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Abstract 

Computers still struggle or fail miserably at many things that people can do effortlessly. An unparalleled amount of 

human-based computing power may be harnessed using crowdsourcing platforms such as Amazon Mechanical 

Turk. But as a general-purpose computing platform, they aren't very useful. It is challenging to coordinate 

complicated or interconnected processes due to the absence of full automation. Adding human workers to the 

schedule in order to decrease latency is an expensive endeavor, and works need to be tracked and rescheduled when 

workers don't finish their assignments. The amount of time and money needed to complete a project is also not 

always easy to foresee. Lastly, human-based calculations may not always provide trustworthy results due to the fact 

that human abilities and accuracy differ greatly and employees have a financial motive to limit their effort.  

In this article, we present AUTOMAN, the pioneering technology for completely autonomous crowdprogramming. 

Human-based calculations are seamlessly integrated into a regular programming language with AUTOMAN as 

conventional function calls. These functions may be freely combined with traditional ones. Programmers using 

AUTOMAN are able to concentrate on the logic of their code thanks to this abstraction. A budget and degree of 

confidence in the total calculation may be defined in an AUTO-MAN software. The AUTOMAN runtime system 

takes care of scheduling, pricing, and quality control in an open and transparent manner. AUTOMAN keeps human 

workers on time, checks their progress, reprices their labor, and restarts them as needed to get the appropriate 

degree of confidence. It also optimizes parallelism among human workers while keeping costs down. 
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1. Introduction 

There are a lot of things that computers still 

can't do well that humans can. When it 

comes to vision, motion planning, and 

interpreting natural language, for instance, 

humans absolutely crush computers [22, 26]. 

The majority of academics believe that 

computers will continue to struggle with 

these "AI-complete" activities for some time 

to come [27]. 
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 Hiring people to do computational jobs has 

been made easier by recent technologies. 

Amazon Mechanical Turk stands out as the 

most renowned example. It is a general-

purpose crowd-sourcing platform that 

connects those looking for labor with those 

willing to do it [2, 15]. CastingWords and 

ClariTrans are domain-specific commercial 

services built on top of Mechanical Turk that 

accurately transcribe audio, while 

Tagasaurus and TagCow are domain-specific 

systems that classify images. 

The following obstacles, however, stand in 

the way of widespread and large-scale 

human-based computation:  

 

• Tasks' duration and compensation are 

established. A task's allowed time and 

remuneration for completion must be decided 

in advance by employers. People won't take 

on projects with too little remuneration or too 

short of a deadline, so getting things right is 

challenging but crucial. 

  

• Challenging scheduling. Companies need to 

strike a balance between the two competing 

priorities of cost (more employees equals 

more money) and latency (people are 

sluggish). Jobs need to be monitored and re-

posted as needed to ensure workers don't 

miss their deadlines. 

 • Responses of poor quality. Because human 

workers' abilities and accuracy vary greatly 

and because they have a financial motive to 

reduce their labor, human-based calculations 

must always be double-checked. Because 

employees may reach an agreement at 

random, mere majority vote is inadequate, 

and manual verification is not scalable. 

 Contributions  

 

The AUTOMAN programming system, 

which combines digital and human-based 

computing, is presented in this work. The 

difficulties of using large-scale human-based 

computing are tackled by AUTO-MAN:  

 

Integrating human and digital computing in a 

transparent manner. Through the use of 

function calls in a conventional programming 

language, AUTOMAN integrates human-

based computation. Managing budgets, 

schedules, and quality assurance is a breeze 

using the AUTO-MAN runtime system.  

 

Planning and budgeting made easy. In order 

to keep costs down and make the most of 

human workers' parallelism, the AUTOMAN 

runtime system schedules jobs. When jobs 

aren't moving along as planned, AUTO-

MAN may reschedule and re-price them.  

 

Control of quality automatically. Manage 

quality control automatically using the 

AUTOMAN runtime system. AUTO- MAN 

generates a enough number of human jobs 

for every calculation to meet the 

programmer-specified confidence level. 

 For instance, AUTOMAN will first schedule 

a minimum of three jobs (human workers) 

when given a function with five potential 

solutions and a target confidence level of 

95%. Given that the probability of all three 

parties reaching a unanimous decision is less 

than 5%, it would be appropriate to accept a 

unanimous answer. To reach a 95% 

confidence level, five out of six workers 

must agree; if all three workers disagree, 

AUTOMAN will schedule three more 

activities (Section 5). 

  

 

2. Context: Platforms for Crowdsourcing 
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 Given that crowdsourcing is a relatively new 

area of application for programming 

language research, we begin by providing a 

brief overview of the relevant literature on 

crowdsourcing platforms. While we'll be 

talking specifically about Amazon 

Mechanical Turk here, we can certainly draw 

parallels to other crowdsourcing services out 

there. 

 In order to facilitate temporary assignments, 

Mechanical Turk mediates between 

requesters—the employers—and workers—

the turkers—the workers. 

 Tasks involving human intelligence (HITs). 

Human intelligence tasks (HITs) are the 

informal name for individual jobs on 

Mechanical Turk. A brief description, salary, 

and other data are included in HITs. On 

Mechanical Turk, the majority of HITs are 

for easy questions like "is this image a good 

fit for this product?" Companies often pay 

their employees a low wage because they 

believe that workers can do their tasks on  a 

time scale that fluctuates between minutes 

and seconds. You may pay anything from a 

dime to a few dollars for HITs.  

Metadata like a title, description, and search 

keywords are attached to each HIT, which is 

represented as a question form. Each HIT 

may include any number of questions. There 

are two main kinds of questions: those that 

allow employees to freely express 

themselves via text and those that require 

them to choose from a predetermined set of 

alternatives. The former are called open-

ended questions, while the later are called 

closed-ended questions; at the moment, 

AUTOMAN is only compatible with closed-

ended questions.  

 

Posting HITs: A Requester's Perspective. 

You can manually upload HITs to 

Mechanical Turk, but you can also 

programmatically handle basic features of 

HITs using their web service API [2]. This 

includes posting HITs, collecting finished 

work, and paying workers. Posting several 

identical jobs to Mechanical Turk is a breeze 

using this API. It is possible to classify HITs 

into groups based on their shared 

characteristics.  

 

Another way a requester might tell 

Mechanical Turk to paralize an HIT is by 

specifying whether or not each HIT should 

be allocated to several workers. Mechanical 

Turk makes sure that each parallel worker is 

distinct (i.e., that no worker may finish the 

same HIT more than once) by increasing the 

number of assignments, which enables more 

workers to accept work for the same HIT.  

 

Employees: Carrying Out Tasks. 

Approximately 275,000 HITs are available 

for workers to pick from on Mechanical 

Turk; for more information on what qualifies 

them, check below. Workers select to 

execute a specific HIT by accepting an 

assignment, which reserves that task for them 

for a short period and prevents other workers 

from accepting it.  

 

How Long Does an HIT Last? There are two 

timeout settings for HITs: the lifespan of the 

HIT, which specifies how long it should stay 

in the listings, and the length of the 

assignment, which specifies how long a 

worker has to do the task after it has been 

accepted. A worker's reservation for an HIT 

is canceled and the work is returned to the 

pool of available assignments if they exceed 

the assignment's time without submitting 

finished work. A HIT gets withdrawn from 

the job board and expires after its lifespan is 

over without any tasks being performed.  

 

Requesters: Accepting or Rejecting Work. A 

worker will notify the requester whenever an 

assignment is finished and submitted. Once 

the task is finished, the requester has the 

option to approve or reject it. The worker is 

automatically compensated for their efforts 

when an assignment is accepted, indicating 

that the job is acceptable. Withdrawal of 

money occurs upon denial; if desired, the 

requester may include a textual explanation 
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for the rejection. See Section 3.2 for 

information on how AUTOMAN handles 

acceptance and rejection automatically.  

 

Worker Quality Control. Getting excellent 

workers to participate in Mechanical Turk, or 

at least to stay away from poor workers, is a 

major difficulty when trying to automate 1 

task. But re-5 questers can't find certain 

workers on Mechanical Turk.6 

2. Overview 

AUTOMAN is a domain-specific language 

embedded in Scala [24]. AUTOMAN’s goal is 

to abstract away the de- tails of 

crowdsourcing so that human computation can 

be as easy to invoke as a conventional 

function. 

2.1 Using AUTOMAN 

Figure 1 presents an example (toy) 

AUTOMAN program. The program 

“computes” which of a set of cartoon characters 

does not belong in the group. Notice that the 

programmer does not specify details about the 

chosen crowdsourcing backend (Mechanical 

Turk) except for account credentials. 

Crucially, all details of crowdsourcing are 

hidden from the AUTOMAN programmer. 

The AUTOMAN runtime manages interfacing 

with the crowdsourcing platform, schedules 

and determines budgets (both cost and time), 

and automatically ensures the desired 

confidence level of the final result. 

Initializing AUTOMAN. After importing the 

AUTOMAN and Mechanical Turk adapter 

libraries, the first thing an AUTOMAN 

programmer does is to declare a configuration 

for the desired crowdsourcing platform. This 

configuration is then bound to an AUTOMAN 

runtime object, which instanti- ates any 

platform-specific objects. 

Specifying AUTOMAN functions. Functions 

in AUTO- MAN consist of declarative 

descriptions of questions that the workers must 

answer; they may include text or images, as 

well as a range of question types, which we 

describe below. 

Confidence level. An AUTOMAN 

programmer can option- ally specify the 

degree of confidence they want to have in 

their computation, on a per-function basis. 

AUTOMAN’s de- fault confidence is 95% 

(0.95), but this can be overridden as needed. 

The meaning and derivation of confidence is 

dis- cussed in Section 5. 

 

 
 

Figure 1. A complete AUTOMAN program. 

This program computes, by invoking humans, 

which cartoon character does not belong in a 

given set. The AUTOMAN programmer 

specifies only credentials for Mechanical 

Turk, an overall budget, and the question 

itself; the AUTOMAN runtime manages all 

other details of execution (scheduling, 

budgeting, and quality control). 

 

Metadata and question text. Each question 

requires a title and description, used by the 

crowdsourcing platform’s user interface. 

These fields map to Mechanical Turk’s fields 

of the same name. A question also includes a 

textual representation of the question, 

together with a map between symbolic 

constants and strings for possible answers. 

Question variants. AUTOMAN supports 

multiple-choice questions, including questions 

where only one answer is cor- rect (“radio-

button” questions), or where any number of 

an- swers may be correct (“checkbox” 

import   edu . umass.  cs. automan . adapters.  MTurk.  _ 

object Simple Program extends App { 
val a = MTurkAdapter { mt => 

mt. access_key_id  =  " XXXX " 
mt. secret_acc ess_key  = " XXXX " 

} 

def which_one () = a. Radio Button Question { q => 
q. budget = 8.00 
q. text = " Which one of these does not belong ?"  
q. options = List( 

a. Option (’ oscar , " Oscar the Grouch "), 
a. Option (’ kermit , " Kermit the Frog"),  
a. Option (’ spongebob , " Spongebob Squarepants  "), 
a. Option (’ cookie ,  " Cookie  Monster"),  
a. Option (’ count ,  " The  Count ") 

) 
} 

println (" The answer is " + which_one ()()) 
} 
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questions), as well as restricted-text entry 

forms. Section 5 describes how AUTO- 

MAN’s quality control algorithm handles these 

different types of questions. 

Invoking a function. An AUTOMAN 

programmer can in- voke a function as if it 

were any ordinary (digital) func- tion. Here, 

the programmer calls the just-defined 

function which_one() with no input. The 

function returns a Scala future object 

representing the answer, which can be passed 

to other Questions in an AUTOMAN program 

before the hu- man computation is complete. 

AUTOMAN functions execute in the 

background in parallel as soon as they are 

invoked. The program does not block until it 

references the function output, and only then if 

the human computation is not yet finished. 

 

2.2 AUTOMAN Execution 

Figure 2 depicts an actual trace of the 

execution of the pro- gram from Figure 1, 

obtained by executing it with Amazon’s 

Mechanical Turk. This example demonstrates 

that ensuring valid results even for simple 

programs can be complicated. 

Starting Tasks. At startup, AUTOMAN 

examines the form of the question field defined 

for the task and determines that, in order to 

achieve a 95% confidence level for a question 

with five possible choices, at minimum, it needs 

three different workers to unanimously agree on 

the answer (see Section 5). AUTOMAN then 

spawns three tasks on the crowdsourcing 

backend, Mechanical Turk. To eliminate bias 

caused by the position of choices, AUTOMAN 

randomly shuffles the order of choices in each 

task. 

AUTOMAN’s default strategy is optimistic. 

For many tasks, human workers are likely to 

agree unanimously. Whenever this is true, 

AUTOMAN saves money by spending the least 

amount required to achieve the desired statistical 

confidence. However, AUTOMAN also allows 

users to choose a more aggressive strategy that 

trades a risk of increased cost for 

reduced latency; see Section 4.3. 

Quality Control. At time 1:50, worker 1 

accepts the task and submits “Spongebob 

Squarepants” as the answer. Forty seconds later, 

worker 2 accepts the task and submits the same 

answer. However, twenty seconds later, worker 

3 accepts the task and submits “Kermit”. In 

this case, AUTOMAN’s Scheduling Algorithm 

Figure 3 presents pseudo-code for 

AUTOMAN’s main sched- uler loop, which 

comprises the algorithms that the AUTO- 

MAN runtime uses to manage task posting, 

reward and time- out calculation, and quality 

control. 

2.3 Calculating Timeout and Reward 

AUTOMAN’s overriding goal is to recruit 

workers quickly and at low cost in order to 

keep the cost of a computation within the 

programmer’s budget. AUTOMAN posts 

tasks in rounds, which have a fixed timeout 

during which tasks must be completed. When 

AUTOMAN fails to recruit workers in a 

round, there are two possible causes: workers 

were not willing to complete the task for the 

given reward, or the time allotted was not 

sufficient. AUTOMAN does not distinguish 

between these cases. Instead, the reward for a 

task and the time allotted are both increased 

by a constant factor k every 
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Figure 2. Pseudo-code for AUTOMAN’s 

scheduling loop, which handles posting and 

re-posting jobs, budgeting, and quality 

control; Section 5.2 includes a derivation of 

the formulas for the quality control 

thresholds. 

 

time a task goes unanswered. k must be 

chosen carefully to ensure the following two 

properties: 

1. The reward for a task should quickly 

reach a worker’s minimum acceptable 

compensation (Rmin), e.g., in a 

logarithmic number of steps. 

2.  The reward should not grow so quickly that 

it would give workers an incentive to wait 

for a larger reward, rather than work 

immediately. 

Workers do not know the probability that a 

task will re- main unanswered until the next 

round. If the worker assumes even odds that a 

task will survive the round, a growth rate of k 

= 2 is optimal: it will reach Rmin faster than 

any lower value of k, and workers never have 

an incentive to wait. Sec- tion 4.4 presents a 

detailed analysis. Lines 13-16 in Figure 3 

increase the reward and duration for tasks that 

have timed out. 

In AUTOMAN, reward and time are 

specified in terms of the worker’s wage 

($7.25/hour for all the experiments in this 

paper). Doubling both reward and time ensures 

that AUTOMAN will never exceed the minimum 

time and reward by more than a factor of two. 

The doubling strategy may appear to run the 

risk that a worker will “game” the computation 

into paying a large sum of money for an 

otherwise simple task. However, once the wage 

reaches an acceptable level for some proportion 

of the worker marketplace, those workers will 

accept the task. Forcing AUTOMAN to continue 

doubling to a very high wage would require 

collusion between workers on a scale that we 

believe is infeasible, especially when the 

underlying crowdsourcing system provides strong 

guarantees that worker identities are independent. 

2.4 Scheduling the Right Number of Tasks 

AUTOMAN’s default strategy for spawning tasks 

is optimistic: it creates the smallest number of 

tasks required to reach the desired confidence 

level if the results are unanimous. Line 19 in 

Figure 3 determines the number of votes for the 

most popular answer so far. Lines 20-23 

iteratively compute the minimum number of 

additional votes required to reach confidence. If 

no additional votes are required, confidence has 

been reached and AUTOMAN can return the 

most popular answer (line 44). 

Using the current reward, AUTOMAN 

computes the maxi- mum number of tasks that 

can be posted with the remaining budget (line 

28). If the budget is insufficient, AUTOMAN will 

terminate the computation, leaving all tasks in an 

unverified state (lines 29-30). The computation 

can be resumed with an increased budget or 

abandoned. Mechanical Turk will au- tomatically 

pay all workers if responses are not accepted or 

wage = DEFAULT_WAGE 
value_of_t im e = DEFAUL T_VAL UE_OF_TIM E 
durat ion = D EFAUL T_D URATI ON  
reward = wage * durat ion 
budget  = D EFAUL T_BUD GET 
cost = $0 .00 
tasks = [] 
answers = load_saved_answers  () 
t imed_out  = false 
confident = false 

while not confident: 
if timed_out:  

duration * = 2 
reward * = 2 
timed_out = false 

if tasks. where ( state == RUNNING ). size == 0: 
most_votes  = answers.  group_by ( answer ). max 
required = 0 
while min_votes(  choices , most_votes + required ) 

> most_votes + required : 
required += 1 

if required == 0: 
confident = true 

else 
can_afford = floor (( budget - cost) / reward ) 
if can_afford < required : 

throw  OVER_BUDGET 
ideal = floor( value_of_time / wage ) 
to_run = max( required , min ( can_afford , ideal )) 
cost    +=    to_run    *    reward 
tasks. append All( spawn_tasks ( to_run )) 

else: 
num_timed_out  = tasks. where ( state == TIMEOUT ). size 
if num_timed_out > 0: 

timed_out  = true 
cost -= num_timed_out * reward 

foreach t in tasks.  where ( state == ANSWERED ): 
answers . append ( t. answer) 
save_answer ( t. answer)  

return  answers.  g roup_by  ( answer ). argmax  
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, ⌫ 

a 

a 

rejected after 30 days. 

2.5 Trading Off Latency and Money 

AUTOMAN also allows programmers to provide 

a time-value for the computation, which tells 

AUTOMAN to post more than the minimum 

number of tasks. AUTOMAN always schedules 

at least the minimum number of tasks required 

to achieve confidence in every round. If the 

programmer’s time is worth more than the total 

cost of the minimum number 

of tasks, 
time value 

tasks will be scheduled 
instead (lines min wage 

31-32). Once AUTOMAN receives enough 
answers to reach 

the specified confidence, it cancels any 

outstanding tasks. In the worst case, all posted 

tasks will be answered before AUTOMAN can 

cancel them, which will cost no more than time 

value · task timeout. 

This strategy runs the risk of paying 

substantially more for a computation, but can 

yield dramatic reductions in latency. We re-ran 

the example program given in Figure 1 with a 

time- value set to $50, 7× larger than the current 

U.S. minimum wage. In two separate runs, the 

computation completed in 68 and 168 seconds; 

we also ran the first computation with the 

default time-value (minimum wage), and 

those computations took between 1 and 3 

hours to complete. 

2.6 Derivation of Optimal Reward Growth 

Rate 

When workers encounter a task with a 

posted reward of R, they may choose to 

accept the task, or wait for the reward to 

grow. Let pa be the probability that the task 

will still be available after one round of 

waiting. We make the assumption that, if 

the task is still available after i — 1 rounds, 

then the probability that the task is available 

in the ith round is at most pa. Hence, if the 

player’s strategy is to wait i rounds and then 

complete the task, 

E [reward] ≤ pi kiR ,  

since with probability at most pi the 

reward will be kiR and otherwise the task 

will no longer be available. 

Note that the expected reward is 
maximized with i = 0 if k ≤ 1/pa. 
Therefore, k = 1/pa is the highest value of 
k that does not incentivize waiting and will 
reach Rmin faster than any lower value of k. 
Workers cannot know the true value of pa. 
In the absence of any information, 1/2 will 
be used as an estimator for pa and this leads 
to AUTOMAN’s default value of k = 2. 

However, it is possible to estimate pa. 

Every time a worker accepts or waits for 

a task, we can treat this as an 

independent Bernoulli trial with the 

parameter pa. The maximum likelihood 

estimator for pa equals 

p˜a = argmax xt(1 — x)n—t 
x2[0,1] 

where t is the number of times a task has 
been accepted amongst the n times it has  

 

 

 

 

 

 

 

 

 

 

been offered so far. Solving this gives p˜a 
= t/n. 

The difficulty of accurately estimating pa 

using ad hoc quality control is a strong 

argument for automatic budgeting. 

Implementing this estimation is a planned 

future enhance- ment for AUTOMAN. 

3. Quality Control Algorithm 

AUTOMAN’s quality control algorithm is 

based on collecting enough consensus for a 

given question to rule out the possi- bility, 

with a desired level of confidence, that the 
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results are due to random chance. Section 

5.3 justifies this approach. 

Initially, AUTOMAN spawns enough 

tasks to meet the de- sired confidence level 

if all workers who complete the tasks agree 

on the same answer. Figure 5 depicts the 

initial confi- dence level function. 

Computing this value is straightforward: if k 

is the number of choices, and n is the 

number of tasks, the confidence level 

reached is 1 — k(1/k)n. AUTOMAN 

computes the lowest value of n where the 

desired confidence level is reached. 

Question Variants. For ordinary multiple 

choice questions where only one choice is 

possible (“radio-button” questions), 

k is exactly the number of possible answers. 

However, hu- mans are capable of answering a 

richer variety of question types. Each of these 

additional question types requires its own 

probability analysis. 

Checkbox Questions. For multiple choice 

questions with c choices and any or all may be 

chosen (“checkbox” questions), k is much larger: 

k = 2c. 

For these questions, k is so high that a very 

small number of workers are required to reject 

the null hypothesis (ran- dom choice). However, 

it is reasonably likely that two lazy workers will 

simply select no answers, and AUTOMAN will 

erroneously accept that answer is correct. 

To compensate for this possibility, 

AUTOMAN treats 

 

 

 

(a) A checkbox question. k = 2c. 

checkbox questions specially. The AUTOMAN 

programmer must specify not only the question 

text, but also an inverted question. For instance, 

if the question is “Select which of 

               

 

 

 
 

Figure 3. Question types handled by 
AUTOMAN. 

 

 

3.1 Overview of the Quality Control 

Algorithm 

In order to return results within the user-

defined confidence interval, AUTOMAN 

iteratively calculates two threshold 

functions that tell it whether it has enough 

confidence to terminate, and if not, how 

many additional workers it must recruit. 

Formally, the quality control algorithm 

depends on two functions, t and l, and 

associated parameters α, β, and p⇤. The 

t(n, α) and l(p⇤, β) functions are defined 

such that: 

•  t(m, α) is the threshold number of 
agreeing votes. If the workers vote 
randomly (i.e., each answer is chosen 
with equal probability), then the 
probability that an answer meets the 
threshold of t(n, α) when n votes are 
cast is at most α. α will be determined 
based on the confidence parameter 
chosen by the programmer (α = 1 - 
confidence). 

•  l(p⇤, β) is the minimum number of 
additional workers to recruit for the next 
step. If there is a “popular” option such 
that the probability a worker chooses it 

is p and p > p⇤ (and all other options are 
equally likely), then if AUTO- MAN 
receives votes from n ≥ l(p⇤, β) workers 
some answer will meet the threshold t(n, 
α) with probability at least 1 — β. 

workers who participated in previous instantiations of 
that task are excluded from future instantiations. 

Our workaround for this shortcoming is 

to use Mechani- cal Turk’s “qualification” 
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( 

feature in an inverse sense. Once 
Note that E1(n, n) = 1 — 1/kn—1 and define 

t(n, α) := 
min{t : E1(n, t) ≥ δ} if E1(n, 

n) ≥ δ 
.
 

∞ if E1(n, n) < δ 

where δ = 1 — α. This ensures that when n 
voters each randomly chose an option, the 
probability that an option meets or exceeds the 
threshold t(n, α) is at most α. 

Next we define 

l(p*, β) := min{n : E2(p
*, n, t(n, α)) ≥ 1 — β} . 

If the voters have a bias of at least p* towards 

a certain popular option, and all other options are 

equally weighted, then by requiring l(p*, β) 

voters, AUTOMAN ensures that the number of 

votes cast for the popular option crosses the 

threshold (and all other options are below 

threshold) with probability at least 1 — β. 

3.2 Quality Control Discussion 

For AUTOMAN’s quality control algorithm to 

work, two assumptions must hold: 

• Workers are independent. 

• Random choice is the worst-case behavior for 

workers; that is, they will not deliberately pick 

the wrong answer. 

Workers may break the assumption of 

independence in three ways: (1) a single worker 

may masquerade as multiple workers; (2) a 

worker may perform multiple tasks; and (3) 

workers may collude when working on a task. 

a worker completes a HIT that is a part of a 

larger compu- tation, AUTOMAN grants 

that worker special qualification 

(effectively, a “disqualification”) that 

precludes them from participating in future 

tasks of the same kind. Our system ensures 

that workers are not able to request 

reauthorization. 

Scenario 3: Worker Collusion. While it 

would be possible to attempt to lower the 

risk of worker collusion by ensuring that 

they are geographically separate (e.g., by 

filtering work- ers using IP geolocation), 

AUTOMAN currently does not take any 

particular action to prevent worker 

collusion. Prevent- ing this scenario is 

essentially impossible. Nothing prevents 

workers from colluding via external 

channels (e-mail, phone, word-of-mouth) to 

thwart the assumption of independence. 

Instead, the system should be designed to 

make the effort of thwarting defenses 

undesirable given the payout. 

By spawning large numbers of tasks, 

AUTOMAN makes it difficult for any 

single group to monopolize them. In 

Mechanical Turk, no one worker has a 

global view of the system, thus the state of 

AUTOMAN’s scheduler is unknown to the 

worker. Without this information, workers 

cannot game the system. The prevalent 

behavior is that people try to do as little 

work as possible to get compensated: 

previous studies of Mechanical Turk 

indicate random-answer spammers are the 

primary threat. [28]. 

 

3.2.1 Random as Worst Case 

AUTOMAN’s quality control function is 

based on excluding the possibility of 

random choices by workers; that is, workers 

who minimize their effort or make errors. 

It is possible that workers could instead act 

maliciously and deliberately choose 

incorrect answers. Participants in crowdsourcing 

systems have both short-term and long-term 

economic incentives to not deliberately choose 

incorrect answers, and thus random choice is a 

reasonable worst-case scenario. 

First, a correct response to a given task yields 

an immedi- ate monetary reward. If a worker has 

any information about what the correct answer is, 

it is against their own short-term economic self-

interest to deliberately avoid it. In fact, as long as 

there is a substantial bias towards the correct 

answer, AUTOMAN’s algorithm will eventually 

accept it. 

Second, while a participant might out of 

malice choose to forego the immediate 

economic reward, there are long- term 
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implications for deliberately choosing incorrect 

answers. Crowdsourcing systems like 

Mechanical Turk maintain an overall ratio of 

accepted answers to total answers submitted, and 

many requesters place high qualification bars on 

these ratios (typically around 90%). Incorrect 

answers thus have a lasting negative impact on 

workers, who, as mentioned earlier, cannot easily 

discard their identity and adopt a new one. 

Anecdotal evidence from our experience 

supports these assumptions. Mechanical Turk 

workers have contacted us when AUTOMAN 

rejects their answers (AUTOMAN provides the 

correct answer in its rejection notice). Many 

workers sent us e-mails justifying their answers 

or apologizing for having misunderstood the 

question, requesting approval to maintain their 

overall ratio of correct to incorrect responses. We 

typically approved payment for workers who 

justified their incorrect answers, but Mechanical 

Turk does not allow us to accept already-rejected 

HITs. 

 

4. System Architecture and Implementation 

In order to cleanly separate the concerns of 

delivering reli- able data to the end-user, 

interfacing with an arbitrary crowd- sourcing 

system, and specifying validation strategies in a 

crowdsourcing system-agnostic manner, 

AUTOMAN is im- plemented in tiers. 

4.1 Domain-specific language 

The programmer’s interface to AUTOMAN is a 

set of function calls, implemented as an embedded 

domain-specific language for the Scala 

programming language. The choice of Scala as 

a host language was motivated primarily by the 

desire to have access to a rich set of language 

features while maintaining compatibility with 

existing code. Scala is fully interoperable with 

existing Java code; the crowdsourcing system 

compatibility layer heavily utilizes this feature to 

communicate with Amazon’s Mechanical Turk 

system. Scala also provides access to powerful 

functional language features that simplify the task 

of implementing a complicated system. These 

function calls act as syntactic sugar, 

strengthening the illusion that crowdsourcing 

tasks really are just a kind of function call with 

an extra error tolerance parameter. Scala was 

explicitly designed to host domain-specific 

languages [5]. It has been used to implement a 

variety of sublanguages, from a declarative 

syntax for probabilistic models to a BASIC 

interpreter [13, 23]. 

 

 

 

When using the AUTOMAN DSL, 

programmers first create an AutoMan 

instance, specifying a backend adapter, 

which indicates the crowdsourcing system 

that should be used (e.g., Mechanical 

Turk) and how it should be configured 

(e.g., user credentials, etc.). Next, the 

Question function is declared with the 

desired statistical confidence level and any 

other crowdsourcing backend-specific task 

parameters as required. When programmers 

call their Question function with some 

input data, the AUTOMAN scheduler 

launches the task asynchronously, allowing 

the main program to continue while the 

slower human computation runs in the 

background. 

Since our aim was to make task 

specification simple, and to automate as 

many functions as possible, our Mechanical 

Turk compatibility layer provides sane 

defaults for many of the parameters. 

Additionally, we delegate control of task 

time- outs and rewards to AUTOMAN, 

which will automatically adjust them to 

incentivize workers. Maximizing 

automation allows for concise task 

specification for the common cases. When 

our defaults are not appropriate for a 

particular pro- gram, the programmer may 

override them. 

4.2 Abstract Questions and Concrete 

Questions 

The main purpose of the DSL is to help 

programmers construct Question objects, 



  

                                                                                                                                           ISSN: 2454-9940www.ijsem.org 
                                                                                                                                                  Vol 14, Issuse.4 Dec 2020 
 

which represent the system’s promise to 

return a scalar Answer to the end-user. In 

re- ality, many concrete instantiations of 

this question, which we call 

ConcreteQuestions, may be created in the 

pro- cess of computing a single Question. 

The details of in- teracting with third-party 

crowdsourcing backends is han- dled by 

the AutomanAdapter layer, which 

describes how ConcreteQuestions are 

marshalled. 

AUTOMAN controls scheduling of all 

ConcreteQuestions in the target 

crowdsourcing system. After programmers 

have defined a Question, they can then call 

the resulting object as if it were a standard 

programming language function. In other 

words, they provide input as arguments to 

the function, and receive output as a return 

value from the function, which can be fed as 

input to other tasks as desired. 

From this point on, AUTOMAN handles 

communication with the crowdsourcing 

backend, task scheduling, quality control, 

and returning a result back to the 

programmer un- der budget and in a timely 

manner. Question threads are implemented 

using Scala Futures. After calling a 

Question, program control returns to the 

calling function, and execu- tion of the 

human function proceeds in the 

background, in parallel. 

 

Responses Required for Confidence 
16 
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4 

 

 
1 

0 0.2 0.4 0.6 0.8 1 
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Figure 4. 10000 random sequences of 

worker responses to a five-option radio 

button question were used to simulate 

AUTOMAN’s quality control algorithm at 

each confidence value. The trace lines use 

real worker responses to the “Which one 

does not belong?” application described in 

Section 7.1, while the 33%, 50%, and 75% 

lines were generated from synthetic traces 

where 33%, 50%, and 75% of workers 

chose the correct response, respectively. 

These graphs show that AUTOMAN is 

able to maintain the accuracy of final 

answers even when individual workers 

have low accuracy. Increasing confidence 

and decreasing worker accuracy both lead 

to exponential growth in the number of 

responses required to select a final result. 

 

4.3 Memoization of Results 

AUTOMAN’s automatic memoization stores 
Answer data in a lightweight Apache Derby 

database. Implementors of third party 
AutomanAdapters must provide a mapping be- 
tween their concrete Answer representation and 
AUTOMAN’s canonical form for Answer data. 

If a program halts abnormally, when that 

program is resumed, AUTOMAN first checks 

the memoization database for answers matching 

the program’s Question signature before 

attempting to schedule more tasks. If a 

programmer changes the Question before 

restarting the program, this signature will no 

longer match, and AUTOMAN will treat the 

Question as if it had never been asked. Any 

future use of a memoized function amortizes the 

initial cost of the function by reusing the 

stored value, and as long as the programmer 

preserves the memo database, reuse of 

memoized functions works across program 

invocations, even for different programs. 

It is incumbent on the user to ensure that they 

define side- effect-free AUTOMAN functions. 

Scala does not currently provide a keyword to 

enforce functional purity. 

 

 

4.4 Validation strategies 

The manner in which jobs are scheduled and 
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errors handled depends on the chosen 

ValidationStrategy. If a strategy is not 

specified, AUTOMAN automatically uses the 

validation routines in the DefaultStrategy, 

which performs the form of statistical error 

handling we outlined in earlier sections. 

However, in the event that more sophisticated 

error handling is required, the programmer may 

either extend or completely replace our base error-

handling strategy by implementing the 

ValidationStrategy interface. 

4.5 Third-party implementors 

Implementors who wish to adapt the 

AUTOMAN runtime for additional 

crowdsourcing backends need only 

implement the AutomanAdapter and 

ConcreteQuestion interfaces. Pro- grams 

for one crowdsourcing backend thus can be 

ported to a new system by including the 

appropriate AutomanAdapter library and 

specifying the proprietary system’s 

configuration details. 

 

5. Evaluation 

We implemented three sample applications 

using AUTOMAN: a semantic image-

classification task using checkboxes, an 

image-counting task using radio buttons, 

and an optical character recognition (OCR) 

pipeline. These applications were chosen to 

be representative of the kinds of problems 

which remain difficult even for state-of-

the-art algorithms. 

5.1 Which one does not belong? 

Our first sample application asks users to 

identify which object does not belong in a 

collection of items (Figure 1). This kind of 

task requires both image- and semantic-

classification capability, and is a 

component in clustering and automated 

construction of ontologies. Because tuning 

of AUTOMAN’s parameters is largely 

unnecessary, relatively little code is 

required to implement this functionality 

(about 20 lines). 

We gathered 93 responses from workers 

during our sam- pling runs. Runtimes for 

this program were on the order of minutes, 

but there is substantial variation in runtime 

given 
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Figure 5. An application that counts the number 

of searched- for objects in the image. Amazon 

S3, Google, TinyURL, and image-manipulation 

helper functions have been omitted. the time of 

the day. Demographic studies of Mechanical Turk 

have shown that the majority of workers on 

Mechanical Turk are located in the United States 

and in India [16]. These find- ings largely agree 

import com . amaz onaws.  servic es.  s3 . Amazon S3 Client  
import java . awt. image . Buffered Image 
import  java . io. File 
import   edu . umass.  cs. automan . adapters.  MTurk.  _ 

object  How Ma ny Things  { 
def main ( args: Array[ String ]) { 

val a = MTurkAdapter { mt => 
mt. access_key_id  =  " XXXX " 
mt. secret_access_key  = " XXXX " 
mt. sandbox_mode = true 

} 

def how_many ( url:  String ) =a. Radio Button Quest ion { q=> 
q. text=" How  many " + args (0)+ " are in this  image ?"  
q. image_url  = url 
q. options = List(  

a. Option (’zero , " None "), 
a. Option (’one , " One"),  
a. Option (’more  , " More  than  one ") 

) 
} 

// Search for a bunch of images 
val urls = get_urls(  args (0)) 

// download each image 
val images  = urls .  map ( download_imag e  ( _)) 

// resize each image 
val scaled = images.  map ( resize ( _)) 

// store each image in S3 
val s3 client = init_s3 () 
val s3 _urls = scaled . map { i => 

store_in_s3 (i, s3 client) 
} 

// ask humans for answers 
val answers_urls  = s3 _urls. map { url => 

(how_many(  getTinyURL(  url.to String ))  ->  url) 
} 

// print answers  
answers_urls  . foreach { case (a, url) => 

println (" url: " + url + 
", answer: " + a(). value ) 

} 
} 

} 
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with our experience, as we found that this 

program (and variants) took upward of several 

hours during the late evening hours in the United 

States. 

Results from this application were used to test 

AUTO- MAN’s quality control algorithm at 

different confidence lev- els. AUTOMAN 

ensures that each worker’s response to this 

application is independent of all other responses. 

Because responses are independent, we can 

shuffle the order of re- sponses and re-run 

AUTOMAN to approximate many different runs 

of the same application with the same worker 

accuracy. Figure 6 shows the average accuracy 

of AUTOMAN’s final answer at each 

confidence level, and the average number of 

responses required before AUTOMAN was 

confident in the final answer. Figure 6 also 

includes results for three sets of synthetic 

responses. Synthetic traces are generated by 

return- ing a correct answer with probability 

equal to the specified worker accuracy (33%, 

50%, and 75%). Incorrect answers are uniformly 

distributed over the four remaining choices. 

These results show that AUTOMAN’s 

quality control is highly pessimistic. Even with 

extremely low worker accuracy, AUTOMAN 

is able to maintain high accuracy of final 

results. Real worker responses are typically 

quite accurate (over 80% in this case), and 

AUTOMAN rarely needs to exceed the first 

two rounds of three questions to reach a very 

high confidence. 

 

 

 

5.2 How many items are in this picture? 

Counting the number of items in an image 

also remains difficult for state-of-the-art 

machine learning algorithms. Machine-

learning algorithms must integrate a variety 

of feature detection and contextual reasoning 

algorithms in order to achieve a fraction of the 

accuracy of human classifiers [26]. Moreover, 

vision algorithms that work well for all 

objects remain elusive. 

This kind of task is trivial in AUTOMAN. 

We set up an image processing pipeline using 

the code in Figure 7. This application takes a 

search string as input, downloads images 

using Google Image Search, resizes the 

images, uploads the images to Amazon S3, 

ambiguates the URLs using TinyURL, and 

then posts the question “How many $items 

are in this image?” 

We ran this task 8 times, spawning 71 

question instances, and employing 861 

workers, at the same time of the day (10 a.m. 

EST). AUTOMAN ensured that for each of 

the 71 questions asked, a worker was not able 

to participate more than once. We found that 

the mean runtime was 8 minutes, 20 seconds 

and that the median runtime was 2 minutes, 

35 seconds. Overall, the typical task latency 

was surprisingly short. 

The mean is skewed upward by the 

presence of one long- running task which 

asked “How many spoiled apples are in this 

image?”. The difference of opinion caused by 

the ambiguity of the word “spoiled” caused 

worker answers to be nearly evenly 

distributed between two answers. This 

ambiguity forced AUTOMAN to collect a 

large number of responses to be able to meet 

the desired confidence level. AUTOMAN 

handled this unexpected behavior correctly, 

running until statistical confidence was 

reached. 

5.3 Automatic number plate recognition (ANPR) 

Our last application is a reimplementation of a 

common—and controversial—image 

recognition algorithm for automatic number 

plate recognition (ANPR). ANPR is widely 

deployed using distributed networks of traffic 

cameras. Academic literature on the subject 

suggests that state-of-the-art systems can 

achieve accuracy near 90% under ideal 

conditions [11]. False positives can have 

dramatic negative consequences in 

unsupervised ANPR systems as tickets are 

issued to motorists 
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Figure 6. A number-plate recognition program. 

Amazon S3, command-line option parsing, and other 

helper functions have been omitted for clarity. 

automatically. A natural consequence of this fact is 

the need for human supervision to audit results and 

limit false positives. 
Figure 8 shows an ANPR application written 
in AUTO- 

(a) Visual representation of the license-

plate-recognition workflow. 1) Images are 

read from disk. 2) Images are uploaded to 

Amazon S3. 3) HITs are posted to MTurk 

by AUTOMAN. 4) Workers complete the 

posted HITs. 

5) Responses are gathered by AUTOMAN. 

6) AUTOMAN chooses the correct 

answers, repeating steps 3-5 as necessary, 

and prints them to the screen. 

 

(b) A sample HIT on Mechanical Turk for 

OCR. In all of our trial runs, AUTOMAN 

correctly identified this hard-to-read plate. 

quality control ensures that it delivers 

results that match or exceed the state-of-

the-art on even the most difficult cases. 

6. Related Work 

Example Uses of Crowdsourcing. The computational power of many software applications is 

significantly en- hanced with human supervision at critical steps. The innate ability of humans to quickly 

and correctly provide answers to otherwise intractable problems has resulted in a great deal of interest in 

hybrid human-computer applications. We describe a representative sample of such applications below. 

Note 

Feature AUTOMAN TurkIt 

[21] 

CrowdFlower 

[25] 

Jabberwocky [1] Turkomatic 

[19] CrowdDB [14] 
Quality Control Guarantee X     
High Performance X     
Automatic Budgeting X     
Automatic Time 
Optimization 

X     
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Automatic Task 
Accept/Reject 

X     

General Purpose X X X X X  
Memoizes Results X X    

Interfaces with Existing 

Code Type-Safe 

Platform Agnostic 

XJava 
X 
X 

XJavascript XRuby XSQL 

 

n/a X 

Table 1. A comparison between AUTOMAN and other crowdsourcing-based systems. 

 

it doesn't depend on open labor markets-based 

general-purpose crowdsourcing platforms; rather, it 

only uses human computation.  

To find out which way faraway galaxies spin, Galaxy 

Zoo employs people as picture classifiers [20]. People 

who haven't had much practice classifying images 

submit their opinions (or "votes"), which are then 

ranked according to how accurate they were. 

Where conventional optical-character recognition 

algorithms have failed, reCAPTCHA repurposes the 

well-known CAPTCHA web-based "human Turing 

test" to categorize text pictures from scanned books 

[29]. With an estimated average accuracy surpassing 

99%, reCAPTCHA has identified millions of phrases 

since the program was deployed.  

 

CrowdSearch is a web-based, near-real-time picture 

search engine that uses human judgment to increase 

search accuracy [30]. Human workers are 

progressively and sequentially hired using arrival-rate 

estimations and a majority-voting system.  

 

FoldIt! is an online game that challenges players to 

solve challenging protein-folding puzzles. By 

working together with cutting-edge protein-folding 

models, participants may traverse the state space of 

protein configurations more quickly than 

unsupervised algorithms [6].  

 

Crowd Programming. Crowdsourcing services like 

Amazon Mechanical Turk have seen heavy ad hoc 

use, while programmatic worker management has 

received less attention. To facilitate the submission, 

tracking, and checking of tasks, Amazon Mechanical 

Turk offers a low-level API.  

 

One way to streamline the administration of 

Mechanical Turk activities is via TurKit, a scripting 

system [21]. As an extension of JavaScript, TurKit 

Script provides a templating capability for typical 

Mechanical Turk activities and incorporates 

checkpointing to prevent the re-submission of failed 

scripts. To simplify Mechanical Turk jobs, the online 

application CrowdForge applies an abstraction similar 

to MapReduce [8, 18]. Partition, map, and reduce are 

the three main ways in which programmers break 

down jobs. Collecting results and assigning tasks to 

many people is handled automatically by 

CrowdForge. Automan handles scheduling, pricing, 

and other tasks automatically; TurKit and 

CrowdForge don't.  

 

quality assurance; moreover, TurkIt's incorporation 

into JavaScript further restricts its applicability to 

applications requiring extensive computation.  

 

By adding annotations to standard SQL queries, 

CrowdDB simulates crowdsourcing as an add-on to 

relational databases, allowing users to outsource 

database cleanup duties to the SQL runtime [14]. In 

order for SQL's query planner to minimize costly 

operations, the SQL runtime is crowdsourcing-aware. 

Because it is not a general-purpose computing 

platform, CrowdDB uses majority voting as its only 

quality control mechanism, in contrast to AUTO-

MAN.  

 

An whole calculation, including the "programming" 

of the job, is what Turkomatic hopes to crowdsource 

[19]. In Turkomatic, the system is given tasks in plain 

English and the runtime consists of two steps: 

mapping and reducing. Workers lay out a strategy for 

execution in the map stage, and the reduce step is 

when it all comes to a halt. Similar to AUTOMAN, 

Turko-matic can build computationally sophisticated 

systems with no limits. On the other side, Turkomatic 

isn't compatible with traditional programming 

languages and can't manage budgets or quality 

control.  
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An alternative to MapReduce for parallel 

programming, Jabberwocky offers a human-

computation stack on top of ManReduce [1]. To 

facilitate programmers' interactions with Dormouse, a 

resource-management layer that schedules jobs on 

ManReduce, a Ruby DSL named Dog is available. 

Jabberwocky has a set price structure and a fixed, 

optional quality control system that is based on 

majority vote.  

 

Checking for Defects in Quality. Commercial 

crowdsourcing systems are the focus of 

CrowdFlower, a closed-source online service [25]. In 

order to improve quality, CrowdFlower employs a 

"gold-seeding" strategy, which involves introducing 

questions into the question pipeline that already have 

known answers, in order to identify workers who are 

prone to make mistakes. In an attempt to alleviate the 

requester's load associated with gold-generation, 

Crowd-Flower adds techniques to automate produce 

this data via "fuzzing" while the system executes 

actual work. Finding previously unseen kinds of 

mistakes still need human intervention. Trust in the 

quality of a certain worker is the core of this strategy, 

as it is in previous work in this field [17]. Rather  

 

AUTOMAN tackles the issue of job quality head-on, 

rather than relying on the assumption that one can 

predict how well a worker would do a new 

assignment based on their previous results.  

 

In order to teach people to execute a certain job 

successfully, Shepherd facilitates direct feedback 

between task researchers and task workers, with the 

goal of increasing quality [10]. On the other hand, 

AUTOMAN doesn't need constant communication 

between requesters and workers.  

 

A new method of document quality control called 

"find-fix-verify" is introduced by Soylent. There are 

three separate steps that may be crowdsourced: 

discovering faults, repairing them, and verifying the 

changes [4]. While AUTOMAN does not yet allow 

open-ended queries, Soylent is able to manage them. 

While AUTOMAN does provide quantifiable 

assurances on the output quality, Soylent's method 

does not.  

 

 

 

7. Future Work 

The current AUTOMAN prototype will serve 

as a foundation for future developments in 

the following areas:  

Broader question classes. Question types 

supported by the current AUTOMAN system 

include limited free-text, radio-button, and 

checkbox options. Unrestricted free-text 

replies, often known as open-ended 

questions, will soon be a part of 

AUTOMAN's capabilities. An additional 

stage that relies on workers rating responses 

and then doing quality control on those 

rankings will be included into the validation 

process. 

Extra tweaking that is automated. The 

current state of AUTOMAN prevents us 

from differentiating between two possible 

scenarios: one in which workers do not show 

up because we do not provide a strong 

incentive, and another in which workers are 

just unavailable because of the time of day. 

We should avoid increasing incentives in the 

second scenario as it would be ineffective. In 

a future release, we want to look at ways to 

modify this behavior.  

 

Visualization tools. Although AUTOMAN 

conceals the management details of human-

based computing behind an abstraction layer, 

it might be helpful to remove this layer 

during debugging to see the progress of 

activities. Currently, AUTOMAN has a basic 

logging system; but, when the number of 

tasks grows, it becomes more difficult to 

navigate the logs. Adding a web service that 

AUTOMAN programmers may use to access 

the system's tasks is our proposal to expand 

the AUTOMAN runtime system, which 

already functions as a server. Our early plans 

include making it possible to search for tasks 

that meet certain criteria and providing 

visualizations of the execution graph, which 

will include summaries.  

 

Event planner. Currently, in order to debug 

AUTOMAN apps, one must run their 

program with the sandbox mode flag 
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enabled. This will cause Mechanical Turk to 

send tasks to their sandbox website, where 

developers may work on their programs. The 

number of separate workers needed to 

engage in a calculation might be large, thus 

although this is useful for previewing a job, it 

is not suitable for driving the behavior of the 

whole program. This sandbox functionality 

may not be present in other crowdsourcing 

backends also. We want to construct an 

application trace replayer that can mimic the 

backend with actual data and an event 

simulator that can produce worker replies 

from random distributions.  

 

 

 

 

 

 

8. Conclusion 

Computers still struggle or fail miserably at many 

things that people can do effortlessly. In this article, 

the pioneering crowdprogramming system, AUTO-

MAN, is introduced. Combining human and 

computer computing is what crowdprogramming is 

all about. Programmers may quickly incorporate 

human-based computation into their applications with 

the help of AUTOMAN, which automates quality 

control, scheduling, and budgeting. 
. 
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