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ABSTRACT 

Today, Android is one of the most used 

operating systems in smartphone 

technology. This is the main reason, 

Android has become the favorite target for 

hackers and attackers. Malicious codes are 

being embedded in Android applications in 

such a sophisticated manner that detecting 

and identifying an application as a malware 

has become the toughest job for security 

providers. In terms of ingenuity and 

cognition, Android malware has progressed 

to the point where they're more impervious 

to conventional detection techniques. 

Approaches based on machine learning have 

emerged as a much more effective way to 

tackle the intricacy and originality of 

developing Android threats. They function 

by first identifying current patterns of 

malware activity and then using this 

information to distinguish between 

identified threats and unidentified threats 

with unknown behavior. This research paper 

uses Reverse Engineered Android 

applications’ features and Machine Learning 

algorithms to find vulnerabilities present in 

Smartphone applications. Our contribution is 

twofold. Firstly, we propose a model that 

incorporates more innovative static feature 

sets with the largest current datasets of 

malware samples than conventional 

methods. Secondly, we have used ensemble 

learning with machine learning algorithms 

such as AdaBoost, SVM, etc. to improve our 

model's performance. Our experimental 

results and findings exhibit 96.24% accuracy 

to detect extracted malware from Android 
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applications, with a 0.3 False Positive Rate 

(FPR). The proposed model incorporates 

ignored detrimental features such as 

permissions, intents, API calls, and so on, 

trained by feeding a solitary arbitrary 

feature, extracted by reverse engineering as 

an input to the machine. 

1.INTRODUCTION 

To this degree, it is guaranteed that mobile 

devices are an integral part of most people's 

daily lives. Furthermore, Android now 

controls the vast majority of mobile devices, 

with Android devices accounting for an 

average of 80% of the global market share 

over the past years. With the ongoing plan of 

Android to a growing range of smart phones 

and consumers around the world, malware 

targeting Android devices has increased as 

well. Since it is an open-source operating 

system, the level of danger it poses, with 

malware authors and programmers 

implementing unwanted permissions, 

features and application components in 

Android apps. The option to expand its 

capabilities with third-party software is also 

appealing, but this capability comes with the 

risk of malicious device attacks. When the 

number of smart phone apps increases, so 

does the security problem with unnecessary 

access to different personal resources. As a 

result, the applications are becoming more 

insecure, and they are stealing personal 

information, SMS frauds, ransom ware, etc.  

 

                    In contrast to static analysis 

methods such as a manual assessment of 

AndroidManifest.xml, source files and 

Dalvik Byte Code and the complex analysis 

of a managed environment to study the way 

it treats a program, Machine Learning 

includes learning the fundamental rules and 

habits of the positive and malicious settings 

of apps and then data-venabling. The static 

attributes derived from an application are 

extensively used in machine learning 

methodologies and the tedious task of this 

can be relieved if the static features of 

reverse-engineered Android Applications are 

extracted and use machine learning SVM 

algorithm, logistic progression, ensemble 

learning and other algorithms to help train 

the model for prediction of these malware 

applications [1]. 

              Machine learning employs a range 

of methodologies for data classification. 

SVM (Support Vector Machine) is a strong 

learner that plots each data item as a point in 
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n-dimensional space (where n denotes the 

number of features you have), with the value 

of each feature becoming the vector value. 

Then it executes classification by locating 

the hyper-plane that best distinguishes the 

two groups, leading to an improvement 

identification property for any two 

parameters. Conversely, boosting or 

ensemble techniques like Adaboost are 

assigned higher weights to rectify the 

behavior of misclassified variables in 

conjunction with other machine algorithms. 

When combined alongside weak classifiers, 

our preliminary model benefits from 

deploying such models since they have a 

high degree of precision or classification. 

[2], [3], [4], supports classifiers in their 

system models to find the highest accuracy. 

Although using ensemble or strong 

classifiers can cause problems like multi 

collinearity, which in a regression model, 

occurs when two or more independent 

variables are strongly associated with one 

another. In multivariate regression, this 

indicates that one regression analysis may be 

forecasted from another independent 

variable. This scope of the study can be 

presented as a detection journal analysis 

itself and can present several 

experimentations and results based on 

machine learning models [5], [6].  

 

                When an app has access to a 

resource in the most recent versions of 

Android OS, it must ask the OS for 

approval, and the OS will ask the user if 

they wish to grant or refuse the request via a 

pop-up menu. Many reports have been 

performed on the success of this resource 

management approach. The studies showed 

consumers made decisions by giving all 

requested access to the applications to their 

privileges requests [7]. In contrast to this, 

over 70% of Android mobile applications 

seek extra access that is not needed. They 

also sought a permit that is not needed for 

the app to run. A chess game that asks for 

photographs or requests for SMS and phone 

call permits, or loads unwanted packages are 

an example of an extra requested 

authorization. So, trying to assess an app's 

vindictiveness and not understanding the app 

is a tough challenge. As a result, successful 

malicious app monitoring will provide extra 

information to customers to assist them and 

defend them from information disclosure 

[8]. Figure 1 elaborates the android risk 

framework through the Google Play 

http://www.ijasem.org/


         www.ijasem.org  

             Vol 18, Issue 2, 2024 

 

          ISSN2454-9940 
 

 

 

 
 
 
 

1721 
 

platform, which is then manually configured 

by the android device developers. 

 

              Contrary to other smart phone 

formats, such as IOS, Android requires users 

to access apps from untrusted outlets like 

file- sharing sites or third-party app stores. 

The malware virus problem has become so 

severe that 97 % of all Smartphone malware 

now targets Android phones. In a year, 

approximately 3.25 million new malware 

Android applications are discovered as the 

growth of smartphones increases. This 

loosely amounts to a new malware android 

version being introduced every few seconds 

[9]. The primary aim of mobile malware is 

to gain entrance to user data saved on the 

computer and user information used in 

confidential financial activities, such as 

banking. Infected file extensions, files 

received via Bluetooth, links to infected 

code in SMS, and MMS application links 

are all ways that mobile malware can 

propagate [10]. There are some strategies for 

locating apps that need additional features. 

Hopefully, by using these techniques, it 

would be possible to determine whether the 

applications that were flagged as 

questionable and needed additional 

authorization are malicious.    Static analysis 

methodologies are the most fundamental of 

all approaches. Until operating programs, 

the permissions and source codes are 

examined [11]. For many machine learning 

tasks, such as enhancing predictive 

performance or simplifying complicated 

learning problems, ensemble learning is 

regarded as the most advanced method. It 

enhances a single model's prediction 

performance by training several models and 

combining their predictions. Boosting, 

bagging, and random forest are examples of 

common ensemble learning techniques [12]. 

In summary, the main contributions of our 

study are as follows: 

 

     1) We present a novel subset of features 

for static detection of Android malware, 

which consists of seven additional selected 

feature sets that are using around 56000 

features from these categories. On a 

collection of more than 500k benign and 

malicious Android applications and the 

highest malware sample set than any state-

of-the-art approach, we assess their stability. 

The results obtain a detection increase in 

accuracy to 96.24 % with 0.3% false-

positives.  
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  2) With the additional features, we have 

trained six classifier models or machine 

learning algorithms and also implemented a 

Boosting ensemble learning approach 

(AdaBoost) with a Decision Tree based on 

the binary classification to enhance our 

prediction rate. 

 

 3) Our model is trained on the latest and 

large time aware samples of malware 

collected within recent years including the 

latest Android API level than state-of-the-art 

approaches. This research paper incorporates 

binary vector mapping for classification by 

allocating 0 to malicious applications and 1 

for non-harmful and for predictive analysis 

of each application fed to the model 

implemented in the study. The technique 

eases the process by reducing fault 

predictive errors. Figure 2 shows the 

procedure for a better understanding of the 

concept applied later in our study. The paper 

passes both the categories of applications 

through static analysis and then is further 

processed for feature extraction. We 

presented features in 0’s and 1’s after 

extraction. Matrix displays the extraction 

characteristics of each application used in 

the dataset. There are major issues to be 

addressed to incorporate our strategy. High 

measurements of the features will make it 

difficult to identify malware in many real-

world Android applications. Certain features 

overlap with innocuous apps and malware 

[13]. In comparison, the vast number of 

features will cause high throughput 

computing. Therefore, we can learn from the 

features directly derived from Android apps, 

the most popular and significant features. 

The paper implements prediction models 

and various computer ensemble teaching 

strategies to boost and enhance accuracy to 

resolve this problem [14]. Feature selection 

is an essential step in all machine-based 

learning approaches. The optimum 

collection of features will not only help 

boost the outcomes of tests but will also help 

to reduce the compass of most machine-

based learning algorithms [15]. Studies have 

extensively suggested three separate 

methods for identifying android malware: 

static, interactive meaning dynamically, and 

synthetic or hybrid. Static analysis 

techniques look at the code without ever 

running it, so they're a little sluggish if 

carried out manually and have to face a lot 

of false positives [16]. Data obfuscation and 

complex code loading are both significant 
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pitfalls of the technique. That is why 

automated operation helps to achieve 

reliability, accuracy, and lesser time 

utilization [17]. Reverse engineer Android 

applications and extract features and do 

static analysis from them without having to 

execute them. This method entails 

examining the contents of two files: 

AndroidManifest.xml and classes.dex, and 

working on the file with the .apk extension. 

Feature selection techniques and 

classification algorithms are two crucial 

areas of feature- based types of fraudulent 

applications. Feature filtering methods are 

used to reduce the dimension size of a 

dataset. Any of the functions (attributes) that 

aren't helpful in the study are omitted from 

the data collection because of this. The 

remaining features are chosen by weighing 

the representational strength of all the 

dataset's features [18]. Parsing tools can help 

learn which permissions, packages or 

services an application offers by analyzing 

the AndroidManifest.xml file, such as 

permission android.permission.call phone, 

which allows an application to misuse 

calling abilities. The paper elaborates 

exactly what sort of sensitive API the 

authors could name by decoding the 

classes.dex file with the Jadx-gui 

disassembler [19]. In certain cases, including 

two permissions in a single app can signify 

the app's possible malicious attacks. For 

example, an application with RECEIVE 

SMS and WRITE SMS permissions can 

mask or interfere with receiving text 

messages [20] or applying sensitive API 

such as sendTextMessage() can also be 

harmful and lead to fraud and stealing. Until 

we started our main idea of the project. The 

fact explained that Android applications 

pose a lot of threats to its user because of the 

unnecessary programs compiled inside them 

and explained why it is necessary to 

automate the process of static analysis for 

the efficient detection of malware 

applications based on the extracted features. 

The rest of the paper is planned as follows. 

Related works are examined in Section II. 

Section III will present the design and 

method of our model. Section IV elaborates 

the assessment findings and future threats. 

The experiments and results will be dilated 

and performed in Sections V and VI. Section 

VII includes our research issues, 

recommendations, and conclusions for the 

future. 
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2.LITERATURE SURVEY 

The Literature review plays a very important 

role in the research process. It is a source 

fromhere research ideas are drawn and 

developed into concepts and finally theories. 

It also providesthe researchers a bird’s eye 

view about the research done in that area so 

far. Depending on whatis observed in the 

literature review, a researcher will 

understand where his/her research 

stands.Here in this literature survey, all 

primary, secondary and tertiary sources of 

information weresearched. A literature 

survey or literature review means that 

researcher read and report on whatthe 

literature in the field has to say about the 

topic or subject. It is a study and review of 

relevantliterature materials in relation to a 

topic that have been given.  

1. Title :Android malware detection through 

machine learning techniques Author :A 

Nova and A Guyunka Description :With the 

increasing use of mobile devices, malware 

attacks are rising, especiallyon Android 

phones, which account for 72.2% of the total 

market share. Hackers try to 

attacksmartphones with various methods 

such as credential theft, surveillance, and 

maliciousadvertising. Among numerous 

countermeasures, machine learning (ML)-

based methods haveproven to be an effective 

means of detecting these attacks, as they are 

able to derive a classifierfrom a set of 

training examples, thus eliminating the need 

for an explicit definition of thesignatures 

when developing malware detectors. This 

paper provides a systematic review of 

MLbasedAndroid malware detection 

techniques.  

2.Title :Geometric feature-based facial 

expression recognition in image sequences 

using multiclassAdaBoost and support 

vector machines Author :J Lee and D 

Gambhire Description :Facial expressions 

are widely used in the behavioral 

interpretation of emotions,cognitive science, 

and social interactions. In this paper, present 

a novel method for fullyautomatic facial 

expression recognition in facial image 

sequences. As the facial expressionevolves 

over time facial landmarks are automatically 

tracked in consecutive video frames, 

usingdisplacements based on elastic bunch 

graph matching displacement estimation. 

Feature vectorsfrom individual landmarks, 

as well as pairs of landmarks tracking results 

are extracted, andnormalized, with respect to 
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the first frame in the sequence. The 

prototypical expression sequencefor each 

class of facial expression is formed, by 

taking the median of the landmark 

trackingresults from the training facial 

expression sequences. Multi-class AdaBoost 

with dynamic timewarping similarity 

distance between the feature vector of input 

facial expression and prototypicalfacial 

expression, is used as a weak classifier to 

select the subset of discriminative 

featurevectors. Finally, two methods for 

facial expression recognition are presented, 

either by usingmulti-class AdaBoost with 

dynamic time warping, or by using support 

vector machine on theboosted feature 

vectors. 

3. EXISTING SYSTEM 

The methods proposed in this related work 

contribute to key aspects and a higher 

predictive rate for malware detection. 

Certain research has focused on increasing 

accuracy, while others have focused on 

providing a larger dataset, some have been 

implemented by employing various feature 

sets, and many studies have combined all of 

these to improve detection rate efficiency. In 

[21] the authors offer a system for detecting 

Android malware apps to aid in the 

organization of the Android Market. The 

proposed framework aims to provide a 

machine learning-based malware detection 

system for Android to detect malware apps 

and improve phone users' safety and 

privacy. This system monitors different 

permission-based characteristics and events 

acquired from Android apps and examines 

these features employing machine learning 

classifiers to determine if the program is 

goodware or malicious.  

The paper uses two datasets with 

collectively 700 malware samples and 160 

features. Both datasets achieved 

approximately 91% accuracy with Random 

Forest (RF) Algorithm. [22] Examines 5,560 

malware samples, detecting 94 % of the 

malware with minimal false alarms, where 

the reasons supplied for each detection 

disclose key features of the identified 

malware. Another technique [23] exceeds 

both static and dynamic methods that rely on 

system calls in terms of resilience. 

Researchers demonstrated the consistency of 

the model in attaining maximum 

classification performance and better 

accuracy compared to two state-of-the-art 

peer methods that represent both static and 
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dynamic methodologies over for nine years 

through three interrelated assessments with 

satisfactory malware samples from different 

sources. Model continuously achieved 97% 

F1- measure accuracy for identifying 

applications or categorizing malware.  

[24] The authors present a unique Android 

malware detection approach dubbed 

Permission- based Malware Detection 

Systems (PMDS) based on a study of 2950 

samples of benign and malicious Android 

applications. In PMDS, requested 

permissions are viewed as behavioral 

markers, and a machine learning model is 

built on those indicators to detect new 

potentially dangerous behavior in unknown 

apps depending on the mix of rights they 

require. PMDS identifies more than 92–94% 

of all heretofore unknown malware, with a 

false positive rate of 1.52–3.93%.  

The authors of this article [25] solely use the 

machine learning ensemble learning method 

Random Forest supervised classifier on 

Android feature malware samples with 42 

features respectively. Their objective was to 

assess Random Forest's accuracy in 

identifying Android application activity as 

harmful or benign. Dataset 1 is built on 1330 

malicious apk samples and 407 benign ones 

seen by the author. This is based on the 

collection of feature vectors for each 

application. Based on an ensemble learning 

approach, Congyi proposes a concept in [26] 

for recognizing and distinguishing Android 

malware. 

Disadvantages 

❖ The system is not implemented 

MACHINE LEARNING 

ALGORITHM AND ENSEMBLE 

LEARNING. 

❖ The system is not implemented 

Reverse Engineered Applications 

characteristics. 

 

3. 1 PROPOSED SYSTEM 

1) We present a novel subset of features for 

static detection of Android malware, which 

consists of seven additional selected feature 

sets that are using around 56000 features 

from these categories. On a collection of 

more than 500k benign and malicious 

Android applications and the highest 

malware sample set than any state-of-the-art 

approach, we assess their stability. The 

results obtain a detection increase in 
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accuracy to 96.24 % with 0.3% false-

positives. 

 2) With the additional features, we have 

trained six classifier models or machine 

learning algorithms and also implemented a 

Boosting ensemble learning approach 

(AdaBoost) with a Decision Tree based on 

the binary classification to enhance our 

prediction rate. 3) Our model is trained on 

the latest and large time aware samples of 

malware collected within recent years 

including the latest Android API level than 

state-ofthe-art approaches. 

Advantages 

➢ The proposed system chooses the 

characteristics based on their capability 

to display all data sets. Enhanced 

efficiency by reducing the dataset size 

and the hours wasted on the 

classification process introduces an 

effective function selection process. 

 

➢ The system used in this study also 

incorporates larger feature sets for 

classification. Although this problem 

arises in machine learning quite often to 

some extent choosing the type of model 

for detection or classification can highly 

impact the high dimensionality of the 

data being used. 

 

4. OUTPUT SCREENS  

 

Fig.1 service provider login 

 

Fig.2 dataset 

 

Fig.3 training with ML algorithms 
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Fig.4 training and tested accuracy 

 

Fig.5 user login 

 

Fig.7predicted result 

5. CONCLUSIONS 

In this research, we devised a framework 

that can detect malicious Android 

applications. The proposed technique takes 

into account various elements of machine 

learning and achieves a 96.24% in 

identifying malicious Android applications. 

We first define and pick functions to capture 

and analyze Android apps' behavior, 

leveraging reverse application engineering 

and AndroGuard to extract features into 

binary vectors and then use python build 

modules and split shuffle functions to train 

the model with benign and malicious 

datasets. Our experimental findings show 

that our suggested model has a false positive 

rate of 0.3 with 96% accuracy in the given 

environment with an enhanced and larger 

feature and sample sets. The study also 

discovered that when dealing with 

classifications and high-dimensional data, 

ensemble and strong learner algorithms 

perform comparatively better. The suggested 

approach is restricted in terms of static 

analysis, lacks sustainability concerns, and 

fails to address a key multi collinearity 

barrier. In the future, we'll consider model 

resilience in terms of enhanced and dynamic 

features. The issue of dependent variables or 

high inter correlation between machine 

algorithms before employing them is also a 

promising field. 
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