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ABSTRACT 

Drug failures due to unforeseen adverse 

effects at clinical trials pose health risks for 

the participants and lead to substantial 

financial losses. Side effect prediction 

algorithms have the potential to guide the 

drug design process. LINCS L1000 dataset 

provides a vast resource of cell line gene 

expression data perturbed by different drugs 

and creates a knowledge base for context 

specific features. The state-of-the-art 

approach that aims at using context specific 

information relies on only the highquality 

experiments in LINCS L1000 and discards a 

large portion of the experiments. In this 

study, our goal is to boost the prediction 

performance by utilizing this data to its full 

extent. We experiment with 5 deep learning 

architectures. We find that a multi-modal 

architecture produces the best predictive 

performance among multi-layer perceptron-

based architectures when drug chemical 

structure (CS), and the full set of drug 

perturbed gene expression profiles (GEX) 

are used as modalities. Overall, we observe 

that the CS is more informative than the 

GEX. A convolutional neural network-based 

model that uses only SMILES string 

representation of the drugs achieves the best 

results and provides 13.0% macro-AUC and 

3.1% micro-AUC improvements over the 

state-of-the-art. We also show that the 

model is able to predict side effect-drug 

pairs that are reported in the literature but 

was missing in the ground truth side effect 

dataset. 

 

1.INTRODUCTION 

 

Computational methods hold great promise 

for mitigating the health and financial risks 

of drug development by predicting possible 
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side effects before entering into the clinical 

trials. Several learning based methods have 

been proposed for predicting the side effects 

of drugs based on various features such as: 

chemical structures of drugs [25, 1, 23, 8, 

19, 34, 17, 9, 2, 5], drug-protein interactions 

[35, 33, 8, 19, 34, 17, 37, 2, 15, 36], protein-

protein interactions (PPI) [8, 9], activity in 

metabolic networks [38, 26], pathways, 

phenotype information and gene annotations 

[8]. In parallel to the above mentioned 

approaches, recently, deep learning models 

have been employed to predict side effects: 

(i) [31] uses biological, chemical and 

semantic information on drugs in addition to 

clinical notes and case reports and (ii) [4] 

uses various chemical fingerprints extracted 

using deep architectures to compare the side 

effect prediction performance.  

While these methods have proven useful for 

predicting adverse drug reactions (ADRs – 

used\ interchangeably with drug side 

effects), the features they use are solely 

based on external knowledge about the 

drugs (i.e., drug-protein interactions, etc.) 

and are not cell or condition (i.e., dosage) 

specific. To address this issue ,Wang et al. 

(2016) utilize the data from the LINCS 

L1000 project [32]. This project profiles 

gene expression changes in numerous 

human cell lines after treating them with a 

large number of drugs and small-molecule 

compounds. By using the gene expression 

profiles of the treated cells, [32] provides the 

first comprehensive, unbiased, and cost-

effective prediction of ADRs. The paper 

formulates the problem as a multi-label 

classification task. Their results suggest that 

the gene expression profiles provide 

context-dependent information for the side-

effect prediction task. While the LINCS 

dataset contains a total of 473,647 

experiments for 20,338 compounds, their 

method utilizes only the highest quality 

experiment for each drug to minimize noise. 

This means that most of the expression data 

are left unused, suggesting a potential room 

for improvement in the prediction 

performance. Moreover, their framework 

performs feature engineering by 

transforming gene expression features to 

enrichment vectors of biological terms. In 

this work, we investigate whether the 

incorporation of gene expression data along 

with the drug structure data can be leveraged 

better in a deep learning framework without 

the need for feature engineering.  
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In this study, we propose a deep learning 

framework, Deep Side, for ADR prediction. 

Deep Side uses only (i) in vitro gene 

expression profiling experiments (GEX) and 

their experimental meta data (i.e., cell line 

and dosage - META), and (ii) the chemical 

structure of the compounds (CS). Our 

models train on the full LINCS L1000 

dataset and use the SIDER dataset as the 

ground truth for drug - ADR pair labels [13]. 

We experiment with five architectures: (i) a 

multi-layer perceptron (MLP), (ii) MLP with 

residual connections (Res MLP), (iii) multi-

modal neural net- works (MMNN. Concat 

and MMNN. Sum), (iv) multi-task neural 

network (MTNN), and finally, (v) SMILES 

convolutional neural network (SMILES 

Conv).  We present an extensive evaluation 

of the above-mentioned architectures and 

investigate the contribution of different 

features. Our experiments show that CS is a 

robust predictor of side effects. The base 

MLP model, which uses CS features as 

input, produces _11% macro-AUC and _2% 

micro- AUC improvement over the state-of-

the-art results provided in [32], which uses 

both GEX (high quality) and CS features. 

The multi-modal neural network model, 

which uses CS, GEX and META features 

and uses summation in the fusion layer 

(MMNN. Sum) achieves 0:79 macro-AUC 

and 0:877 micro-AUC which is the best 

result among MLP based approaches. We 

also find out that when the chemical 

structure features are fully utilized in a 

complex model like ours, it overpowers the 

information that is obtained from the GEX 

dataset. The convolutional neural network 

that only uses the SMILES string 

representation of the drug structures 

achieves the best result among all the 

proposed architectures with provides 13:0% 

macro-AUC and 3:1% micro-AUC 

improvement over the state-of-the-art 

algorithm. Finally, inspecting the confident 

false positives predictions reveal side 

effects that are not reported in the ground 

truth dataset, but are indeed reported in the 

literature.  

 

2.LITERATURE SURVEY 

The authors report that their best result is 

obtained with the feature set that is a 

combination of gene ontology (GO) 

transformed gene expression profiles and 

chemical structures (CS). Their set of drugs 

with this feature set (GO + CS) contains 791 

compounds. We use these 791 drugs to build 
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our models. In total, there are 18,832 

experiments for these 791 drugs in the 

LINCS L1000 dataset. The META 

information for each of the 18,832 

experiments from the LINCS project is also 

used as features. META information 

contains (i) the cell line on which the 

experiment is conducted on, (ii) the timing 

of the experiment, and (iii) dosage 

information. The meta information exists for 

70 cell lines, 20 dosage levels and 3 time 

points (i.e. 6h, 24h, 48h). Note that for a 

given drug, the experiments do not cover all 

possible combinations of these conditions. 

META data is represented as one-hot 

encoding vectors. The corresponding feature 

vector has a length of 93. The total length of 

the concatenated GEX and META feature 

vectors is 1071. For all models, whenever 

META data is used, it is concatenated with 

the 978 landmark GEX features. We obtain 

the drug side effect information (labels) 

from the SIDER Database [13] (downloaded 

on Feb 5, 2018). The side effects that are 

observed with fewer than ten drugs are 

excluded as also done in [32]. This filtering 

stage leaves us with 1052 side effects in 

total. In order to group side effects, we 

utilize the ADR ontology database 

(ADReCS), which provides a hierarchical 

classification of side effects in a four-level 

tree [3]. The CS features are encoded with 

OpenBabel Chemistry Toolbox [20] to 

create a 166-bit MACCS chemical 

fingerprint matrix for each drug (a binary 

vector of length 166). A SMILES string is 

an alternative representation for the 2D 

molecular graph of a drug/small molecule as 

a 1D string. The SMILES strings are 

downloaded from PubChem [11]. These are 

used to create the chemical fingerprints of 

the drugs for the 1D convolution used in 

SMILESConv model. RDKit 

Cheminformatics toolbox is used to extract 

extended SMILES Strings of the drugs [14]. 

The extended SMILES strings contain all 

the primary chemical bonds as well as the 

hydrogen bonding information explicitly. 

Zero-padding is used to have a uniform 

representation among all drugs. The 

alphabet contains 33 unique characters, 

including the end of sequence character. We 

further generate a pruned drug dataset to 

compare SMILESConv model with others. 

We filter out drugs with SMILES 

representation that have less than 100 

characters and more than 400 characters. 

615 out of 791 drugs pass this filtering step. 
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For these drugs, we apply the additional 

filtering for removing side effects with less 

than ten drugs. In the end, 615 drugs and 

1042 side effects pairs remain in this pruned 

dataset. Finally, we remove the characters 

that occur only once in all SMILES strings 

from the character vocabulary and replace 

them with underscore symbol. 

3.SYSTEM ANALYSIS 

 

A drug-drug interaction (DDI) is defined as 

an association between two drugs where the 

pharmacological effects of a drug are 

influenced by another drug. Positive DDIs 

can usually improve the therapeutic effects 

of patients, but negative DDIs cause the 

major cause of adverse drug reactions and 

even result in the drug withdrawal from the 

market and the patient death. Therefore, 

identifying DDIs has become a key 

component of the drug development and 

disease treatment.  

In this study, an existing system, develops a 

method to predict DDIs based on the 

integrated similarity and semi-supervised 

learning (DDI-IS-SL). DDI-IS-SL integrates 

the drug chemical, biological and phenotype 

data to calculate the feature similarity of 

drugs with the cosine similarity method. The 

Gaussian Interaction Profile kernel 

similarity of drugs is also calculated based 

on known DDIs. A semi-supervised learning 

method (the Regularized Least Squares 

classifier) is used to calculate the interaction 

possibility scores of drug-drug pairs. In 

terms of the 5-fold cross validation, 10-fold 

cross validation and denovo drug validation, 

DDI-IS-SL can achieve the better prediction 

performance than other comparative 

methods. In addition, the average 

computation time of DDI-IS-SL is shorter 

than that of other comparative methods. 

Finally, case studies further demonstrate the 

performance of DDI-IS-SL in practical 

applications. 

Disadvantages 

• The complexity of data: Most of the 

existing machine learning models must be 

able to accurately interpret large and 

complex datasets to detect an accurate Drug 

Side Effect. 

• Data availability: Most machine learning 

models require large amounts of data to 

create accurate predictions. If data is 

unavailable in sufficient quantities, then 

model accuracy may suffer. 

• Incorrect labeling: The existing machine 

learning models are only as accurate as the 
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data trained using the input dataset. If the 

data has been incorrectly labeled, the model 

cannot make accurate predictions. 

Proposed System 

Multi-layer perceptron (MLP) Our MLP 

[22] model takes the concatenation of all 

input vectors and applies a series of fully-

connected (FC) layers. Each FC layer is 

followed by a batch normalization layer 

[10]. We use ReLU activation [16], and 

dropout regularization [27] with a drop 

probability of 0:2. The sigmoid activation 

function is applied to the final layer outputs, 

which yields the ADR prediction 

probabilities. The loss function is defined as 

the sum of negative log-probabilities over 

ADR classes, i.e. the multi-label binary 

cross-entropy loss (BCE). An illustration of 

the architecture for CS and GEX features is 

given in this system. 

Residual multi-layer perceptron (ResMLP) 

The residual multi-layer perceptron 

(ResMLP) architecture is very similar to 

MLP, except that it uses residual-

connections across the fully- connected 

layers. More specifically, the input of each 

intermediate layer is element-wise added to 

its output, before getting processed by the 

next layer. Such residual connections have 

been shown to reduce the vanishing gradient 

problem to a large extend [7].  

This effectively allows deeper architectures, 

therefore, potentially learning more complex 

and parameter-efficient feature extractors. 

Multi-modal neural networks (MMNN) The 

multi-modal neural network approach 

contains distinct MLP sub-networks where 

each one extract features from one data 

modality only. The outputs of these sub-

networks are then fused and fed to the 

classification block. For feature fusion, we 

consider two strategies: concatenation and 

summation. While the former one 

concatenates the domain-specific feature 

vectors to a larger one, the latter one 

performs element-wise summation. By 

definition, for summation based fusion, the 

domain-specific feature extraction sub-

networks have to be designed to produce 

vectors of equivalent sizes. We refer to the 

concatenation and summation based MMNN 

networks as MMNN.Concat and 

MMNN.Sum, respectively. 

 

Multi-task neural network (MTNN) our 

multitask learning (MTL) based architecture 

aims to take the side effect groups obtained 

from the taxonomy of ADReCS into 
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account. For this purpose, the approach 

defines shared and task-specific MLP sub-

network blocks. The shared block takes the 

concatenation of GEX and CS features as 

input and outputs a joint embedding. Each 

task-specific sub-network then converts the 

joint embedding into a vector of binary 

prediction scores for a set of inter-related 

side-effect classes. 

Advantages 

 The proposed system implemented many 

ml classifies for testing and training on 

datasets. 

 The proposed system developed 

Convolutional neural networks (CNN) 

which are known to provide a powerful 

way of automatically learning complex 

features in vision tasks to find an 

accurate accuracy on the datasets. 

 

4. OUTPUTSCREENS 

 

5. CONCLUSION 

The pharmaceutical drug development 

process is a long and demanding process. 

Unforeseen ADRs that arise at the drug 

development process can suspend or restart 

the whole development pipeline. Therefore, 

the a priori prediction of the side effects of 

the drug at the design phase is critical. In our 

Deep Side framework, we use context-

related (gene expression) features along with 

the chemical structure to predict ADRs to 

account for conditions such as dosing, time 

interval, and cell line. The proposed MMNN 

model uses GEX and CS as combined 

features and achieves better accuracy 

performance compared to the models that 

only use the chemical structure (CS) finger- 

prints. The reported accuracy is noteworthy 

considering that we are only trying to 

estimate the condition-independent side 

effects. Finally, SMILES Conv model 

outperforms all other approaches by 

applying convolution on SMILES 

representation of drug chemical structure 

 

6. REFERENCE 

 1. Atias, N., Sharan, R.: An algorithmic 

framework for predicting side effects of 

http://www.ijasem.org/


         www.ijasem.org  

             Vol 18, Issue 2, 2024 
 

          ISSN2454-9940 
 

 

 

 
 
 
 

1803 
 

drugs. Journal of Computational Biology 

18(3), 207–218 (2011) 

 

 2. Bresso, E., Grisoni, R., Marchetti, G., 

Karaboga, A.S., Souchet, M., Devignes, 

M.D., Sma¨ıl-Tabbone, M.: Integrative 

relational machine-learning for 

understanding drug side-effect profiles. 

BMC bioinformatics 14(1), 207 (2013) 

 3. Cai, M.C., Xu, Q., Pan, Y.J., Pan, W., Ji, 

N., Li, Y.B., Jin, H.J., Liu, K., Ji, Z.L.: 

Adrecs: an ontology database for aiding 

standardization and hierarchical 

classification of adverse drug reaction terms. 

Nucleic acids research 43(D1), D907–D913 

(2014) 

 

 4. Dey, S., Luo, H., Fokoue, A., Hu, J., 

Zhang, P.: Predicting adverse drug reactions 

through interpretable deep learning 

framework. BMC Bioinformatics 19 (12 

2018). https://doi.org/10.1186/s12859-018-

2544-0  

 

5. Dimitri, G.M., Li´o, P.: Drugclust: A 

machine learning approach for drugs side 

effects prediction. Computational Biology 

and Chemistry 68, 204 – 210 (2017). 

https://doi.org/https://doi.org/10.1016/j.com

pbiolchem.2017.03.008 

 

http://www.ijasem.org/
https://doi.org/10.1186/s12859-018-2544-0
https://doi.org/10.1186/s12859-018-2544-0

