

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1718

Malware Detection A Framework for Reverse

Engineered Android Applications through

Machine Learning Algorithms

1K.LAKSHMAN REDDY SIR, 2ANISETTI MADHURI

1(Assistant Professor), MCA, S.V.K.P & Dr K.S. Raju Arts & Science College

2MCA, scholar, S.V.K.P & Dr K.S. Raju Arts & Science College

ABSTRACT

Today, Android is one of the most used

operating systems in smartphone

technology. This is the main reason,

Android has become the favorite target for

hackers and attackers. Malicious codes are

being embedded in Android applications in

such a sophisticated manner that detecting

and identifying an application as a malware

has become the toughest job for security

providers. In terms of ingenuity and

cognition, Android malware has progressed

to the point where they're more impervious

to conventional detection techniques.

Approaches based on machine learning have

emerged as a much more effective way to

tackle the intricacy and originality of

developing Android threats. They function

by first identifying current patterns of

malware activity and then using this

information to distinguish between

identified threats and unidentified threats

with unknown behavior. This research paper

uses Reverse Engineered Android

applications’ features and Machine Learning

algorithms to find vulnerabilities present in

Smartphone applications. Our contribution is

twofold. Firstly, we propose a model that

incorporates more innovative static feature

sets with the largest current datasets of

malware samples than conventional

methods. Secondly, we have used ensemble

learning with machine learning algorithms

such as AdaBoost, SVM, etc. to improve our

model's performance. Our experimental

results and findings exhibit 96.24% accuracy

to detect extracted malware from Android

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1719

applications, with a 0.3 False Positive Rate

(FPR). The proposed model incorporates

ignored detrimental features such as

permissions, intents, API calls, and so on,

trained by feeding a solitary arbitrary

feature, extracted by reverse engineering as

an input to the machine.

1.INTRODUCTION

To this degree, it is guaranteed that mobile

devices are an integral part of most people's

daily lives. Furthermore, Android now

controls the vast majority of mobile devices,

with Android devices accounting for an

average of 80% of the global market share

over the past years. With the ongoing plan of

Android to a growing range of smart phones

and consumers around the world, malware

targeting Android devices has increased as

well. Since it is an open-source operating

system, the level of danger it poses, with

malware authors and programmers

implementing unwanted permissions,

features and application components in

Android apps. The option to expand its

capabilities with third-party software is also

appealing, but this capability comes with the

risk of malicious device attacks. When the

number of smart phone apps increases, so

does the security problem with unnecessary

access to different personal resources. As a

result, the applications are becoming more

insecure, and they are stealing personal

information, SMS frauds, ransom ware, etc.

 In contrast to static analysis

methods such as a manual assessment of

AndroidManifest.xml, source files and

Dalvik Byte Code and the complex analysis

of a managed environment to study the way

it treats a program, Machine Learning

includes learning the fundamental rules and

habits of the positive and malicious settings

of apps and then data-venabling. The static

attributes derived from an application are

extensively used in machine learning

methodologies and the tedious task of this

can be relieved if the static features of

reverse-engineered Android Applications are

extracted and use machine learning SVM

algorithm, logistic progression, ensemble

learning and other algorithms to help train

the model for prediction of these malware

applications [1].

 Machine learning employs a range

of methodologies for data classification.

SVM (Support Vector Machine) is a strong

learner that plots each data item as a point in

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1720

n-dimensional space (where n denotes the

number of features you have), with the value

of each feature becoming the vector value.

Then it executes classification by locating

the hyper-plane that best distinguishes the

two groups, leading to an improvement

identification property for any two

parameters. Conversely, boosting or

ensemble techniques like Adaboost are

assigned higher weights to rectify the

behavior of misclassified variables in

conjunction with other machine algorithms.

When combined alongside weak classifiers,

our preliminary model benefits from

deploying such models since they have a

high degree of precision or classification.

[2], [3], [4], supports classifiers in their

system models to find the highest accuracy.

Although using ensemble or strong

classifiers can cause problems like multi

collinearity, which in a regression model,

occurs when two or more independent

variables are strongly associated with one

another. In multivariate regression, this

indicates that one regression analysis may be

forecasted from another independent

variable. This scope of the study can be

presented as a detection journal analysis

itself and can present several

experimentations and results based on

machine learning models [5], [6].

 When an app has access to a

resource in the most recent versions of

Android OS, it must ask the OS for

approval, and the OS will ask the user if

they wish to grant or refuse the request via a

pop-up menu. Many reports have been

performed on the success of this resource

management approach. The studies showed

consumers made decisions by giving all

requested access to the applications to their

privileges requests [7]. In contrast to this,

over 70% of Android mobile applications

seek extra access that is not needed. They

also sought a permit that is not needed for

the app to run. A chess game that asks for

photographs or requests for SMS and phone

call permits, or loads unwanted packages are

an example of an extra requested

authorization. So, trying to assess an app's

vindictiveness and not understanding the app

is a tough challenge. As a result, successful

malicious app monitoring will provide extra

information to customers to assist them and

defend them from information disclosure

[8]. Figure 1 elaborates the android risk

framework through the Google Play

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1721

platform, which is then manually configured

by the android device developers.

 Contrary to other smart phone

formats, such as IOS, Android requires users

to access apps from untrusted outlets like

file- sharing sites or third-party app stores.

The malware virus problem has become so

severe that 97 % of all Smartphone malware

now targets Android phones. In a year,

approximately 3.25 million new malware

Android applications are discovered as the

growth of smartphones increases. This

loosely amounts to a new malware android

version being introduced every few seconds

[9]. The primary aim of mobile malware is

to gain entrance to user data saved on the

computer and user information used in

confidential financial activities, such as

banking. Infected file extensions, files

received via Bluetooth, links to infected

code in SMS, and MMS application links

are all ways that mobile malware can

propagate [10]. There are some strategies for

locating apps that need additional features.

Hopefully, by using these techniques, it

would be possible to determine whether the

applications that were flagged as

questionable and needed additional

authorization are malicious. Static analysis

methodologies are the most fundamental of

all approaches. Until operating programs,

the permissions and source codes are

examined [11]. For many machine learning

tasks, such as enhancing predictive

performance or simplifying complicated

learning problems, ensemble learning is

regarded as the most advanced method. It

enhances a single model's prediction

performance by training several models and

combining their predictions. Boosting,

bagging, and random forest are examples of

common ensemble learning techniques [12].

In summary, the main contributions of our

study are as follows:

 1) We present a novel subset of features

for static detection of Android malware,

which consists of seven additional selected

feature sets that are using around 56000

features from these categories. On a

collection of more than 500k benign and

malicious Android applications and the

highest malware sample set than any state-

of-the-art approach, we assess their stability.

The results obtain a detection increase in

accuracy to 96.24 % with 0.3% false-

positives.

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1722

 2) With the additional features, we have

trained six classifier models or machine

learning algorithms and also implemented a

Boosting ensemble learning approach

(AdaBoost) with a Decision Tree based on

the binary classification to enhance our

prediction rate.

 3) Our model is trained on the latest and

large time aware samples of malware

collected within recent years including the

latest Android API level than state-of-the-art

approaches. This research paper incorporates

binary vector mapping for classification by

allocating 0 to malicious applications and 1

for non-harmful and for predictive analysis

of each application fed to the model

implemented in the study. The technique

eases the process by reducing fault

predictive errors. Figure 2 shows the

procedure for a better understanding of the

concept applied later in our study. The paper

passes both the categories of applications

through static analysis and then is further

processed for feature extraction. We

presented features in 0’s and 1’s after

extraction. Matrix displays the extraction

characteristics of each application used in

the dataset. There are major issues to be

addressed to incorporate our strategy. High

measurements of the features will make it

difficult to identify malware in many real-

world Android applications. Certain features

overlap with innocuous apps and malware

[13]. In comparison, the vast number of

features will cause high throughput

computing. Therefore, we can learn from the

features directly derived from Android apps,

the most popular and significant features.

The paper implements prediction models

and various computer ensemble teaching

strategies to boost and enhance accuracy to

resolve this problem [14]. Feature selection

is an essential step in all machine-based

learning approaches. The optimum

collection of features will not only help

boost the outcomes of tests but will also help

to reduce the compass of most machine-

based learning algorithms [15]. Studies have

extensively suggested three separate

methods for identifying android malware:

static, interactive meaning dynamically, and

synthetic or hybrid. Static analysis

techniques look at the code without ever

running it, so they're a little sluggish if

carried out manually and have to face a lot

of false positives [16]. Data obfuscation and

complex code loading are both significant

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1723

pitfalls of the technique. That is why

automated operation helps to achieve

reliability, accuracy, and lesser time

utilization [17]. Reverse engineer Android

applications and extract features and do

static analysis from them without having to

execute them. This method entails

examining the contents of two files:

AndroidManifest.xml and classes.dex, and

working on the file with the .apk extension.

Feature selection techniques and

classification algorithms are two crucial

areas of feature- based types of fraudulent

applications. Feature filtering methods are

used to reduce the dimension size of a

dataset. Any of the functions (attributes) that

aren't helpful in the study are omitted from

the data collection because of this. The

remaining features are chosen by weighing

the representational strength of all the

dataset's features [18]. Parsing tools can help

learn which permissions, packages or

services an application offers by analyzing

the AndroidManifest.xml file, such as

permission android.permission.call phone,

which allows an application to misuse

calling abilities. The paper elaborates

exactly what sort of sensitive API the

authors could name by decoding the

classes.dex file with the Jadx-gui

disassembler [19]. In certain cases, including

two permissions in a single app can signify

the app's possible malicious attacks. For

example, an application with RECEIVE

SMS and WRITE SMS permissions can

mask or interfere with receiving text

messages [20] or applying sensitive API

such as sendTextMessage() can also be

harmful and lead to fraud and stealing. Until

we started our main idea of the project. The

fact explained that Android applications

pose a lot of threats to its user because of the

unnecessary programs compiled inside them

and explained why it is necessary to

automate the process of static analysis for

the efficient detection of malware

applications based on the extracted features.

The rest of the paper is planned as follows.

Related works are examined in Section II.

Section III will present the design and

method of our model. Section IV elaborates

the assessment findings and future threats.

The experiments and results will be dilated

and performed in Sections V and VI. Section

VII includes our research issues,

recommendations, and conclusions for the

future.

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1724

2.LITERATURE SURVEY

The Literature review plays a very important

role in the research process. It is a source

fromhere research ideas are drawn and

developed into concepts and finally theories.

It also providesthe researchers a bird’s eye

view about the research done in that area so

far. Depending on whatis observed in the

literature review, a researcher will

understand where his/her research

stands.Here in this literature survey, all

primary, secondary and tertiary sources of

information weresearched. A literature

survey or literature review means that

researcher read and report on whatthe

literature in the field has to say about the

topic or subject. It is a study and review of

relevantliterature materials in relation to a

topic that have been given.

1. Title :Android malware detection through

machine learning techniques Author :A

Nova and A Guyunka Description :With the

increasing use of mobile devices, malware

attacks are rising, especiallyon Android

phones, which account for 72.2% of the total

market share. Hackers try to

attacksmartphones with various methods

such as credential theft, surveillance, and

maliciousadvertising. Among numerous

countermeasures, machine learning (ML)-

based methods haveproven to be an effective

means of detecting these attacks, as they are

able to derive a classifierfrom a set of

training examples, thus eliminating the need

for an explicit definition of thesignatures

when developing malware detectors. This

paper provides a systematic review of

MLbasedAndroid malware detection

techniques.

2.Title :Geometric feature-based facial

expression recognition in image sequences

using multiclassAdaBoost and support

vector machines Author :J Lee and D

Gambhire Description :Facial expressions

are widely used in the behavioral

interpretation of emotions,cognitive science,

and social interactions. In this paper, present

a novel method for fullyautomatic facial

expression recognition in facial image

sequences. As the facial expressionevolves

over time facial landmarks are automatically

tracked in consecutive video frames,

usingdisplacements based on elastic bunch

graph matching displacement estimation.

Feature vectorsfrom individual landmarks,

as well as pairs of landmarks tracking results

are extracted, andnormalized, with respect to

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1725

the first frame in the sequence. The

prototypical expression sequencefor each

class of facial expression is formed, by

taking the median of the landmark

trackingresults from the training facial

expression sequences. Multi-class AdaBoost

with dynamic timewarping similarity

distance between the feature vector of input

facial expression and prototypicalfacial

expression, is used as a weak classifier to

select the subset of discriminative

featurevectors. Finally, two methods for

facial expression recognition are presented,

either by usingmulti-class AdaBoost with

dynamic time warping, or by using support

vector machine on theboosted feature

vectors.

3. EXISTING SYSTEM

The methods proposed in this related work

contribute to key aspects and a higher

predictive rate for malware detection.

Certain research has focused on increasing

accuracy, while others have focused on

providing a larger dataset, some have been

implemented by employing various feature

sets, and many studies have combined all of

these to improve detection rate efficiency. In

[21] the authors offer a system for detecting

Android malware apps to aid in the

organization of the Android Market. The

proposed framework aims to provide a

machine learning-based malware detection

system for Android to detect malware apps

and improve phone users' safety and

privacy. This system monitors different

permission-based characteristics and events

acquired from Android apps and examines

these features employing machine learning

classifiers to determine if the program is

goodware or malicious.

The paper uses two datasets with

collectively 700 malware samples and 160

features. Both datasets achieved

approximately 91% accuracy with Random

Forest (RF) Algorithm. [22] Examines 5,560

malware samples, detecting 94 % of the

malware with minimal false alarms, where

the reasons supplied for each detection

disclose key features of the identified

malware. Another technique [23] exceeds

both static and dynamic methods that rely on

system calls in terms of resilience.

Researchers demonstrated the consistency of

the model in attaining maximum

classification performance and better

accuracy compared to two state-of-the-art

peer methods that represent both static and

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1726

dynamic methodologies over for nine years

through three interrelated assessments with

satisfactory malware samples from different

sources. Model continuously achieved 97%

F1- measure accuracy for identifying

applications or categorizing malware.

[24] The authors present a unique Android

malware detection approach dubbed

Permission- based Malware Detection

Systems (PMDS) based on a study of 2950

samples of benign and malicious Android

applications. In PMDS, requested

permissions are viewed as behavioral

markers, and a machine learning model is

built on those indicators to detect new

potentially dangerous behavior in unknown

apps depending on the mix of rights they

require. PMDS identifies more than 92–94%

of all heretofore unknown malware, with a

false positive rate of 1.52–3.93%.

The authors of this article [25] solely use the

machine learning ensemble learning method

Random Forest supervised classifier on

Android feature malware samples with 42

features respectively. Their objective was to

assess Random Forest's accuracy in

identifying Android application activity as

harmful or benign. Dataset 1 is built on 1330

malicious apk samples and 407 benign ones

seen by the author. This is based on the

collection of feature vectors for each

application. Based on an ensemble learning

approach, Congyi proposes a concept in [26]

for recognizing and distinguishing Android

malware.

Disadvantages

❖ The system is not implemented

MACHINE LEARNING

ALGORITHM AND ENSEMBLE

LEARNING.

❖ The system is not implemented

Reverse Engineered Applications

characteristics.

3. 1 PROPOSED SYSTEM

1) We present a novel subset of features for

static detection of Android malware, which

consists of seven additional selected feature

sets that are using around 56000 features

from these categories. On a collection of

more than 500k benign and malicious

Android applications and the highest

malware sample set than any state-of-the-art

approach, we assess their stability. The

results obtain a detection increase in

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1727

accuracy to 96.24 % with 0.3% false-

positives.

 2) With the additional features, we have

trained six classifier models or machine

learning algorithms and also implemented a

Boosting ensemble learning approach

(AdaBoost) with a Decision Tree based on

the binary classification to enhance our

prediction rate. 3) Our model is trained on

the latest and large time aware samples of

malware collected within recent years

including the latest Android API level than

state-ofthe-art approaches.

Advantages

➢ The proposed system chooses the

characteristics based on their capability

to display all data sets. Enhanced

efficiency by reducing the dataset size

and the hours wasted on the

classification process introduces an

effective function selection process.

➢ The system used in this study also

incorporates larger feature sets for

classification. Although this problem

arises in machine learning quite often to

some extent choosing the type of model

for detection or classification can highly

impact the high dimensionality of the

data being used.

4. OUTPUT SCREENS

Fig.1 service provider login

Fig.2 dataset

Fig.3 training with ML algorithms

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1728

Fig.4 training and tested accuracy

Fig.5 user login

Fig.7predicted result

5. CONCLUSIONS

In this research, we devised a framework

that can detect malicious Android

applications. The proposed technique takes

into account various elements of machine

learning and achieves a 96.24% in

identifying malicious Android applications.

We first define and pick functions to capture

and analyze Android apps' behavior,

leveraging reverse application engineering

and AndroGuard to extract features into

binary vectors and then use python build

modules and split shuffle functions to train

the model with benign and malicious

datasets. Our experimental findings show

that our suggested model has a false positive

rate of 0.3 with 96% accuracy in the given

environment with an enhanced and larger

feature and sample sets. The study also

discovered that when dealing with

classifications and high-dimensional data,

ensemble and strong learner algorithms

perform comparatively better. The suggested

approach is restricted in terms of static

analysis, lacks sustainability concerns, and

fails to address a key multi collinearity

barrier. In the future, we'll consider model

resilience in terms of enhanced and dynamic

features. The issue of dependent variables or

high inter correlation between machine

algorithms before employing them is also a

promising field.

http://www.ijasem.org/

 www.ijasem.org

 Vol 18, Issue 2, 2024

 ISSN2454-9940

1729

6. REFERENCE

[1] A. O. Christiana, B. A. Gyunka, and A.

Noah, “Android Malware Detection

throughMachine Learning Techniques: A

Review,” Int. J. Online Biomed. Eng. IJOE,

vol. 16, no. 02,p. 14, Feb. 2020, doi:

10.3991/ijoe.v16i02.11549.

 [2] D. Ghimire and J. Lee, “Geometric

Feature-Based Facial Expression

Recognition in ImageSequences Using

Multi-Class AdaBoost and Support Vector

Machines,” Sensors, vol. 13, no.6, pp. 7714–

7734, Jun. 2013, doi: 10.3390/s130607714.

[3] R. Wang, “AdaBoost for Feature

Selection, Classification and Its Relation

with SVM, AReview,” Phys. Procedia, vol.

25, pp. 800–807, 2012, doi:

10.1016/j.phpro.2012.03.160.

 [4] J. Sun, H. Fujita, P. Chen, and H. Li,

“Dynamic financial distress prediction with

conceptdrift based on time weighting

combined with Adaboost support vector

machine ensemble,”Knowl.-Based Syst.,

vol. 120, pp. 4–14, Mar. 2017, doi:

10.1016/j.knosys.2016.12.019.

[5] A. Garg and K. Tai, “Comparison of

statistical and machine learning methods

inmodelling of data with multicollinearity,”

Int. J. Model. Identif. Control, vol. 18, no. 4,

p.295, 2013, doi:

10.1504/IJMIC.2013.053535.

 [6] C. P. Obite, N. P. Olewuezi, G. U.

Ugwuanyim, and D. C.

Bartholomew,“Multicollinearity Effect in

Regression Analysis: A Feed Forward

Artificial Neural NetworkApproach,” Asian

J. Probab. Stat., pp. 22– 33, Jan. 2020, doi:

10.9734/ajpas/2020/v6i130151.

 [7] W. Wang et al., “Constructing Features

for Detecting Android Malicious

Applications:Issues, Taxonomy and

Directions,” IEEE Access, vol. 7, pp.

67602–67631, 2019,

doi:10.1109/ACCESS.2019.2918139.

http://www.ijasem.org/

