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Abstract:  

 

Because they are often placed in an open setting, wireless sensor networks—that are extensively  

used in transportation, industry, and the military—are susceptible to many types of assaults. This 

paper presents an evolutionary game-theory-based proactive defence model for WSNs, with an 

emphasis on the node's limited capacity to learn the evolution of rationality from various attacker 

strategies and execute dynamic strategy adjustments to attain optimal defence. By using this 

method, we were able to significantly reduce costs (such as energy usage and equipment waste) 

while simultaneously increasing the nodes' useful life. The whole wireless sensor network may be 

efficiently deployed by using the suggested approach. 

 
1. Introduction 

 
1.1. Wireless sensor network 

 
A group of interconnected wireless sensor nodes is called a wireless sensor network [1]. A 

basestation, sometimes called a "gateway," is the central node in a wireless sensor network (WSN) 

and it communicates with the individual nodes in the network over radio connections. At the 

wireless sensor node, data is compressed and gathered before being sent directly to the gateway or, 

if necessary, via additional wireless sensor nodes to the gateway. The gateway link then presents the 

sent data to the system [2]. The perfect wireless sensor would be part of a network, have a low 

power consumption, be intelligent and software configurable, gather data quickly, be accurate and 

dependable over time, be inexpensive to buy and set up, and need little in the way of maintenance. 

We are really excited about the limitless possibilities of this new technology in a wide variety of 

fields, such as smart environments, crisis management, healthcare, transportation, entertainment, 

and the military [3].  

Deploying wireless sensor networks in an open, unattended, and potentially hostile environment is 

not uncommon. Sensor nodes are more susceptible to a wide range of possible assaults from hostile 

actors due to their inherent power and memory limits [4–7]. Selective forwarding, sinkhole attacks, 

Sybil attacks, and bogus data injection to disrupt data aggregation are some of the security concerns 

that wireless sensor networks have been confronting recently [8–12]. When it comes to security, 
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however, almost everything that's now available is passive; for example, wireless sensor networks 

only react appropriately when attacked. 

 

after the discovery of assaults. Because of their limited computational and energy resources, 

wireless sensor networks may not be able to react quickly enough to prevent an attacker from 

destroying their systems.  

 
 

1.2. Game theory 

 
Game theory is a branch of applied mathematics that is used in the social sciences, most 
notably in economics, as well as in the fields of biochemistry, ecology, evolutionary biology, 

computer science, philosophy, politics, and international relations. The goal of game theory is to 

provide a mathematical model of how people act in strategic settings, or games, where their own 

decision-making outcomes are contingent on those of their opponents. The foundation of traditional 

game theory is the idea that players should be completely rational while solving issues; this implies 

that players should be self-aware, capable of analytical thinking, have sufficient memory capacity, 

and be meticulous [13]. Players, according to conventional game theory, should never make a 

mistake and should always assume that their opponents will do the same.  

The high expectations of complete reason in a gaming context make it difficult for players to apply 

game theory in practice. In the 1900s, Weibull put out the idea of evolutionary game theory in a 

methodical way. This theory offers a player with limited rationality and the dynamics of the game 

process, as opposed to the completely rational assumption of classical game theory. In a game with 

bounded rationality, the player has partial knowledge of the game's state (such as the payout or 

action strategies) and no idea of the game's overall state (such as these things) [14–16]. No player 

can hope to discover the perfect strategy after a single game; instead, they must devote many hours 

to studying the game and practicing their imitations. 

A wireless sensor network is defined by its huge number of nodes and the dynamic topology caused 

by the frequent joining and departing of regular nodes; so, the bounded rationality assumption is 

applicable to such a network. In reality, sensors can only provide you a partial picture of the 

network's condition. Obtaining and maintaining the state of the whole network is impractical and 

counterproductive for resource-constrained wireless sensor networks due to the high amounts of 

energy and storage used by nodes.  

 

 

 
1.3. Wireless sensor network using evolutionary game theory 

 

The article suggests a paradigm for active defence of wireless sensor networks based on 

evolutionary game theory. As a result of dynamic evolution, nodes may actively and dynamically 

adapt their defensive measures to deal with various types of attackers. In order to learn, imitate, and 

simultaneously alter their methods, the nodes must stay in the game until they discover the optimal 

strategy that suits their interests and needs. Thus, it may save energy and other resources to increase 

the overall efficiency of wireless sensor networks by extending the life cycle time of network nodes.  

Here is how the remainder of this paper is structured. We provide the most recent use of game 

theory to the topic of security for WSNs in Section 2. Section 3 lays forth the framework for 

wireless sensor network security as an attack-defend game. Section 4 examines the security of 
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wireless sensor networks via the lens of evolutionary game theory. We provide some numerical 

explorations in Section 5. Part 6 provides the results and recommendations for further research. 

 

 
2. Related works 

3. Numerous studies have addressed the difficulties associated with wireless sensor network 

security, with a particular focus on the application of game theory to this increasingly popular 

area of study. The authors of [17] offered a model for active defence in wireless sensor 

networks, while those of [18] suggested a model for defensive network security assessment 

charts, portrayed the attacker and defender in a non-cooperative game, and, finally, used this 

information to construct a proactive evaluation and active defence model for network security 

by choosing the best algorithm. For the purpose of active defence and security evaluation of 

network information systems, many models have been given in [19], such as the defence graph 

model, the attack-defense taxonomy and cost quantitative technique, and the attack-defense 

game model. In order to avoid denial of service attacks, the authors of [20] presented two new 

strategies and reframed the attack-defense issue as a nonzero-sum, non-cooperative game 

involving a wireless sensor and an attacker. In [21], the study is expanded upon with an 

emphasis on evaluating the qualities of security enforcement systems that use auction theory to 

ward against denial-of-service attacks in WSNs. By using game theory to the analysis of 

commercial information security, the author of [22] finds an equilibrium that takes into account 

the penalty parameters of both the attacker and the defender. 

 

 

 

4. A game theory model of security 

 

Within the framework of a game theory model, we provide a quantitative account of a social 

scenario whereby several individuals, or players, engage in either cooperative or competitive 

behaviour. An issue known as collusion might arise when there are more than two participants in 

the system, since some of the players may conspire with each other. There could be a single step for 

each participant or several steps in a sequential game. One may encounter a competitive 

circumstance only once, or they may occur repeatedly. All participants may have complete or partial 

knowledge of the rules of engagement and the rewards. 
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Table 1 

The attack–defense payoff matrix. 
 

Defender Attacker   

 Attack No attack 

Deploy 

Not to deploy 

(RD − CD − P 1 L, P 1 R A − CA ) 

(−P 2 L, P 2 R A − CA ) 

(RD − CD , 0) 

(RD , 0) 

 

 

The players, the strategy spaces, and the reward function are the three main components of a game 

model. This is the game model expressed in terms of the characteristics of WSNs.  

The attackers here are assumed to be nodes with the goal of stealing resources from other nodes in 

order to increase their own lifespan. Having said that, they aren't evil or self-centred in any way. We 

have also included a parameter CA to represent their cost to attack in the proposed model. The 

likelihood of a successful assault increases when a node zeroes in on a single target. So, the 

likelihood of a successful assault is the only thing that matters when deciding whether an attack is 

one-to-one or one-to-many based on the number of targets. 

 

 
4.1. Players 

 

5. There are two groups of players in the game, each with their own unique set of skills and 

abilities related to the security of wireless sensor networks. One group is the Defenders, who 

are good at defending the network, and the other group is the Attackers, who are good at 

launching attacks. Players choose between two roles in the game: defender and attacker. 

5.1. Strategy space 

 

Definition 3.1. The probability distribution across a player's pure strategy options, whether some or 

all of them are used, is called a mixed strategy.  

 

Just like an attacker, a wireless sensor node will evaluate its own resources (power, data transfer 

rate, and storage space) before deciding whether to implement the security measure. Even more 

crucially, a hybrid approach that allows the defence to cover ground while the attacker avoids it 

increases the likelihood of a successful return.  

 

individuals involved. Defence strategy set = SD (deploy security measures, not to deploy security 

measures) and Attack strategy set = S A (attack, not to attack) are the two sets of strategies in play 

here.  

 
Payoff function 

We say that UD is the Defender's payment function and U A is the Attacker's payment function. 
 

Definition 3.2. The anticipated payoff of a mixed strategy X ∈ Θ is n, given that there exists a pure 

strategy S = {S1, S2, •••, Sn}.  

 

The function ui(x) might be written as X(s) πi(x) (1).  

 

With k=1,  
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This is where the i strategy, the k mixed strategy, and the rate of employing this approach are 

represented by i, k, and X(s), respectively.  

 

The anticipated payoff of this technique is denoted by πi(x) and X(s) is the rate at which it is used.  

 

The following notations are used in this research in accordance with the features of wireless sensor 

networks.  

 

A player may earn in-game currency known as RD (Reward of Defender) when they successfully 

transmit data packets. Earnings go up when the importance of the sent data goes down, and vice 

versa.  

 

Defender's deployment of security measures may result in energy, bandwidth, and other resource 

consumption, which is represented as CD (Cost of Defender). Because of this, we will pretend that 

RD is greater than CD.  

 

The compensation obtained from the Attacker via the attack, which may take the form of routing 

information, documents, or other resources, is denoted as R A (Reward of Attacker).  

 

The cost of an attack, or CA, is the amount that the attacker pays to launch an attack, which may 

need the use of resources (both physical and digital) and may result in legal repercussions.  

 

When assaulted, the defender is lost, denoted by L.  

 

If the defence decides to implement security measures, the attacker has a 1 in P (Probability 1) 

chance of successfully launching an attack.  

 

P 2 (Probability 2) is the chance that the attacker will succeed in their attack if the defence does not 

use any security measures.  

 

The attack-defense payoff matrix is shown in Table 1 and is based on the parameters and 

assumptions mentioned before.  

1. Analysis of the active defense 

 
1.1. Evolutionary stable strategy 

 

Important ideas in evolutionary game theory include the replicator dynamic and evolutionary stable strategy 

(ESS). Evolutionary stable strategies emphasise the significance of mutation, while the replicator dynamics 

model links selection with the idea that a subpopulation expands (contracts) when it employs above-average 

(below-average) strategies [19]. We will assume that the majority of sensor nodes in the initial population 

follow strategy x, whereas a small subset of nodes ε (0, 1) will follow approach y. Therefore, the odds of an 

opponent playing the incumbent strategy x and the mutant strategy y, respectively, are 1 ε and ε, when an 

individual is chosen to play the game. Our tagged person's anticipated payout upon encountering another 

individual who implements strategy y is defined as u(x, y). This means that in order for a strategy x to be 

considered evolutionarily stable, its reward must be greater than that of strategy y. 
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u
  

x, εy + (1 − ε)x
   

> u
  

y, εy + (1 − ε)x
 

(2) 

Definition 4.1. A strategy x is said to be evolutionary stable if for every strategy y /= x there exists 
some σ ∈ (0, 1) such that inequality (2) holds for all ε ∈ (0, σ) [23]. 

1.2. Replicator dynamics 
 
Assumption of innate, pure or mixed strategies by individuals is essential to evolutionary stability. On the 

other hand, the standard model of replicator dynamics assumes that people can only be taught pure tactics 

[23]. Based on their consideration of a large population of people trained to the same set of pure strategies K, 

Taylor and Jonker developed a dynamic selection method called replicator dynamics. Let p(t) = (i∈K) pi(t) 

represent the whole population, and let p(t) be the number of individuals now programmed to pure strategy i 

∈ K. Next, the state of the population is represented by the vector x(t) = (xi(t), •••, xk(t)), where xi(t) 

represents a portion of the population. If the population is in state x and the average payout is u(x, x), then 

the anticipated payoff employing pure strategy i is u(si, x). As a result, the replicator dynamic equation =  
 

dxi 

dt   
=  u(si, x) − u(x, x) xi. (3) 

It is clear that if strategy i results in a higher payoff than the average  level, the population  

share using  i  will  grow, and  vice versa. 

 
1.3. Analysis 

 

Take the defensive population as a whole and assume that X% of players use the security measure 

technique, with 1 X being the percentage of players who do not. We also assume that Y represents the 

fraction of the attacker population that uses the attack technique, and that 1 Y represents the fraction of 

the attacker population that does not. Take into consideration that X and Y do not have static values but 

rather fluctuate over time. The players constantly adapt their tactics by watching other players based on 

the payout, as we analyse problems on a limited rational framework. Dynamic adjustment is an ongoing 

process of learning and growth.  

 

1.3.1. ESS of defenders 
• The expected payoff obtained by employing security measure strategy: 

E(UD) = Y (RD − CD − P 1 L) + (1 − Y )(R D − CD) 

= RD − P 1 LY − CD (4) 

• The expected payoff obtained by employing no security measure strategy: 

E(UND ) = Y (−P 2 L) + (1 − Y )RD 

= RD − Y P 2 L − RD Y (5) 

• The average expected payoff of the population of defender: 

E(D) = XE(UD ) + (1 − X)E(UND ) 

= X(RD − P 1 LY − CD) + (1 − X)(R D − Y P 2 L − RD Y ) (6) 
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dY 

    

    

 

According to Eq. (3), we can get the equation of replicator dynamics for the 
defender: 

dX  

dt = X  E(UD ) − E(D) 

= X(1 − X)(R D Y  + Y P 2 L − Y P 1 L − CD) (7) 

1.3.2. ESS of attackers 
• The expected payoff obtained by employing attack strategy: 

E(U A) = X(P 1 R A − CA) + (1 − X)(P 2 R A − CA) 

= XR A(P 1 − P 2) + P 2 R A − CA (8) 

• The expected payoff obtained by employing no attack strategy: 

E(UNA) = 0 (9) 

• The average expected payoff of the population of attacker: 

E(A) = Y E(U A) + (1 − Y )E(UNA) 

= Y   XR A(P 1 − P 2) + P 2 R A  − CA

 (10
) 

According to Eq. (2), the equation of replicator dynamics for the attacker can be 
written as 

 

dt = Y   E(U A) − E(A) 

= Y (1 − Y ) XR A(P 1 − P 2) + P 2 R A − CA

 (11
) 

1.4. Analysis of active defense 

 

The replicator dynamics system of the attackers and defenders is formed by formulae (7) and (11) 

according to the preceding study of the evolutionary game. Hence, we may write (X(t), Y(t)) as 0 

and 1 and 0 and 1 for any starting points (X(0), Y(0)) that are positive integers. An evolutionary 

game's dual mix-strategy (X (1 X), Y (1 Y)) corresponds to any point (X, Y) on the replicator 

dynamics solution curve or attack-defense system. E1(0, 0), E2(1, 0), E3(0, 1), and E4(1, 1) are the 

five obvious local equilibrium points in a dynamic copy system. 

0 <
   CA − P 2 R A      < 1

 

P 1 R A − P 2 R A 

and 

0 <
 CD < 1, 

RD + P 2 L − P 1 L 
E5(

  C A −P 2 R A     , CD ) is an equilibrium 
point too. Actually, we could know that 0 < CD < 1. RD > CD  is 
the 

P 1 R A 
−P 2 R 

A RD +P 2 L−P 1 L 

http://www.ijasem.org/


        ISSN2454-9940 

        www.ijasem.org  

           Vol 18, Issue 1, 2024 
 

 

 

 
  

856 

D P 2 L−P 1 L 

        

ϕ
=

 

D P 2 L−P 1 L 

RD +P 2 L−P 1 L 
direct reason for defender to employ the security strategy. Obviously,  P 2 > P 1, so 0 < R   + 
CD < 1 is always true. 

These points of equilibrium represent a defender-attacker evolution game. The stability of the 

defender-attacker equilibrium is dependent on the comparison of the results of the strategy choices 

in the game. Even after reaching the equilibrium method, the person continues to fluctuate 

continually. Here we will examine the evolution game of attacker-defender separately before 

combining our findings. 
 

(1) Evolutionary stability of the defender. 
 

In replicator dynamics, the defender's equation (6) states that if dX = 0, three possible values may 

be obtained: X = 0, X = 1, and Y = R + CD. It is only a strategy that can tolerate minute deviations 

that may be considered an evolutionarily stable approach, according to the notion of evolutionary 

stability. According to the mathematical "Stability Theory" of differential equations, dX must be 

smaller than 0 if the deviation causes X to be greater than ESS.  

 

 

 

In contrast, dX is considered negative if the departure causes X to be less than ESS.  

 

needs to be greater than zero. During the  

 

The evolutionary stable strategy (ESS) of an evolutionary game is located at the point where the 

replicator dynamics curve intersects the horizontal axis, with a negative slope of the tangent. This 

junction is shown in the diagram of the replicator dynamics equation.  

 

The vector field in the open domain must be continuously differentiable for the Liouville formula to 

be relevant to autonomous differential equations. The degree of divergence at any given place is 

defined as the point where the trace of  

 
Fig. 1. The phase diagram of replicator dynamics when Y > R    + 

CD . 

 

matrix Jacobs. Particularly, vector field whose divergence is zero is called no divergence. It 

could be shown that this feature means that the  corresponding  flow  maintain  its  volume.  

Liouville  formula  shows  that  the  time-derivative  of  the  volume  of A exists and equals to 

the integrals of divergency degree of A. 

Intuitively, we can imagine that the asymptotically  stable state of vector field whose 

divergence degree is zero is not tight. If x belongs to X is asymptotically stable, then there 

is gradually shrinking to the point of a neighborhood of x, which means that as time tends 

to infinity, the volume of the neighborhood shrinks to zero. 
 

k 

div ϕ(x) 
∂  i 

(x) (12) 

i=1 
∂xi
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dt 

D P 2 L−P 1 L 

D P 2 L−P 1 L 

Liouville formula shows that the time-derivative of the volume of A exists and equals to the integrals of divergency degree 

of A. 

dvol[ A(t)] 
= 

∫ 

div
  
ϕ(x)

 
dx (13) 

Theorem 4.2. The asymptotically stable state of vector field whose divergence is non-negative is not tight. 

 
Proof. Here is the formulated version: It is not tight that the asymptotically stable state of the vector field is ϕ: X → R is 

continuously differentiable (div[ϕ(x)] > 0 is always true), given that X ⊂ Rk is an open domain.  

Pretend that the state of ℅ /= A ⊂ X that is asymptotically stable is compact. In this case, the volume of A is an element 

of R+, and for any xo in the neighbourhood A of X, there is a closure B such that the formulae limt→∞ε(t, xo) → A are 

true without exception. For any xo that is a member of B, define B(t) as the set of all possible values of ξ(t, xo). For any 

ε > 0, we can demonstrate that the Hausdorff distance d(x, A)< ε is always true if and only if there exists Tε. Then, as 

limt approaches infinity, the volume of B(t) equals the volume of A. Voltage[A] < Voltage[B(0)], obviously, < 0. It is 

not always true for every x ∈ X that div[ϕ(x)] > 0, as stated in Eq. (13).  

 

We take it as read that there is no finite duration during which the set A of distances from any location x ∈ B(t) may 

remain arbitrarily small. Then, for any value of k, the inequality d[ξ(tk, xk), A] ≥ ε will hold since ε is greater than zero  

and the time series tk is expanding indefinitely. A convergent subsequence is included in the sequence (xk) as per the 

Bolzano-Weierstrass theorem. Assuming xk → x∏ for every x∏ ∈ B is a general assumption.  

 

Assuming A is Lyapunov stable, the statement d(ξ(t, xo), A) < ε ∀t ≤ 0 is always valid for any xo in the neighbourhood 

C of A. A neighbourhood D of A is defined as D ⊂ C and for any integer t∗ that is greater than or equal to 0 and less 

than or equal to mint, ξ(t, x∗) is a neighbourhood of D. In order for ξ to be continuous, there must be a neighbourhood E 

such that for every t∎, xo ∈ E, ξ(t∎, xo) ∈ C. Despite this, the premise [23] is contradicted since tk > t∏ and xk ∈ E are 

valid for any sufficiently high values of k. Consequently, d(ξ(tk, xk), A)< ε.  

 

It is clear that ESS values are Y dependent from the study given above. In most instances, we encounter:  
 

Theorem 4.3. When Y > R   + 
CD , only X = 1 is the evolutionary stable strategy of evolutionary 

game of the defender, namely all 

the defenders prefer to the deployment security measure strategy. 
 
Proof. From In Figure 1, which shows the phase diagram of the replicator dynamics equation for 

the defender, we can see that the horizontal axis and the replicator dynamics curve connect at two 

locations, X = 0 and X = 1. X = 1, being the sole evolutionary stable strategy, is preferred by all 

defenders over the deployment security measure approach, since the slope of the tangent at the 

intersection of X = 0 is positive and negative. 
 

Theorem 4.4. When Y = R 

+ 
CD 

, there is no evolutionary stable strategy for the defender. 
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dt 

P   R   −P   R1    A

 2    A 

P   R   −P   R1    A

 2    A 

P 1 R A −P 2 R A 

= 

D P 2 L−P 1 L 

D P 2 L−P 1 L 

D P 2 L−P 1 L 

 

 
Fig. 2. The phase diagram of replicator dynamics when Y = R  + 

CD . 

 

Fig. 3. The phase diagram of replicator dynamics when  Y < R    + 
CD . 

 

Proof. The replicator dynamics curve and the horizontal axis overlap each other, as shown in the phase diagram of 

replicator dynamics for defence (Fig. 2). There is no stable evolutionary strategy in this scenario because X cannot 

recover from the minute variation. 

Theorem 4.5. When Y < R   + 
CD , only X = 0 is the evolutionary stable strategy of evolutionary game of the defender, 

namely all 
the defenders prefer to no deployment security measure. 

 

ProofFigure 3 shows the replicator dynamics phase diagram, which shows that the horizontal axis and the replicator 

dynamics curve connect at two points: X = 0 and X = 1. All defenders prefer not to deploy security measures since the 

evolutionary stable strategy of the evolutionary game is X = 0, since the slope of the tangent at the point of intersection 

X = 0 is negative and the slope at the point of intersection X = 1 is positive. 
Evolutionary stability of the attacker. 

 

According to  the  equation  of  replicator  dynamics  (10),  let  dY  = 0,  then  we  can  obtain  three  values,  i.e.  Y = 0,  Y = 1, 

X =  CA −P 2 R A   . 

Similarly the values of ESS depend on X , and we have the following 
three cases as well: 

Theorem 4.6. When X > C A −P 2 R A , only Y = 0 is the evolutionary stable strategy of evolutionary game of the attacker, namely all 

the attackers prefer to no attack strategy. 

 
Proof. The attacker's replicator dynamics phase diagram (Fig. 4) shows that the horizontal axis and replicator 

dynamics curve connect at two locations, Y = 0 and Y = 1, respectively. Because the tangent slope at Y = 0 

is negative and the tangent slope at Y = 1 is positive, the only stable evolutionary strategy for the attackers in 

the evolutionary game is Y = 0, meaning they all favour the no attack approach. 
 

Theorem 4.7. When X   C A −P 2 R A   , there is no evolutionary stable strategy for the attack. 
P 1 R A −P 2 R A 

Proof. From the phase diagram of replicator dynamics for the attacker (Fig. 5), we  can  see  that  the  curve  of  replicator 
dynamics and horizontal axis overlap  each  other.  In  this  case,  Y  cannot  recover  from  the  minute  deviation,  and  thus  it  is 

not the evolutionary stable strategy for the attack. □ 

Theorem 4.8. When X < C A −P 2 R A , only Y = 1 is the evolutionary stable strategy of evolutionary game for the attacker, namely all 

the attackers prefer to attack strategy. 
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Fig. 4. The phase diagram of replicator dynamics when  X >   CA −P 2 R A      . 
P 1 R A −P 2 R A 

 

Fig. 5. The phase diagram of replicator dynamics when X C A −P 2 R A      . 
P 1 R A −P 2 R A 

 

Fig. 6. The phase diagram of replicator dynamics when  X <   CA −P 2 R A      . 
P 1 R A −P 2 R A 

 
Proof. Figure 6 shows the attacker's replicator dynamics phase diagram; at the junction of the curve 

and the horizontal axis, there are two locations, Y = 0 and Y = 1, as can be seen. Given that the 

tangent slope at Y = 0 is positive and the tangent slope at Y = 1 is negative, the only stable 

evolutionary strategy for the attacker in the evolutionary game is Y = 1, meaning that all attackers 

choose this approach. 
Active defense of the system. 

 

The ideal scenario, as seen through the lens of wireless sensor networks, is one in which neither the 

attackers nor the sensor nodes take any security measures. So as to efficiently save energy, storage 

space, etc., the system should converge to the state (0, 0). 
 

Theorem 4.9. (0, 0) is the only evolutionary stable of the system strategy if and only if P 2 R A − CA  < 0. 

Proof. Proof of existence: According to Eq. (7) and Eq. (11), a Jacobin matrix can be generated which is denoted by  J , 

J 
(1 − 2 X)(Y R D + P 2 LY  − P 1 LY  − CD) X(1 − X)(R D + P 2 L − P 1 L) 

Y (1 − Y )(P 1 R A − P 2 R A) (1 − 2Y )(P 2 R A − CA + XP 1 R A − XP 2 R A) 

Purports to (0, 0) is the evolutionary stable strategy of the system if and only if det J > 0, tr J < 0 [21]. Using (0, 0) 

substitute in the Jacobi matrix J , we have 

J 
−CD 0 

0 P 2 R A − CA 
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Table 2 

The local stability of equilibrium point (EP) of system. 
 

EP (X, Y ) det J  tr J  Local stability 

(0, 0) (−CD ) · (P 2 R A − CA ) + −CD + (P 2 R A − CA ) − ESS 

(0, 1) (RD − CD + P 2 L − P 1 L) · (CA − P 2 R A ) + (RD − CD + P 2 L − P 1 L + CA − P 2 R A ) + no stability 

(1, 0) CD · (P 1 R A  − CA ) − CD + (P 1 R A  − CA ) indefinite addle point 

(1, 0) (CD − RD + P 1 L − P 2 L) · (CA − P 1 R A ) − (CD − RD + P 1 L − P 2 L) + (CA − P 1 R A ) indefinite addle point 

 

 

 

 
Fig. 7. The ESS of defenders when Y = 0.9. 

So  the  determinant  of  the  matrix   J   is  det J  = (−CD )(P 2 R A  − CA)  > 0,  and  the  track  of  matrix   J   is  tr J  = (−CD ) + 

(P 2 R A − C A )< 0, finally we can get P 2 R A − CA  < 0. 

Proof of unicity: When (P 2 R A − C A )<  0, (1, 1) and (0, 0) are saddle points, (0, 1) has no stability, so (0, 0) is the only 

evolutionary stable strategy of system. Table 2 shows the results in details.    □ 

If we set p2 R A CA < 0 according to Theorem 4.9, we will have to either increase the cost of 

assault CA or decrease the payout of attack R A respectively. Subsequently, defenders may adapt 

their defensive techniques to effectively counter the attacker's various tactics by being active and 

dynamic. 
 

2. Numerical evaluation 

2.1. Matlab is used to simulate the model in this article. Please see below the list of parameters that 

were used for the simulation. We normalised all parameters to values in [0, 1] since the 

measurement units of payout, cost, and loss parameters are different. We will assume that R A 

= 0.8 × RD and CA = 2 × CD based on the features of wireless sensor networks. 
Evolutionary stability of wireless sensor nodes 

 
Set the values of parameters as follows,  RD    1,  CD    0.3,  L     1,  P 1     0.5,  X     0.5. According to the values of pa- 

rameters, we can calculate the critical value of deployment security measure and no deployment security measure, then 

Y                 CD  0 2. Now three simulations with different values of Y are analyzed respectively: 
(RD +P 2 L−P 1 L) 

(1) When the value of Y is larger than the critical value, e.g. Y = 0.85, Y = 0.9, Y = 0.95, from Fig. 7, we can see defenders 

can resist the small deviation from the disturbance and eventually converge to the state of X = 1. 

(2) When the value of Y equals the critical value,  e.g.  Y = 0.2,  from  Fig.  8,  we  can  see,  the  defenders  cannot  resist  the 

small deviation from the disturbance and also they cannot converge to the state of X = 1. 

(3) When the value of Y is smaller than critical value, e.g. Y = 0.05, Y = 0.1, Y = 0.15,  from  Fig.  9,  we  can  see  that 

defenders can resist the small deviation from the disturbance, and eventually converge to the state of X = 0. 

Now we can come to the conclusion that the theoretical analysis about the defender’s ESS is correct. 
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Fig. 8. The ESS of defenders when Y = 0.2. 

 
 

 

 

 
Fig. 9. The ESS of defenders when Y = 0.1. 

 
2.2. The evolutionary stability of attackers 

 
The following is how you may set the parameters: The critical value of attack and the absence of attack may 

be determined by X~C A −p2 R A 0 1, where R A is 0.8, CA is 0.6, and P 2 is 0.5. Here we have a look at 

three separate simulations, each with a unique value of X:  

The relation p1 R A − p2 R A is defined in (1).Figure 10 shows that the attackers are able to withstand the 

little departure from the disturbance and converge to the state of Y~0 when the value of X is greater than the 

critical value, for example, X~0.75, X 0.8, and X 0.85.  

 

At critical values of X (e.g., X = 0.05, X = 0.1, or X = 0.15), as shown in Figure 11, attackers are unable to 

withstand even a minor deviance from the disturbance and so cannot converge to a stable state.  

 

(3) As shown in Figure 12, attackers are able to withstand the little departure from the disturbance and 

converge to the state of Y = 1 when the value of X is lower than the critical value, for example, X = 0.03, X 

= 0.05, or X = 0.07.  

In conclusion, the simulation findings show that the theoretical analysis of the attacker's ESS was valid.  
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Fig. 10. The ESS of attackers when  X = 0.8. 

 

 

 

Fig. 11. The ESS of attackers when  X = 0.1. 

 
2.3. Evolutionary stability of the system of attack–defense 

 
There is no stability among attackers and defenders (9.3.1).  

Parameter values should be set as follows: The variables are as follows: RD = 1, CD = 0.3, L = 0.7, P 1 = 0.3, P 2 = 0.8, 

X = 0.5, R A = 0.8, CA = 0.6. 

The attackers and wireless sensor nodes are in an unstable attack-defense cycle when P 2 R A > CA, as shown in Fig. 

13. It wreaks havoc on resource-constrained wireless sensor nodes. Instead of making reasonable and timely plans for 

security, we can only choose a strategy at random, which reduces the efficacy of defence.  

 

All parties involved, including attackers and defenders, are stable at 9.3.2.  

 

The following changes are made to the parameter values and the value of CD in accordance with Theorem 4.9: 1 for RD 

and 0.4 for CD,  

 

R A = 0.8, CA = 0.8, X = 0.5, P 1 = 0.3, P 2 = 0.8, L = 0.7, and Y = 0.5.  

 

Figure 14 illustrates that attackers will have a harder time launching successful attacks when wireless sensor nodes 

increase the Security Defence level, which in turn increases the deployment security measures. As a result, the cost of 

attacks will exceed the benefits gained from them, meaning that R A < CA. The findings of the simulation indicate that 

wireless  
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Fig. 12. The ESS of attackers when  X = 0.05. 

 

 

 
 

Fig. 13. The ESS of system when  P 2 R A > CA . 
 

 

an evolutionary steady state is achieved by both the sensor nodes and the attackers. Based on this, the theoretical analysis presented 

in Section 3 of this study about the evolutionary stability of attacker-defender is supported. Nodes in resource-constrained wireless 

sensor networks may dynamically alter their defensive cost in response to the values of data to be sent, as the attack is real and 

objective. Because of this, attackers will find wireless sensor networks to be a safer alternative, since the costs of an attack will 

outweigh the benefits of a successful assault. In this way, wireless sensor nodes may protect specific targets, reduce energy 

consumption, and remain operational for a longer period of time inside the network. 

9.3.1 An effect of P 1 on the ESS convergence rate  

To begin, set the parameters to the following values: The significance levels are P=0.1, P=0.3, and P= 0.5. 

From Figure 15, we may deduce that the success probability of an assault, P1, has no effect on the rate of accessing ESS. No matter 

how high the assault's success probability is, the utility of the attacker is always negative since the rewards of a successful attack are 

always less than the cost of an attack. Accordingly, if the assailant is being rational, then refraining from attacking is the wisest 

course of action.  
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Fig. 14. The ESS of system when  P 2 R A < CA . 

 
 

 

 

 

Fig. 15. The ESS of system when the different value of  P 1. 

2.3.1. Different values of P 2 affect the convergent rate of ESS 

P 2 = 0.1, P 2 = 0.3, and P 2 = 0.5 are the parameter values that should be set.  

The rates at which the attacker and the defender attain ESS are directly proportional to the magnitude of p2, as seen in Figure 16. This lines up 
with the idea that if the defence opts out of using security measures, the attack has a good chance of succeeding. Even though it should be able 

to pay the cost CA, an attacker can more easily gain the R A with a greater p2. For this reason alone, the attacker will choose this attack 

approach. In other words, if the defence decides not to use security measures, it is the greatest option for the attacker. 
 

9.3.2. The convergence rate of ESS is affected by different values of X and Y.  

 

X = 0.8 and Y = 0.8; X = 0.3 and Y = 0.3; X = 0.8 and Y = 0.3; and finally, X = 0.3 and Y = 0.8 represent the values of the parameters.  

 

According to Figure 17, the attacker's rate of achieving ESS regarding wireless sensor networks decreases as the initial probability of the 
attacker choosing the deployment security measure strategy increases, and the reverse is also true for attackers choosing attack strategies.  
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Fig. 16. The ESS of system when the different value of  P 2. 

 

 

 

 

 

Fig. 17. The ESS of system when the different values of  X  and Y . 

 

3. Conclusion 

 
In this study, we provide an evolutionary game-theory-based active defence model for WSNs. Instead of relying on the completely 

rational premise of classical game theory, this active defence model calls for sensor nodes that exhibit limited rationality and game 

process dynamics. As such, it meets the requirements for wireless sensor network nodes. Since the topology is always changing, the 

sensor nodes that need to know the network's status and keep it updated take a lot of power and space. For wireless sensor networks 

with limited resources, it seems to be both impractical and useless. Nevertheless, nodes may actively and dynamically adapt their 

defensive methods to effectively counter the attacker's various policies via dynamic evolution.  

The application of evolutionary game theory to wireless sensor networks has shown to be an effective tool. The widespread use of 

wireless sensor networks is inevitable given the proliferation of new standards-based networks and the ongoing development of low 

power systems, both of which make possible a plethora of hitherto impractical applications. 
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