataset,

which includes a list of known security issues. The

SARD dataset covers a wide variety of test cases

culled from a variety of various places, including

industrial programmes, synthetic data, and academic

research. The applications in SARD may be split into

three categories: "good" programmes, "bad"

programmes, and "mixed" programmes, which

include both the vulnerability and the patched

version. 3. Measuring First, we'll review some of the

most often used assessment phrases and meanings.

SCDA assessment measures are then introduced....

Samples that are susceptible in fact and are

recognised as such are referred to as "true positives."

A "true negative" (TN) is a sample that has been

shown to be free of vulnerability. Non-vulnerable

samples that are incorrectly identified as susceptible.

False Negative (FN): Samples that are truly

susceptible but are incorrectly identified as

invulnerable. Percentage of projected samples that

were properly predicted (ACC) The following is the

text from the transcription: TP TN Prediction

precision (P) is the ratio of properly predicted

positive samples (TP) to the total number of

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

756

anticipated positive samples. P TP FP TP Remember

(R): The proportion of properly anticipated positive

samples to the total susceptible samples. R TP TP FN

FPR: The percentage of false positive samples (FP)

compared to the total number of samples that are

truly susceptible. FPR FP is an abbreviation for "Full

Total samples that are susceptible to false negatives,

as defined by the False Negative Rate, or FNR. FNR

FN FN TP

FUNDING STATEMENT

The National Natural Science Foundation of China

(NSFC) under Grant [U1736110], partially supported

by the NSFC under Grant [U1836209], partially

supported by the NSFC under Grant [U1636115],

partially supported by the National Key Research and

Development Program of China (2018YFB0804101)

under Grant [2018YFB0804101]

ACKNOWLEDGMENT

Anonymous reviewers have provided the writers with

valuable feedback on the manuscript's modification.

CONCLUSION AND FUTURE WORK

Deep learning-based (DL-based) defect analysis of

source code is reviewed in this study (SCDA). For

the most part, DL-based SCDA approaches fall into

one of three basic groups: Program Dependency

Graph (PDG)-based (PDG-based) approaches, as

well as other DL-based methods. Deep neural

networks are used in the AST-based technique. As far

as source code analysis is concerned, the PDGs have

been included since function call processes are where

most severe code faults occur. There are two popular

ways to encode semantic information in source code:

the DFG and CFG. While classic ML-based SCDA

approaches need professionals to describe aspects of

software vulnerabilities, the DL-based SCDA

methods do not, and the analysis or detection of

source code faults is frequently automated. It is clear

from the preceding discussion that DL technologies

and approaches in the area of source code defect

analysis have significant development opportunities.

However, there are still certain issues that can't be

overlooked in this sort of approach.. Code defect

analysis approaches are more successful if they are

based on accurate data. This is why it is necessary to

gather and pre-process the code defect data in the

future. AI-based source code defect analysis is a

fascinating and demanding research area that should

be further investigated.

REFERENCES

[1] W. Xiaomeng, Z. Tao, X. Wei, and H. Changyu,

“A survey on source code review using machine

learning,” in 2018 3rd International Conference on

Information Systems Engineering (ICISE), May

2018, pp. 56–60.

[2] W. Xiao-meng, Z. Tao, W. Runpu, X. Wei, and

H. Changyu, “Cpgva: Code property graph based

vulnerability analysis by deep learning,” 2018 10th

International Conference on Advanced Infocomm

Technology (ICAIT), pp. 184–188, 2018.

[3] T. Kamiya, S. Kusumoto, and K. Inoue,

“Ccfinder: a multilinguistic token-based code clone

detection system for large scale source code,” IEEE

Transactions on Software Engineering, vol. 28, no. 7,

pp. 654– 670, July 2002.

[4] M. White, M. Tufano, C. Vendome, and D.

Poshyvanyk, “Deep learning code fragments for code

clone detection,” in 2016 31st IEEE/ACM

International Conference on Automated Software

Engineering (ASE), Sep. 2016, pp. 87–98.

[5] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and

C. V. Lopes, “Sourcerercc: Scaling code clone

detection to big-code,” in Proceedings of the 38th

International Conference on Software Engineering,

ser. ICSE ’16. New York, NY, USA: ACM, 2016,

pp. 1157–1168.

[6] H. Wei and M. Li, “Supervised deep features for

software functional clone detection by exploiting

lexical and syntactical information in source code,”

in Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, IJCAI-17,

2017, pp. 3034–3040. [7] C. Tantithamthavorn, S.

McIntosh, A. E. Hassan, and K. Matsumoto,“An

empirical comparison of model validation techniques

for defect prediction models,” IEEE Transactions on

Software Engineering, vol. 43, no. 1, pp. 1–18, Jan

2017.

[8] M. D’Ambros, M. Lanza, and R. Robbes,

“Evaluating defect prediction approaches: A

benchmark and an extensive comparison,” Empirical

Softw. Engg., vol. 17, no. 4-5, pp. 531–577, Aug.

2012.

[9] J. Zhou, H. Zhang, and D. Lo, “Where should the

bugs be fixed? more accurate information retrieval-

based bug localization based on bug reports,” in 2012

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 1, 2024

 ISSN2454-9940

757

34th International Conference on Software

Engineering (ICSE), June 2012, pp. 14–24.

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A

fast learning algorithm for deep belief nets,” Neural

Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006.

[11] T. Mikolov, M. Karafiát, L. Burget, J.㶑

ernock`y, and S. Khudanpur, “Recurrent neural

network based language model,” in Eleventh Annual

Conference of the International Speech

Communication Association, p. 1045.

[12] S. Hochreiter and J. Schmidhuber, “Long short-

term memory,” Neural Comput., vol. 9, no. 8, pp.

1735–1780, Nov. 1997. [13] K. Cho, B. van

Merrienboer, C. Gulcehre, D. Bahdanau, F.

Bougares, H. Schwenk, and Y. Bengio, “Learning

phrase representations using rnn encoder–decoder for

statistical machine translation,” in Proceedings of the

2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP). Association for

Computational Linguistics, 2014, pp. 1724–1734.

[14] L. Bch and A. Andrzejak, “Learning-based

recursive aggregation of abstract syntax trees for

code clone detection,” in 2019 IEEE 26th

International Conference on Software Analysis,

Evolution and Reengineering (SANER), Feb 2019,

pp. 95–104.

[15] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J.

Grundy, A. Ghose, T. Kim, and C. Kim, “A deep

tree-based model for software defect prediction,”

CoRR, vol. abs/1802.00921, 2018.

[16] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang,

and X. Liu, “A novel neural source code

representation based on abstract syntax tree,” in

Proceedings of the 41st International Conference on

Software Engineering, ser. ICSE ’19. Piscataway, NJ,

USA: IEEE Press, 2019, pp. 783–794.

[17] M. Allamanis, M. Brockschmidt, and M.

Khademi, “Learning to represent programs with

graphs,” CoRR, vol. abs/1711.00740, 2017. [18] Y.

Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel,

“Gated graph sequence neural networks,” CoRR, vol.

abs/1511.05493, 2016. [19] P. Chen, J. Liu, and H.

Chen, “Matryoshka: fuzzing deeply nested branches,”

CoRR, vol. abs/1905.12228, 2019.

[20] J. A. Harer, L. Y. Kim, R. L. Russell, O.

Ozdemir, L. R. Kosta, A. Rangamani, L. H.

Hamilton, G. I. Centeno, J. R. Key, P. M.

Ellingwood, M. W. McConley, J. M. Opper, S. P.

Chin, and T. Lazovich, “Automated software

vulnerability detection with machine learning,”

CoRR, vol. abs/1803.04497, 2018.

http://www.ijasem.org/

