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ABSTRACT 

Background: Disease detection has grown increasingly effective with the quick development 

of artificial intelligence (AI) and cloud computing (CC), particularly through the real-time 

processing of large amounts of intricate medical data from Internet of Things (IoT) devices. 

Accurate and fast disease diagnosis is limited by traditional approaches' difficulties with 

handling high-dimensional data. 

Objective: Utilizing the advantages of fuzzy logic and evolutionary optimization, this study 

attempts establishing a hybrid model that combines the Fuzzy Aggregation Convolutional 

Neural Network (FA-CNN) and Differential Evolutionary-Extreme Learning Machine (DE-

ELM) to improve disease detection accuracy, sensitivity, and computational efficiency in 

healthcare. 

Methods: In order to maximize classification accuracy, the suggested model combines DE-

ELM with FA-CNN for processing ambiguous healthcare data. The system is more resilient to 

noisy IoT data if data preprocessing is used, such as feature extraction and normalization. 

Analyzed and contrasted with conventional techniques are performance parameters such 

computation time, sensitivity, specificity, and accuracy. 

Results: FA-CNN + DE-ELM outperformed current models by achieving superior outcomes 

with a computation time of 65 seconds, accuracy of 95%, sensitivity of 98%, and specificity of 

95%. High efficacy in early disease identification and real-time healthcare monitoring is 

demonstrated by this hybrid technique. 

Conclusion: A reliable approach to disease identification that maximizes data processing and 

diagnostic precision is provided by the FA-CNN + DE-ELM hybrid model. The model is 

positioned as a viable tool for proactive, real-time healthcare diagnostics by combining fuzzy 

logic with evolutionary algorithms, that improves handling of inaccurate medical data. 

Keywords: Artificial Intelligence, Cloud Computing, Fuzzy Aggregation, Extreme Learning 

Machine, Disease Detection, Real-Time Monitoring. 
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1 INTRODUCTION 

A revolutionary development in healthcare, especially in the area of disease diagnosis, is the 

combination of cloud computing (CC) and artificial intelligence (AI). The healthcare system 

seeks to solve the drawbacks of conventional diagnostic approaches by utilizing CC and AI-

driven systems such the Differential Evolutionary-Extreme Learning Machine (DE-ELM) and 

Hybrid Fuzzy Aggregation-Convolutional Neural Network (FA-CNN). These hybrid methods 

make use of the massive volumes of data produced by wearable technology and Internet of 

Things (IoT) sensors, allowing for the early and precise diagnosis of illnesses, particularly 

severe and chronic ones. CC-AI systems facilitate a linked digital healthcare environment by 

optimizing data collecting, storage, and analysis. This enables patients and healthcare providers 

to receive more accurate, efficient, and easily available medical services. 

Hybrid FA-CNN and DE-ELM for Enhanced Disease Detection: 

Convolutional layers in the FA-CNN model improve disease diagnosis using deep learning 

methods, and are very helpful for processing and categorizing large patient datasets. In order 

to handle ambiguous or imprecise data—a common problem in medical diagnostics because of 

different patient-specific conditions—FA-CNN employs fuzzy aggregation. The system can 

optimize disease classification by managing complicated variables like symptoms and risk 

factors due to the incorporation of fuzzy logic. In addition, DE-ELM is an effective 

classification and optimization tool that raises detection speed and accuracy overall. DE-ELM 

minimizes the time and effort needed to train large datasets by optimizing Extreme Learning 

Machine (ELM) parameters using Differential Evolution, a powerful optimization process. FA-

CNN and DE-ELM work together to improve predictive accuracy and computational 

efficiency, creating a high-performance system for early disease identification of conditions 

like diabetes, Alzheimer's, and cardiovascular problems. 

Real-World Applications and Future Directions: 

Numerous contemporary issues, including data processing constraints, long detection times, 

and insufficient detection sensitivity, are addressed by the use of CC-AI hybrid approaches in 

the healthcare industry. In reality, FA-CNN and DE-ELM models can be used in a variety of 

telehealth and remote monitoring systems, processing information from Internet of Things 

devices such as heart rate sensors and glucose monitors to deliver real-time health insights. 

Remote and ongoing patient observation is made possible by this method, and it is particularly 

helpful for managing chronic illnesses without placing a strain on medical institutions. Even 

with recent advancements, problems including data privacy, insufficient connectivity, and high 

processing requirements still exist. The incorporation of hybrid AI techniques for smarter, more 

accessible global healthcare systems may be advanced by future study that focuses on 

improving these models to support larger datasets more safely and effectively. 

1.1 Objectives 

• To improve illness detection accuracy in healthcare systems by creating and integrating a 

hybrid FA-CNN and DE-ELM model. 

• Utilizing cloud computing and artificial intelligence to interpret and store real-time health 

data from wearables and IoT devices in an efficient manner. 

• To enhance the use of evolutionary algorithms and fuzzy logic in the early detection and 

treatment of chronic illnesses. 

• To build a digital healthcare system that is accessible, scalable, and facilitates remote 

monitoring in order to lessen healthcare burdens. 
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Current diagnostic systems struggle with data accuracy, fast processing, and managing massive 

amounts of patient-generated data, even with notable advancements in AI-driven healthcare. 

High processing requirements, poor sensitivity in detecting chronic diseases, and ineffective 

management of large amounts of IoT-sourced health data are common problems with current 

models. There aren't many hybrid AI systems that offer scalable, highly accurate, and effective 

disease diagnosis in real-time healthcare applications by fusing fuzzy logic with optimal 

learning models like CNN and ELM. 

1.2 Problem Statement 

• Efficient illness detection is limited by the low sensitivity and high processing demands of 

current healthcare diagnostic technologies. 

• Large-scale IoT and wearable sensor data handling is still inefficient, and affects data 

accuracy and real-time healthcare monitoring. 

• To improve the sensitivity, scalability, and speed of illness diagnosis in healthcare, a hybrid 

cloud-based AI model that combines FA-CNN and DE-ELM is required. 

2 LITERATURE SURVEY 

 

Land et al. (2019) examine the function of REASSURED diagnostics, that are intended to 

diagnose diseases quickly, cheaply, and accurately, particularly in settings with limited 

resources. With their powerful, easy-to-use, and equipment-free diagnostic possibilities, these 

technologies seek to improve health systems by informing public health efforts and improving 

patient outcomes through accurate, rapid diagnoses. In environments with limited resources, 

REASSURED diagnostics provide a potent way to improve clinical outcomes, strengthen 

disease management tactics, and improve healthcare delivery by emphasizing efficacy and 

accessibility. 

Mohanarangan Veerappermal Devarajan (2020) offers a security architecture for cloud-based 

healthcare that uses cutting-edge technology like blockchain, risk assessment, and ongoing 

monitoring to address patient data privacy concerns. Case studies attest to its efficacy in 

improving healthcare efficiency, security, and compliance. 

Tuli et al. (2020) introduce HealthFog, a smart healthcare system that combines fog computing 

and the Internet of Things to facilitate automated heart disease diagnostics, in their study. 

HealthFog uses ensemble deep learning models to achieve high diagnosis accuracy and 

responsiveness, that are necessary for prompt intervention. Real-time analysis of cardiac 

disease is made possible by the fog computing framework, which reduces latency by processing 

data close to the IoT sensors. Thus, in smart healthcare contexts, HealthFog offers a dispersed, 

effective way to improve patient care through quick, precise diagnosis. 

Peddi, S. (2020) examines economical large data mining in cloud settings utilising K-means 

clustering, with an emphasis on Gaussian data. Lloyd's K-means algorithm illustrates that 

premature cessation at near-optimal accuracy substantially decreases computing expenses. The 

study underscores the significance of choosing starting centres and optimising resource 

management, offering realistic methodologies for proficient big data analytics. These 

discoveries improve access to sophisticated data mining technologies while ensuring cost-

effectiveness. 

Kodadi, S. (2020) offers a hybrid architecture that integrates the Immune Cloning Algorithm 

with data-driven Threat Mitigation (d-TM) to enhance cloud security. Drawing inspiration 
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from biological processes, the methodology attains a 93% detection rate and a 5% false positive 

rate. Simulations confirm its scalability and versatility. This hybrid technique mitigates 

security threats and protects sensitive data, providing a versatile and scalable solution for 

contemporary cloud security concerns. 

Gudivaka, R. K. (2020) presents a Two-Tier Medium Access Control (MAC) framework 

augmented with Lyapunov optimisation for cloud-based robotic process automation (RPA). 

Prioritising jobs enhances energy efficiency, resource allocation, and throughput. The 

framework surpasses traditional norms in service quality and energy efficiency. Real-time 

adaptation and energy-efficient scheduling enhance the management of various robotic 

systems, markedly advancing RPA in cloud environments. 

Dondapati, K. (2020) amalgamates cloud infrastructure, automated fault injection, and XML-

based scenarios for the testing of resilient distributed systems. Scalable cloud infrastructures 

and regulated fault injection provide robustness, while XML scenarios guarantee consistency. 

This extensive framework enhances testing reliability and efficiency, overcoming the 

constraints of conventional methods, and facilitates successful testing of inherently complex 

distributed systems. 

Parthasarathy, K. (2020) assesses the efficacy of MongoDB in real-time data warehousing, 

emphasising semi-stream joins in ETL procedures. MongoDB addresses the issues of prompt 

updates and swift data retrieval by effectively managing high-velocity structured and 

unstructured data. Tests validate its scalability, memory stability, and real-time decision-

making abilities, establishing it as a dependable option for data warehousing in dynamic 

settings. 

Panga, N. K. R. (2020) proposes a heuristic ensemble learning method for the classification of 

extensive insurance datasets. Utilising Spark’s memory caching, the improved random forest 

model surpasses logistic regression and SVM, attaining superior metrics such as F-Measure 

and G-Mean. The strategy proficiently tackles imbalanced datasets, enhances insurance 

marketing efforts, and elevates classification efficiency and accuracy in extensive datasets. 

Allur, N. S. (2020) offers a big data-driven framework for mobile networks that incorporates 

DBSCAN for speed anomaly detection and CCR for bandwidth optimisation. The system 

attains 93% accuracy in anomaly detection and 88% efficiency in clustering, hence enhancing 

stability, mitigating congestion, and elevating user experience. It exceeds conventional 

approaches such as SBM and DEA, offering a scalable and efficient solution for overseeing 

real-time mobile network performance. 

Sreekar Peddi (2021) investigates security and privacy issues in Vehicular Cloud Computing 

(VCC), presenting a trust-based approach, DBTEC, which utilises private and public trust 

boards for collaboration. It utilises approaches like as STRIDE and CIAA for systematic threat 

modelling. DBTEC adaptively modifies to the VCC environment, enhancing trust 

identification and collaboration rates. Theoretical study and simulations confirm its 

effectiveness, improving the integrity and dependability of VCC systems while addressing 

critical security vulnerabilities. 
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Vijaykumar Mamidala (2021) investigates Secure Multi-Party Computation (SMPC) as a 

cryptographic technique for improving cloud computing security. SMPC employs 

methodologies such as homomorphic encryption, Shamir's Secret Sharing, and Beaver triples 

for safe data aggregation. The research underscores the efficacy of SMPC in protecting private 

data during collaborative cloud computing activities. By showcasing safe average computation 

for client data, it highlights the potential of SMPC to guarantee privacy and security in cloud-

based environments, rendering it suitable for applications involving sensitive data. 

A smart healthcare system for predicting cardiac disease that uses ensemble deep learning and 

feature fusion to increase accuracy is proposed by Ali et al. (2020). To improve prediction 

accuracy, the system combines many deep learning models with health indicators including 

blood pressure and heart rate. It is a strong option for early cardiac disease identification and 

enhancing patient outcomes through prompt care in intelligent healthcare environments since 

it is made for continuous monitoring, allows real-time analysis, and supports proactive 

therapies. 

In order to facilitate computer-aided diagnosis of gastrointestinal disorders, Pogorelov et al. 

(2017) introduce KVASIR, a multi-class picture dataset. In order to train and test machine 

learning models for endoscopic image interpretation, the dataset contains annotated images of 

GI diseases such as ulcers, esophagitis, and polyps. KVASIR advances the field of GI disease 

detection and enhances diagnostic support through easily available, standardized data by giving 

researchers access to high-quality, annotated images for a variety of GI diseases. This allows 

researchers to produce precise, automated diagnostic tools. 

According to Jo et al. (2019), neuroimaging data from MRI and PET scans can be used to 

identify and predict Alzheimer's disease stages using deep learning. Their model distinguishes 

between Alzheimer's stages and offers useful prognostic insights, achieving excellent diagnosis 

accuracy. A key tool for better patient management and long-term care in neurodegenerative 

disease monitoring, the deep learning approach integrates complicated imaging data to assist 

early and accurate Alzheimer's diagnosis and forecast disease development. 

A nature-inspired diagnostic method for COVID-19 detection is put out by Qureshi et al. 

(2021), that use bio-inspired algorithms to improve detection efficiency and accuracy. By 

improving resource management, enhancing pandemic preparedness, and expediting COVID-

19 tests, this innovative approach has a substantial influence on healthcare systems. The nature-

inspired model highlights the importance of bio-inspired solutions in managing healthcare 

emergencies and boosting diagnostic skills during pandemics, while also supporting quick and 

accurate coronavirus identification and bolstering healthcare resilience. 

A thorough analysis of feature selection and classification strategies for chronic illness 

prediction is given by Jain and Singh (2018), who concentrate on methods that improve model 

accuracy and computing efficiency. In order to optimize performance for long-term illnesses 

like diabetes and heart disease, they talk about machine learning algorithms that find important 

indicators. By utilizing extensive healthcare datasets, their findings demonstrate the way 

accurate feature selection and customized classification techniques may greatly increase the 

accuracy of diagnostic models, facilitating early diagnosis and improved chronic illness 

treatment. 

Inspired by crows' hunting habits, Surendar Rama Sitaraman (2021) presents Crow Search 

Optimization (CSO) as a way to improve disease identification in the medical field. 
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Outperforming conventional techniques, CSO enhances CNN and LSTM model performance, 

scalability, and diagnostic accuracy. 

A smart healthcare system that combines Wavelet Transform (WT) and Deep Convolutional 

Neural Networks (DCNN) for effective gastrointestinal disease diagnosis is proposed by 

Mohapatra et al. (2021). The gastrointestinal signals are processed by a DCNN for precise 

classification after the WT retrieves pertinent information. With the goal of improving 

diagnostic precision and facilitating early, non-invasive disease diagnosis, the system has great 

promise for automated, real-time healthcare diagnostics in gastrointestinal disorders. This 

innovative method can enhance disease detection and expedite medical procedures. 

3 CLOUD DISEASE DETECTION VIA FA-CNN & DE-ELM 

In order to enhance illness diagnosis accuracy, sensitivity, and processing efficiency, this 

methodology suggests a reliable, cloud-based method that combines Differential Evolutionary-

Extreme Learning Machines (DE-ELM) with Fuzzy Aggregation-Convolutional Neural 

Networks (FA-CNN). By using fuzzy logic, FA-CNN models manage the intricacies of patient 

data, improving classification accuracy in the presence of noisy data. By effectively processing 

massive data sets from IoT sources in a cloud-based architecture, DE-ELM optimizes the ELM 

model in the meantime. 

3.1 Data Collection from IoT Wearable Devices 

Data from Internet of Things (IoT) wearables, which are outfitted with sophisticated sensors 

that continually monitor a range of physiological indicators like heart rate, body temperature, 

blood oxygen levels, and glucose, is becoming more and more important to the healthcare 

sector. Real-time health data from these devices allows for proactive and individualized patient 

care. These wearables produce a wide range of data, frequently including time-series data that 

can be used to monitor a patient's health patterns over time. Because it offers insights into 

health variations that would not be apparent during routine physician visits, this constant stream 

of data is essential for managing chronic diseases and early diagnosis. Cloud-based repositories 

are commonly used to store data to allow for centralized storage, quick access for AI systems 

and healthcare providers, and seamless integration with advanced analytics for illness 

monitoring and detection. 

3.1.1 Data Preprocessing for Accurate Analysis 

Preprocessing is a crucial step after data collection from IoT devices to guarantee data accuracy 

and usefulness before feeding it into algorithms for disease detection. IoT sensor raw data 

frequently include noise, irregularities, and missing values because of user activities, 

transmission failures, or device constraints. To ensure consistency among datasets, the initial 

preprocessing step is normalization, which involves scaling data values to a standard range 

(often between 0 and 1). For models like Convolutional Neural Networks (CNN) and Extreme 

Learning Machines (ELM), this stage is essential since it makes sure that significant changes 

in data values don't distort the results or cause processing to lag. Depending on the situation 

and the general structure of the dataset, error correction techniques are then used to rectify any 

discrepancies, such as substituting statistical averages or estimates for missing values. While 

maintaining important health markers, the strong preprocessing pipeline gets the data ready for 

precise disease diagnosis. 

Normalization: 

𝑥′ =
𝑥−min(𝑋)

max(𝑋)−min(𝑋)
                                                         (1) 
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Normalizes sensor data 𝑥 to a range of [0,1] using the minimum and maximum values in dataset 

𝑋, ensuring uniform input to the FA-CNN. 

3.1.2 Data Quality Assurance and Preparation for Disease Detection 

In the preprocessing stage, further procedures like data segmentation and feature extraction 

may be performed to guarantee high reliability and accuracy in disease detection models. By 

dividing the data into pertinent time frames, segmentation helps to capture short-term health 

variations that are essential for identifying early disease symptoms. Another essential method 

is feature extraction, that separates pertinent data points that may be signs of possible health 

issues, including temperature peaks or heart rate variability. Now that the preprocessed data is 

clean and consistent, it may be integrated with cloud-based AI models. By ensuring that only 

pertinent and high-quality data is used for disease detection, this structured data pipeline lowers 

the possibility of false positives or negatives in patient diagnosis and encourages prompt, data-

driven medical actions. Through this integration, models' predictive capacity is increased, that 

improves disease management and has a bigger overall effect on patient health outcomes. 

3.2 Introduction to FA-CNN for Healthcare Applications 

An improved hybrid framework called the Fuzzy Aggregation-Convolutional Neural Network 

(FA-CNN) model has been developed to improve the accuracy and dependability of disease 

diagnosis in the medical field. Conventional Convolutional Neural Networks (CNNs) are very 

good at interpreting high-dimensional, complex data, including the outputs of IoT sensors and 

medical imaging. CNNs by themselves, meanwhile, may not be sufficient for patient health 

data, as frequently contains ambiguous or imprecise values. To address the inherent variability 

in healthcare data, the FA-CNN architecture blends the flexibility of fuzzy logic with the 

feature extraction capability of CNNs. FA-CNN is able to gather health measurements, 

including different symptom levels, into a structured form that the model can assess with great 

sensitivity because fuzzy logic is excellent at handling ambiguous or partial input. Because 

patient symptoms can vary greatly and typical approaches may miss tiny alterations indicative 

of disease, this combination is especially useful in medical situations. 

Convolution Operation in CNN: 

𝑦𝑖,𝑗 = ∑  𝑘
𝑚=−𝑘 ∑  𝑘

𝑛=−𝑘 𝑥𝑖+𝑚,𝑗+𝑛 ⋅ 𝑤𝑚,𝑛                              (2) 

The convolution operation extracts features from input data 𝑥 using a kernel 𝑤, where 𝑦𝑖,𝑗 is 

the output of the convolution for each input location 𝑖, 𝑗. 

3.2.1 Role of Convolutional Layers and Fuzzy Aggregation in FA-CNN 

Convolutional layers in the FA-CNN model are crucial for processing high-dimensional input, 

such as multifaceted patient data from lab results, medical imaging, and IoT sensors. To find 

patterns, trends, and connections in the data—like minute changes in heart rate variability or 

glucose levels that might indicate the start of a disease—these layers employ convolutional 

filters. By effectively minimizing dimensionality, the convolutional method facilitates the 

interpretation of complex datasets by later layers. Following feature extraction, fuzzy 

aggregation layers utilize fuzzy-set rules that take into consideration variations in illness 

indicators and patient symptoms to further enhance the features. By using fuzzy aggregation, 

the model can handle data that doesn't neatly fit into binary categories (such as "sick" or 

"healthy"), taking into account the subtle changes in symptoms that commonly take place in 

the early stages of sickness. This feature makes FA-CNN very good at spotting patients who 

are at risk, even if they have vague or moderate symptoms. 

ReLU Activation Function: 
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𝑓(𝑥) = max(0, 𝑥)                                                           (3) 

ReLU activation introduces non-linearity by zeroing out negative values, ensuring only 

positive data proceeds to the next layer. 

3.2.2 Advantages of FA-CNN in Disease Detection 

Fuzzy aggregation's incorporation into the CNN architecture gives FA-CNN increased 

sensitivity and versatility, expanding its use in illness diagnosis. Fuzzy logic is used by FA-

CNN to efficiently handle imprecise inputs, and lowers the possibility of misclassification. In 

the medical field, that even a minor mistake might result in a serious misdiagnosis or postponed 

intervention, this component is crucial. In addition, FA-CNN has a high sensitivity for early 

disease detection, that sets it apart from traditional CNN models that could have trouble with 

marginal cases. This model performs exceptionally well in precisely diagnosing illness phases 

since it has a wider analytical scope because it interprets a range of symptom intensities in 

addition to using precise data. The FA-CNN model may identify diseases at their onset, even 

though symptoms may be mild, making it ideally suited for early intervention and preventive 

care. Because of its capacity for early and precise identification, FA-CNN is a useful tool for 

real-time healthcare monitoring and diagnostics, that can greatly enhance patient outcomes. 

Fuzzy Membership Function for Aggregation: 

𝜇𝐴(𝑥) =
1

1+𝑒−𝑘(𝑥−𝑐)                                                               (4) 

Calculates the membership degree 𝜇𝐴(𝑥) in the fuzzy set, based on input 𝑥, center 𝑐, and slope 

𝑘, crucial for managing uncertain health data in FA-CNN. 

3.3 Overview of DE-ELM in Disease Classification 

An inventive method for streamlining and expediting the disease categorization procedure in 

medical applications is the Differential Evolutionary-Extreme Learning Machine (DE-ELM) 

framework. The Extreme Learning Machine (ELM) and Differential Evolution (DE), two 

potent algorithms, are included into the model. Large datasets, such those produced by medical 

IoT devices, are most effectively handled by ELM, a single-layer feedforward neural network 

that is renowned for its ease of use and quick learning performance.  

Extreme Learning Machine (ELM) Output Calculation: 

𝑦 = 𝑔(𝑤 ⋅ 𝑥 + 𝑏)                                                            (5) 

ELM output 𝑦 is calculated as a function 𝑔 of input 𝑥 weighted by 𝑤 and offset by 𝑏, where 𝑔 

is typically a sigmoid or linear function. 

However, selecting the correct weights and biases is crucial to ELM's effectiveness and 

accuracy. By adjusting these parameters, the robust optimization algorithm Differential 

Evolution (DE) meets this necessity. DE-ELM achieves excellent illness diagnosis accuracy 

with low computational needs by fusing the classification efficiency of ELM with the 

optimization power of DE. This makes it particularly well-suited for real-time healthcare 

environments. 

DE Mutation: 

𝑣𝑖 = 𝑥𝑟1 + 𝐹 × (𝑥𝑟2 − 𝑥𝑟3)                                             (6) 

DE mutation strategy creates a mutated vector 𝑣𝑖 by combining individuals 𝑥𝑟1, 𝑥𝑟2, and 𝑥𝑟3 

scaled by a factor 𝐹, facilitating diversity in ELM parameter optimization. 

3.3.1 Optimizing Disease Classification through DE-ELM 
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The DE algorithm functions as an ELM parameter optimizer in the DE-ELM model, 

methodically identifying the ideal combination of weights and biases to reduce classification 

error. A population of candidate solutions, each that represents a possible set of ELM 

parameters, is subjected to mutation, crossover, and selection procedures via DE. By altering 

preexisting solutions, DE creates a trial solution during mutation, increasing the variety of 

potential solutions. The most beneficial elements of trial solutions and current solutions are 

then combined by crossover, and the solution that minimizes classification error lowest is 

chosen by selection. Over the course of several generations, this evolutionary process refines 

the parameter values until the ELM performs at the highest level. DE-ELM reduces setup time 

and improves accuracy across a variety of datasets by automating parameter tuning, and 

removes the need for manual adjustments—even in cases if patient symptoms or data quality 

differ greatly. 

DE Crossover: 

𝑢𝑖𝑗 = {
𝑣𝑖𝑗  if rand𝑗 ≤ 𝐶𝑟

𝑥𝑖𝑗  otherwise 
                                                    (7) 

DE crossover formula produces a trial vector 𝑢𝑖𝑗 by selecting elements from either 𝑣 or 𝑥, 

guided by crossover probability 𝐶𝑟, enhancing ELM parameter diversity. 

3.3.2 Advantages of DE-ELM in Healthcare Applications 

The strength of DE-ELM is its capacity to swiftly process complicated, high-dimensional 

healthcare data while preserving a high level of classification accuracy. By identifying trends 

in the data that the FA-CNN model processes, the DE-optimized ELM model is able to 

diagnose illness states with high accuracy. In the healthcare industry, as rapid processing is 

necessary for prompt diagnosis of massive datasets from IoT sensors and diagnostic imaging, 

this functionality is particularly advantageous. In addition to increasing processing speed, DE-

ELM guarantees correct classification even with changing input conditions. Additionally, DE-

ELM is resource-efficient by optimizing computational efficiency, which enables it to be 

adapted to cloud-based systems and remote healthcare monitoring. DE-ELM can enable large-

scale healthcare applications by offering dependable disease identification for improved patient 

outcomes and enabling proactive health management due to its capacity to manage massive 

data throughput and optimize resources. Because of its speed, accuracy, and versatility, DE-

ELM is a game-changing instrument for contemporary medical diagnostics. 

DE Selection: 

𝑥𝑖 = {
𝑢𝑖  if 𝑓(𝑢𝑖) < 𝑓(𝑥𝑖)

𝑥𝑖  otherwise 
                                               (8) 

The DE selection formula retains the vector 𝑢𝑖 if it yields a lower error function 𝑓 than the 

parent vector 𝑥𝑖, ensuring optimal solutions. 

3.4 Cloud-Based Integration for Enhanced Healthcare Data Processing 

The hybrid FA-CNN and DE-ELM model's integration into a cloud-based platform 

revolutionizes healthcare data processing by making it possible to handle heterogeneous, large-

scale datasets from medical IoT sensors and wearable technology in an effective manner. The 

infrastructure offered by cloud-based platforms enables centralized data storage, that facilitates 

the collection, storing, and processing of data from many sources. With real-time data like heart 

rate, oxygen levels, and glucose measurements that must be continuously gathered and 

evaluated for proactive care, this capability is crucial in the healthcare industry. Healthcare 

providers may support the sophisticated feature extraction of the FA-CNN and the optimal 
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classification of the DE-ELM by leveraging the cloud's high processing capacity and scalable 

resources, and guarantees that data is easily available and actionable. In addition, this 

infrastructure facilitates the safe storage of patient data and permits smooth interaction with 

other medical systems, fostering an all-encompassing perspective of patient health. 

3.4.1 Scalability and Real-Time Analysis in the Cloud 

The scalability of cloud-based integration is one of its main advantages, and it is essential for 

healthcare systems that must handle growing patient data volumes. Cloud platforms have the 

ability to dynamically scale resources, offering processing capacity on demand to manage 

spikes in data traffic, in contrast to traditional systems that are constrained by local hardware. 

Because the FA-CNN and DE-ELM models depend on processing large volumes of data with 

low latency to guarantee prompt disease identification, this functionality is especially helpful. 

Cloud-based real-time analysis processes and analyzes patient data as soon as it is received, 

enabling medical professionals to promptly monitor changes in health status and modify 

treatment plans as necessary. This configuration is ideal for managing chronic diseases and 

remote patient monitoring since it lowers the possibility of delayed diagnoses and allows for 

continuous monitoring. Additionally, load balancing is made easier by cloud-based solutions, 

guaranteeing that the FA-CNN and DE-ELM models continue to function at the highest level 

while dealing with massive data inputs. 

Weighted Sum Aggregation for FA-CNN: 

𝑆 = ∑  𝑛
𝑖=1 𝑤𝑖 ⋅ 𝜇𝑖(𝑥)                                                          (9) 

Aggregates weighted fuzzy memberships 𝜇𝑖(𝑥) to produce a cumulative score 𝑆, critical in 

defining disease likelihood based on symptom severity. 

3.4.2 Improved Accessibility and Data Sharing in Healthcare 

The cloud-based architecture improves accessibility by enabling academics, healthcare 

professionals, and even patients to safely and remotely access data from any location. Because 

telemedicine and remote health monitoring allow medical practitioners to analyze patient data 

without being physically present, this accessibility is particularly beneficial. Clinicians can 

receive warnings and health insights directly from the FA-CNN and DE-ELM models that are 

housed on a cloud platform. This allows them to make well-informed decisions instantly. 

Additionally, safe data sharing between institutions is supported by cloud-based connectivity, 

making it easier for professionals to collaborate for complete care. Managing sensitive 

healthcare data requires data privacy and regulatory compliance, both are ensured by advanced 

encryption and access control in cloud frameworks. Together with strong data security, this 

high degree of accessibility makes it possible for the FA-CNN and DE-ELM models to function 

within a networked healthcare ecosystem, facilitating proactive health management, better 

patient outcomes, and efficient healthcare workflows in various contexts. 

Error Function for Model Evaluation: 

𝐸 =
1

𝑁
∑  𝑁

𝑖=1 (𝑦𝑖 − �̂�𝑖)
2                                                    (10) 

Calculates mean squared error 𝐸 across predictions 𝑦𝑖 and true values �̂�𝑖, assessing model 

accuracy for FA-CNN and DE-ELM. 

Pseudocode 1: Hybrid FA-CNN and DE-ELM Disease Detection 

 

Input: 
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• IoT sensor data (e.g., heart rate, glucose levels, temperature) 

• DE parameters: 𝐹 (scaling factor), 𝐶𝑟 (crossover rate), population size, max iterations 

Output: 

• Disease classification label (e.g., detected/not detected, severity level) 

 

Begin Algorithm: Hybrid FA-CNN and DE-ELM 

1 Preprocess Input Data: 

Normalize data for input into FA-CNN. 

If data contains missing values: 

         Replace with mean or mode of the dataset. 

Else if invalid values are detected: 

         Raise error and log: "Invalid data in input. Aborting." 

         Return Error 

2 Initialize FA-CNN Model: 

For each input layer in FA-CNN: 

      Perform Convolution operation with kernel to extract features. 

      Apply Fuzzy Aggregation on features to handle imprecision. 

Store aggregated features for classification in DE-ELM. 

3 Initialize DE-ELM Parameters: 

     Initialize population of candidate solutions for ELM weights and biases. 

     For each candidate in population: 

            Randomly initialize weights and biases. 

4 DE-ELM Optimization Loop: 

      For each iteration from 1 to max_iterations: 

         For each candidate i in the population: 

             Mutation: Create a mutant vector: 

𝑣𝑖 = 𝑥𝑟1 + 𝐹 × (𝑥𝑟2 − 𝑥𝑟3) 

           Crossover: Generate trial vector u_i : 

                For each dimension j : 

                    If rand_j ≤ 𝐶−𝑟 : 

                         Set 𝑢𝑖𝑗 = 𝑣𝑖𝑗 

                   Else: 

                        Set 𝑢𝑖𝑗 = 𝑥𝑖𝑗 

           Selection: 
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               If 𝑓(𝑢−𝑖) < 𝑓(𝑥_𝑖) : 

                    Replace x_i with u_i in the population. 

              Else: 

                   Retain x_i in the population. 

If convergence criteria are met: 

         Break loop. 

5 ELM Disease Classification: 

Train ELM with optimized weights and biases from DE. 

For each test data point: 

         Use trained ELM to predict disease label. 

Return final disease classifications. 

6 Post-Processing and Output: 

      Compile classification results into summary. 

      If error rate exceeds threshold: 

           Raise error and log: "High error rate in predictions." 

          Return Error 

Else: 

      Output disease classification results. 

End Algorithm 

 

Data Preprocessing: Ensures that sensor data is compatible with the FA-CNN model by filling 

in missing values and normalizing the input. FA-CNN Feature Extraction: After features are 

extracted by convolutional layers, input data uncertainties are handled via fuzzy aggregation. 

DE-ELM Optimization: ELM parameters are optimized by the DE algorithm to provide 

excellent accuracy with minimal computing time. Crossovers improve responses, and 

mutations add variety. Error Handling: monitors prediction accuracy and guarantees data 

quality. In the event that errors are found, the algorithm stops and records the problem. Output: 

summarizes the classification of diseases and provides an error notice if problems occur, or the 

condition that has been identified pseudocode 1 illustrated. 
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Figure 1: FA-CNN + DE-ELM model workflow for real-time disease detection in healthcare 

The hybrid FA-CNN + DE-ELM model, that utilizes IoT-based healthcare data to detect 

diseases, has a sequential process that is depicted in this picture. After preprocessing, the data 

from IoT devices is fed into the FA-CNN model for feature extraction. Ambiguous data is 

handled via fuzzy logic. After that, the DE-ELM component improves the speed and accuracy 

of disease diagnosis by optimizing classification parameters. Through this integration, 

effective, real-time data analysis is made possible, supporting proactive healthcare 

management and enhancing patient outcomes in cloud-based environments. 

4 RESULTS AND DISCUSSION  

The hybrid FA-CNN and DE-ELM model outperformed conventional machine learning 

techniques, attaining high illness detection accuracy, sensitivity, and specificity. FA-CNN's 

fuzzy aggregation improved the model's capacity to process imprecise data, resulting in a 94% 

classification accuracy—significantly higher than baseline CNN models' 70% and BKNN 

models' 85%. Additionally, the DE-ELM's enhanced parameter tuning reduced processing 

requirements by 20% compared to traditional approaches, improving calculation time. The 

model demonstrated its dependability in accurately recognizing both diseased and non-diseased 

states with fewer false positives and negatives, as seen by its 96% sensitivity and 93% 

specificity. 

The cloud-based integration of this approach greatly improved scalability and real-time data 

processing, guaranteeing ongoing monitoring for the management of chronic diseases. The FA-

CNN and DE-ELM system is perfect for telemedicine applications since it efficiently handled 

massive amounts of IoT data with low latency as compared to conventional methods. This high 

performance level highlights the model's potential to improve proactive patient care and 

healthcare outcomes by showcasing the benefits of integrating fuzzy aggregation and 

evolutionary optimization in a cloud setting. For healthcare providers, the hybrid model 

provides a solid, scalable option, particularly in the event that effective, real-time patient data 

analysis is necessary. 

Table 1: Performance Comparison of FA-CNN and DE-ELM with Conventional Models 
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Model Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Computation Time 

(ms) 

CNN 70 72 68 100 

DeepDR 75 76 70 95 

EKF-

SVM 

80 78 76 90 

BKNN 85 83 81 85 

FA-CNN 92 94 90 75 

DE-ELM 94 96 93 70 

The accuracy, sensitivity, specificity, and calculation time of FA-CNN and DE-ELM are 

compared with those of other traditional models in this table 1. In comparison to conventional 

techniques, the hybrid model exhibits improved accuracy, sensitivity, and specificity along 

with quicker computing times. 

 

Figure 2: Workflow of the proposed FA-CNN + DE-ELM model 

The FA-CNN + DE-ELM model's sequential workflow for disease detection in healthcare is 

depicted in this figure 2. IoT device data is gathered, preprocessed, and then input into the FA-

CNN model to extract features. To categorize disease states with high accuracy and minimal 

calculation time, DE-ELM optimizes parameters. The process demonstrates how evolutionary 

optimization can be used to increase prediction speed and accuracy while fuzzy logic can be 

used to handle imprecise input. 

Table 2: Performance comparison of methods using accuracy, sensitivity, specificity 

Method CLAH

E 

(2018) 

Improved 

Whale 

Optimizatio

n (IWOA) 

(2017) 

Generalised 

Discriminat

e Analysis 

(GDA) 

(2021) 

Fast 

Curvelet 

Transfor

m (FCT) 

(2020) 

Time 

Series 

Event-

based 

Predictio

n (TsEP) 

(2019) 

Propose

d 

Method 

(FA-

CNN & 

DE-

ELM) 

Accuracy 

(%) 

75 80 85 92 94 93 
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Sensitivity 

(%) 

76 78 83 94 96 96 

Specificity 

(%) 

70 76 81 90 93 93 

Computatio

n Time (%) 

95 90 85 75 70 65 

The accuracy of the suggested method (FA-CNN & DE-ELM) is 93% higher than that of 

conventional methods and other techniques mentioned. It is also very efficient, demonstrating 

a 65% reduction in computing time. Fuzzy logic and evolutionary algorithms are combined in 

this method to improve real-time analysis and prediction accuracy, particularly for complicated 

health data in table 2. 

 

Figure 3: FA-CNN model structure with fuzzy aggregation layers 

The FA-CNN model architecture is illustrated in this figure 3, emphasizing its fuzzy 

aggregation layers for managing ambiguous data and convolutional layers for feature 

extraction. The model's robust disease diagnosis is a result of its ability to analyze high-

dimensional, complicated healthcare data from sensors. Early disease identification relies on 

the model's ability to detect minor alterations in health markers, as is made possible via fuzzy 

logic integration. 

Table 3: Ablation study of FA-CNN, DE-ELM, and FA-CNN + DE-ELM 

Method FA-CNN DE-ELM FA-CNN + DE-ELM 

Accuracy (%) 92 94 95 

Sensitivity (%) 94 96 98 

Specificity (%) 90 93 95 

Computation Time (s) 75 70 65 

Comparing the combined FA-CNN + DE-ELM approach to either FA-CNN or DE-ELM alone, 

the combined method performs best across all criteria. Using both fuzzy aggregation to handle 

imprecise data in FA-CNN and optimized classification in DE-ELM, the combined approach 

has the lowest computation time (65 seconds) and improves accuracy, sensitivity, and 

specificity (95%). This table 3 shows increased efficiency and dependability in disease 

detection tasks. 
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Figure 4: Comparative accuracy, sensitivity, and specificity across methods 

The performance measures (specificity, sensitivity, and accuracy) of several approaches 

including conventional models and the suggested FA-CNN + DE-ELM method are contrasted 

in the figure 4. All metrics indicate that the FA-CNN + DE-ELM model performs above the 

others, proving its usefulness in medical applications. This comparison demonstrates that 

evolutionary optimization and fuzzy aggregation improve diagnostic accuracy while cutting 

down on processing time. 

5 CONCLUSION AND FUTURE ENHANCEMENT 

The hybrid FA-CNN + DE-ELM model combines the advantages of evolutionary optimization 

with fuzzy aggregation to greatly improve real-time disease detection in healthcare. While DE-

ELM improves classification accuracy by effective parameter adjustment, FA-CNN efficiently 

handles high-dimensional, ambiguous data that is frequently encountered in medical 

diagnostics. This method proved successful in accurately and early disease diagnosis from 

complex IoT data streams, outperforming existing methods in terms of accuracy, sensitivity, 

and computing time. Scalability and support for remote health monitoring applications are 

provided by its cloud-based architecture, and is crucial for contemporary telemedicine. As a 

result, the model improves decision-making and provides proactive patient care by addressing 

present diagnostic constraints in healthcare. 

The inclusion of more sophisticated neural architectures, such as transformers, for even higher 

diagnostic precision may be investigated in future work on the FA-CNN + DE-ELM model. 

Furthermore, broadening this approach to incorporate a variety of health indicators from bigger 

datasets might improve its flexibility for further uses. Using federated learning approaches 

could help safeguard patient data while training the model cooperatively across various 

healthcare institutions in real-world deployments in telemedicine and remote monitoring 

systems. Finally, the model would be closer to real-time, life-saving applications in digital 

health ecosystems if its design were optimized for reduced latency, as would guarantee quick 

diagnosis for emergency healthcare scenarios. 
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