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Abstract— A slew of software apps have flooded our 

everyday routines as information technology has advanced 

rapidly. It's certain that a lot of code will be generated during the 

development of these applications. Researchers in the academic 

sector are interested in learning how to identify and evaluate 

numerous faults in the source code, such as API/Function call 

mistakes, array abuse, and expression syntax error, among 

others. Researchers have attempted to employ deep learning 

algorithms in AI to automatically extract and evaluate aspects of 

source code because artificial intelligence (AI) technology has 

achieved remarkable achievements in the areas of image 

processing and natural language processing. As a result, we take 

a look at the most current deep learning-based algorithms for 

analysing source code defects. The automated extraction of 

source code fault characteristics is possible using deep learning-

based code defect analysis approaches, as opposed to 

conventional methods. As a result, human specialists are no 

longer required to pre-define code features, which helps to 

reduce mistakes caused by people. An intriguing and hard 

development path is the use of AI in defect analysis of source 

code. We feel this has a wide range of potential. 

Keywords- vulnerability detection; deep learning; 

AST; PDG; source code defect analysis 

INTRODUCTION 

People's everyday routines have changed 

dramatically as a result of the fast advancement of 

information technology. Although a plethora of apps 

have made our lives easier, bugs in software often 

pose unknown security dangers. Moreover, with the 

rise of open-source initiatives, code reuse is no longer 

an unusual practise. API/Function call mistakes, 

array abuse, and expression syntax issues, among 

other source code flaws, are critical to preventing 

destructive assaults by hackers and ensuring user data 

security. Many academics and specialists are working 

to enhance the current methods for detecting and 

analysing source code defects, both in academia and 

in industry. Natural language processing (NLP) 

approaches may be used to analyse source code 

defects since the language of source code is 

fundamentally a textual language. A number of 

methods have been used by academics to extract 

certain syntactic aspects or code patterns from the 

source code, such as data dependency and function 

dependency. In the field of source code defect 

analysis (SCDA), researchers apply both traditional 

machine learning techniques and deep learning 

algorithms. SCDA models have been constructed 

using Machine Learning [1]. The majority of ML-

based SCDA approaches rely on the extraction and 

comparison of features from both faulty and non-

defective code. ML-based approaches collect 

important characteristics from the source code and 

use one or more classifiers to assess the recovered 

features to determine if the source code includes 

vulnerabilities. Naive Bayes, SVM, and Random 

Forest are just a few of the common machine learning 

classifiers. The standard ML-based SCDA 

approaches, on the other hand, have certain glaring 

flaws. Notably, human specialists are required to 

predefine aspects of source code, such as vocabulary 

and grammatical structure information, in order for 

this sort of approach to work. Because of this, DL 

technology has been brought into the area of SCDA. 

When compared to more conventional machine 

learning techniques. Automated extraction of source 

code features using DL algorithms may be 

accomplished via the use of several convolutional 

and activation layer layers. When it comes to 

machine learning, there are no human specialists 

involved, which essentially eliminates the risk of 

human mistake [2]. Essentially, source code is a kind 

of textual data. Regardless of whether it is a machine 

learning algorithm or a deep learning method, the 

ability to represent the source code is a necessity for 

implementing SCDA. Previous approaches used 

token fragmentation and information retrieval to 

accomplish SCDA, such as clone detection [3]-[6], 

vulnerability prediction [7]-[8], bug location [9], and 

so on. But this code representation approach has the 

problem of being unable to take into account the 

intricate structural information included in the source 
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code. Some DL-based approaches use alternative 

representations of source code before further 

analysis, such as Abstract Syntax Trees (AST), 

Bytecodes, Program Dependency Diagrams (PDD), 

etc. For the purpose of this work, we focus on current 

DL-based approaches for source code defect analysis 

(SCDA), which are particularly useful for automated 

code defect analysis and vulnerability identification. 

In general, there are three types of DL-based SCDA 

techniques to choose from: AST-based, PDG-based, 

and other DL-based. When compared to other 

techniques of representation, the AST 

 

In Figure 1, you can see an overview of the process 

of detecting source code defects using deep learning. 

In Section II, we provide an overview of the 

fundamental principles and models of deep learning. 

AST-based, PDG-based, and other DL-based 

approaches are discussed in length in Section III of 

this paper. Section IV sums up the most widely 

utiliseddatasets and assessment measures. Section V 

concludes with a look to the future and the 

conclusion. 

II. CONCEPTS OF DEEP LEARNIN 

In the field of machine learning algorithms, deep 

learning is a relatively recent development that uses 

artificial neural networks to solve issues. To begin, 

the DL approach was used to classify images, but it 

has since been extended to a wide range of additional 

applications in the domains of computer vision, 

natural language processing (such as voice 

recognition and conversation robots), and pattern 

identification in computer vision (NLP).

 

Figure 2. Diagram of artificial neural networks. 

There are many layers in an ANN [10], including the 

input layer, the hidden layer, and the output layer, as 

seen in Figure 2. In addition, training and testing are 

also components of the issue solution process based 

on deep learning. Instead of requiring experts to pre-

define the features of defect source code as in 

traditional SCDA methods, feature extraction through 

deep leaning can reduce human labour and 

effectively avoid human error in the manual 

definition of features.

 

Figure 3. Diagram of Recurrent Neural Networks. 

Since most of the neural network models in the area 

of natural language processing are equally relevant to 

SCDA since the source code is essentially textual 

information. Recurrent Neural Networks (RNN) have 

a simple design as seen in Figure 3 [11]. The vectors 

of tokens of source code may be used as input to 

RNNs, and the encoded feature vector corresponding 

to the input code fragment is typically the final 

http://www.ijasem.org/


    www.ijasem.org  

       Vol 18, Issue 1, 2024 

 

   ISSN2454-9940 

 

 

 
 
 
 
 

754 
 

output. LSTM [12] and GRU [13] are two more great 

deep learning models that may be used for SCDA. 

DEEP LEARNING-BASED SCDA METHOD 

In this part, we'll take a look at some of the more 

recent SCDA DL-based projects. To begin, we'll look 

at both AST and PDG approaches separately in two 

separate subsections. In the next section, we provide 

several more DL-based strategies for identifying 

vulnerabilities. 

AST-Based Methods  

Analysis of source code defects is often performed 

using an Abstract Syntactic Tree (AST), a tree 

representation of the source code's abstract syntax 

structure. The nodes in the AST tree generally reflect 

a structure in the source code when used to describe 

the source code. In particular, the parenthesis in 

nested statements, which are not shown as nodes, will 

not be represented by the AST. There are several 

alternative aggregation approaches for code clone 

detection that have been studied in [14] by the 

authors. For code clone detection, in [14], an AST-

based recursive neural network is suggested using 

static source code. An exploratory paper like this one 

[14] may be considered since it not only studies 

model selection and hyperparameters, but also studies 

the effect of pretrained embeddings representing 

nodes in ASTs. To solve the issue of class imbalance, 

we've found that error scaling works well. In the 

preprocessing step, the original AST of source code 

is transformed to a binary tree, which may increase 

AST depth and lose essential association information 

between nodes. This is an evident disadvantage of 

this technique. Tree-LSTM (Tree-LSTM) was 

suggested by authors in [15] as a way to forecast 

bugs in source code. For the Tree-LSTM model in 

[15], the AST representation of the source file was 

used. Method [15] constructs an AST from the root 

of the AST since it represents an entire source file. 

The benefit of using the Tree-LSTM approach is that 

it can automatically learn all of the characteristics. 

However, the Tree-LSTM model's limitations are 

also readily apparent. A potential consequence of 

[15]'s AST representation of source code is that 

connected information between code fragments may 

be lost. For source code representation, an AST-

based Neural Network (ASTNN) was developed. 

Authors in [16] attempted to break each big AST into 

a series of little statements, and employed a 

bidirectional RNN model to integrate the chain of 

statement vectors into a larger AST. Most 

importantly, it sought to break apart the huge ASN 

into smaller statements and then encoded vectors in 

terms of statement trees, which is the key 

contribution to the ASTNN technique It is possible 

that the relationship between statement trees may 

have been lost by integrating the encoded vectors of 

the succession of statement trees into one vector 

representation, however this was not the case. 

PDG-Based Methods 

Researchers strive to build PDGs and extract 

information from them because of the fact that major 

source code faults are common during the process of 

function call. Two types of PDG are routinely used: 

data flow graphs (DFGs) and control flow diagrams 

(CFDs) (CFGs). It was recommended that graphs be 

used to describe both the semantic and syntactic 

structure of source code since the existing approaches 

did not consider utilising the code's known syntax as 

a priori knowledge, such as the same variable or 

function at remote places. With regard to 

"VARNAMING" and "VARMISUSE" tasks [17,18], 

in order to encode the programme graph, the graph-

based deep learning approaches, built upon Graph 

Neural Networks (GGNN), were used. When it 

comes to constructing programme graphs of source 

code, the technique in [17] provides a detailed 

explanation of the process, but it also shows how to 

extend deep learning models training to enormous 

graphs. In addition, the route constraint issue is a 

study area that demands particular attention when 

employing Fuzzing approach for software testing. 

Since most Fuzzers can't handle route constraints 

including deeply nested conditional statements 

effectively, writers in [19] developed a Matryoshka 

technique to deal with this issue. In the Matryoshka 

approach, all of the control flow dependent 

conditional statements are found using post-

dominator trees, both inside and between procedures. 

Taint flow dependence was removed from control 

flow dependent conditional statements in order to 

simplify the number of calculations and prevent 

modifying every byte. With the Matroshka approach, 

numerous route constraint-solving methodologies 

may be utilised, and the gradient descent algorithm is 

used to identify solutions. The Matryoshka approach 

obviously considers both the control and data 

dependence of the source code in SCDA, even if the 

authors in [19] did not mention it. Prior to data 

collection, a static analyzer was used to identify 

open-source routines and build a big data set. And the 
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C/C++ source code's Control Flow Graphs (CFGs) 

were utilised to extract features. Differently, each 

node in the function's CFG represents a fundamental 

block rather than a statement in a function. Method in 

[20] may be characterised in two ways: first, build-

based techniques and source-based methods were 

utilised for feature extraction; second, both random 

trees classifier of standard ML algorithm and 

TextCNN-based model of DL algorithm were 

examined for source code evaluation. The Data Flow 

Graphs (DFGs) of source code, however, are not 

examined in this manner. In addition, researchers in 

[21] employed a deep learning-based detection 

system (VulDeePecker) for vulnerability 

identification since the attributes of vulnerabilities 

were described by human experts in an existing 

technique. VulDeePecker uses Data Dependency as 

the semantic information in source code, as opposed 

to method in [20]. VulDeePecker's key disadvantage 

is that only the DFG in the PDG is addressed, and the 

function of the CFG is not studied, which raises the 

question of whether the semantic information of 

CDG may enhance the performance of vulnerability 

detection, as the authors point out. The CFG and 

DFG were utilised to extract source code information 

from SySeVR [23]. Deep neural networks 

(Bidirectional-LSTM) were used to investigate how 

to encode vulnerability patterns and accomplish 

SCDA as a result of the successful use of DL in 

image processing [23]. First, the AST was used to 

extract syntactic information from source code, and 

then, the CFG and DFG of source code were used to 

extract semantic information from source code. 

BLSTM is exclusively trained on semantic 

information taken from PDG in SySeVR's BLSTM, 

which may raise the issue of whether syntactic and 

semantic information retrieved from PDG are 

complimentary or not. Authors in [22] performed a 

comparison research to analyse the effect of 

numerous aspects, such as the selection of DL models 

and the affect of different imbalanced data processing 

approaches, on the vulnerability identification 

process. According to [22], the data persistence and 

control reliance of PDG objects are two separate 

ways that semantic information is manifested in a 

programme. Similar to DL models, this technique is 

limited by the characteristics it has learnt. 

Other DL-Based Methods 

Multiple approaches for classifying vulnerabilities 

were used by writers in [24], including TF-IDF, IG 

and Deep Neural Networks, to lower the risk of 

attack and better manage the vulnerabilities (DNN). 

For each word in a vulnerability description, the TF-

IDF is used to calculate its frequency and weight; the 

IG is used to identify features; and the DNN model is 

utilised as a vulnerability classifier. One of the 

advantages of the approach in [24] is that it compared 

classification performance between DNN and SVM, 

Naive Bayes and KNN, confirming the usefulness of 

the deep learning model under certain tasks. To name 

only a few of the topics covered by the SCDA, there 

is code cloning and vulnerability categorization and 

mining. With the concept of "transfer learning," 

researchers may apply various DL-based approaches 

to certain SCDA paths and see whether they provide 

any surprising outcomes. 

EVALUATION METHODS 

DataSets National Vulnerability Database (NVD) 

[25] and Software Assurance Reference Dataset 

(SCRD) [26] are the most often utilised vulnerability 

data sources. Vulnerability management principles 

developed by the U.S. government in 2000 are 

housed in the National Vulnerability Database 

(NVD). The Common Vulnerabilities and Exposures 

(CVE) List was used to build this dataset. CVEs that 

have been published to the CVE Dictionary are 

typically the ones that are analysed by this tool. As a 

result, NVD will be the first to get any CVE updates. 

Users and researchers may benefit from this dataset, 

which includes a list of known security issues. The 

SARD dataset covers a wide variety of test cases 

culled from a variety of various places, including 

industrial programmes, synthetic data, and academic 

research. The applications in SARD may be split into 

three categories: "good" programmes, "bad" 

programmes, and "mixed" programmes, which 

include both the vulnerability and the patched 

version. 3. Measuring First, we'll review some of the 

most often used assessment phrases and meanings. 

SCDA assessment measures are then introduced.... 

Samples that are susceptible in fact and are 

recognised as such are referred to as "true positives." 

A "true negative" (TN) is a sample that has been 

shown to be free of vulnerability. Non-vulnerable 

samples that are incorrectly identified as susceptible. 

False Negative (FN): Samples that are truly 

susceptible but are incorrectly identified as 

invulnerable. Percentage of projected samples that 

were properly predicted (ACC) The following is the 

text from the transcription: TP TN Prediction 

precision (P) is the ratio of properly predicted 

positive samples (TP) to the total number of 
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anticipated positive samples. P TP FP TP Remember 

(R): The proportion of properly anticipated positive 

samples to the total susceptible samples. R TP TP FN 

FPR: The percentage of false positive samples (FP) 

compared to the total number of samples that are 

truly susceptible. FPR FP is an abbreviation for "Full 

Total samples that are susceptible to false negatives, 

as defined by the False Negative Rate, or FNR. FNR 

FN FN TP 
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CONCLUSION AND FUTURE WORK 

Deep learning-based (DL-based) defect analysis of 

source code is reviewed in this study (SCDA). For 

the most part, DL-based SCDA approaches fall into 

one of three basic groups: Program Dependency 

Graph (PDG)-based (PDG-based) approaches, as 

well as other DL-based methods. Deep neural 

networks are used in the AST-based technique. As far 

as source code analysis is concerned, the PDGs have 

been included since function call processes are where 

most severe code faults occur. There are two popular 

ways to encode semantic information in source code: 

the DFG and CFG. While classic ML-based SCDA 

approaches need professionals to describe aspects of 

software vulnerabilities, the DL-based SCDA 

methods do not, and the analysis or detection of 

source code faults is frequently automated. It is clear 

from the preceding discussion that DL technologies 

and approaches in the area of source code defect 

analysis have significant development opportunities. 

However, there are still certain issues that can't be 

overlooked in this sort of approach.. Code defect 

analysis approaches are more successful if they are 

based on accurate data. This is why it is necessary to 

gather and pre-process the code defect data in the 

future. AI-based source code defect analysis is a 

fascinating and demanding research area that should 

be further investigated. 
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