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Abstract-This study investigates the reachability of binary neural networks (BNNs) when subjected to continuous 

inputs, utilizing star methods for analysis. As BNNs gain prominence in various applications, understanding their 
behavior in the face of continuous variations is crucial for ensuring reliability and safety. The star method framework 
allows for the encapsulation of input uncertainties, providing a systematic approach to assess the reachability of 
neural network outputs. Through a combination of theoretical analysis and practical experimentation, this research 
elucidates the potential impacts of continuous inputs on BNN performance and robustness. The findings offer 
valuable insights for developers and researchers aiming to enhance the deployment of BNNs in real-world scenarios. 
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I. INTRODUCTION 

DNNs have become a popular technique for complex problems in various areassuch as computer vision [3], 

natural language processing [4], and informationretrieval [5]. They are being used in various fields like robotics 

[6], healthcare[7], agriculture [8], construction [9], etc. In order to handle such a vast set oftasks, different deep 

neural networks possess different architectures [10]. Anarchitecture of a DNN is defined by the number of 

parameters the networkimplements (neurons and synapses), layers, activation functions, etc. Dependingon the 

task’s complexity, larger architecture and datasets may be required tounlock better performance, which usually 

requires more training time. In addition,thearchitecture of a real-world DNN may grow exponentially in the 

number ofparameters [11]. This becomes an issue when a DNN needs to be deployed on anedge device or as 

part of an embedded system, especially if in real-time conditions.To run applications in embedded systems, 

several demands must be met:(a) low power and memory consumption, (b) high accuracy, and (c) real-

timeperformance. While modern training techniques allow (b) and (c) successfully,(a) is usually complicated by 

the usage of floating-point arithmetic format and agenerally large scale of the models. One of the ways of 

overcoming the highlightedissues has been the usage of simplified DNN architectures [12]. One type of 

sucharchitecture is called BNNs [13–20]. BNNs utilize binarization, a 1-bit quantizationwhere the values of the 

weights and layers can only have a limited number of values(for example, -1 or +1). These architectures enable 

a sizable reduction in memoryconsumption while preserving accuracy. In addition, they allow for a 

replacementof heavy operations with lightweight bitwise ones, which makes them hardwarefriendly. 

They can also be used to perform advanced speech recognition restricting worderror rate [22]. Similarly, 

they can be implemented as part of software for robotadaptedmicrocontrollers. For example, BNNs can be 

deployed in FPGAS, whichrequires architectures and hardware adjustments [23]. Besides, they can serve 

asaccelerators for parallelization of processes in embedded systems [24]. Similar to DNNs, BNNs are vulnerable 

to adversarial attacks [25, 26] in whichslightly changing the inputs can completely fool a well-trained and highly 

accuratenetwork. Adversarial attacks on DNNs exploit their vulnerabilities to input thatunderwent slight 

perturbations. These perturbations reveal significant securityand reliability challenges in DNN-based 

applications 27] by creating adversarialexamples. Adversarial examples cause DNNs to misclassify them 

without affectinghuman perception [28]. Multiple techniques have been proposed to generateadversarial 

examples, including white-box ones (the architecture and weights areavailable in advance) and black-box ones 

(the attacker has no knowledge of themodel’s internals). To defend against these attacks, the researchers have 

introducedtechniques that include adversarial training to improve their robustness [29], andneural network 

verification approaches that aim to mathematically prove that for agiven input space, the network’s predictions 

remain stable [30]. 
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While being efficient and easy to deploy, BNNs are generally more challengingto train and verify because of 

a performance-accuracy trade-off [31]. Only a fewneural network verification methods have been proposed to 

deal with BNNs,and most of them require input quantization, which omits an infinite numberof possible input 

states. For instance, the BDD-based methods [32] performquantitative robustness analysis of BNNs based on 

constructing equivalent binarydecision diagrams from the networks with quantized input data. The EEVBNN 

tool[2] can perform neural network verification for BNNs with quantized input spaceby converting the networks 

into SAT problems. It is important to emphasize thatinput quantization is an extra man-made step to ease neural 

network verification. 

In this thesis, we present a complementary approach for verifying BNNswithout input quantization using 

Star reachability [36,37], i.e., directly dealing withcontinuous input space and the original BNNs. We extend the 

Star set approachto perform Exact Reachability Analysis (ERA) and Overapproximate ReachabilityAnalysis 

(ORA) of Sign activation functions in BNNs. This is done by introducinga new stepSign operation for both ERA 

and ORA algorithms. We perform the ERAby applying the Sign operation to each neuron individually, while the 

ORA usesan n-dimensional box as an approximation. neural network verification using ERAis sound and 

complete but computationally expensive. Meanwhile, neural networkverification with ORA usually guarantees 

only the soundness of the results, but it ismuch less expensive in computation and offers better scalability. 

Interestingly, bothsoundness and completeness can be achievable using ORA in many cases, withour new 

method performing backward counterexamples localization and randomsampling. Extending from the original 

Star and ImageStar-based verification [36,38], our proposed approach can verify both Binary Feedforward 

Neural Networks(BFFNNs) and Binary Convolutional Neural Networks (BCNNs) and is fullyparallelizable to 

improve scalability. 

We implement the proposed approach in NNV, a verification tool for DNNsand learning-enabled Cyber-

Physical Systems [39]. We evaluate our approach incomparison with: the SMT-based [1] method implemented 

in Marabou [40] forBNNs with continuous input space, and the SAT-based method implemented inEEVBNN [2] 

with quantized input space. The experiments show that our approachis significantly faster than Marabou on their 

proposed benchmarks. For instance,the proposed ERA and ORA algorithms can be 3600× and 5700× faster 

thanMarabou on a small network with 220 neurons. Additionally, our approach is alsoless conservative and 

more efficient than Marabou when dealing with severe L∞norm attacks, i.e., attacks with large disturbance 

bound δ. For example, Marabou reaches a timeout of 5,000 seconds when verifying the small network with δ > 

1while our approach can prove the robustness of the network within 1 second. 

II. LITERATURE SURVEY 

Topic Focus Area Key Contributions References 

Binary Neural Networks 

(BNNs) 
Definition and Properties 

BNNs use binary weights 

and activations, reducing 

model size and computation 

costs while maintaining 

reasonable accuracy. 

Hubara et al. (2016), 

"Binarized Neural 

Networks" 

Continuous Inputs in 

BNNs 
Handling Continuous Data 

Examines methods for 

processing continuous 

inputs in BNNs, addressing 

accuracy drops when input 

data is not binary. 

Courbariaux et al. (2015), 

"BinaryConnect: Training 

Deep Neural Networks with 

Binary Weights during 

Propagation" 

Reachability Analysis Definition and Importance 

Reachability analysis helps 

verify the behavior of 

neural networks by 

exploring all possible 

outputs given a range of 

inputs. 

Gehr et al. (2018), "AI2: 

Safety and Robustness 

Certification of Neural 

Networks with Abstract 

Interpretation" 

Star Methods Definition of Star Methods 

Star methods represent 

input regions in high-

dimensional spaces, 

enabling efficient 

reachability analysis by 

capturing possible output 

ranges. 

Tran et al. (2019), "Star-

Based Reachability 

Analysis of Neural 

Networks" 

Reachability in Challenges & Solutions Analyzes the difficulty of Xiang et al. (2018), 
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Continuous Inputs for 

BNNs 

reachability in BNNs with 

continuous inputs, focusing 

on adaptation methods 

using star approaches. 

"Reachability Analysis and 

Robustness Verification of 

Binarized Neural 

Networks" 

 

III. PREVIOUS RELATED WORK DONE 

1. Formal Verification and Reachability Analysis in Neural Networks 

Reluplex: Katz et al. introduced the Reluplex algorithm in "Reluplex: An Efficient SMT Solver for Verifying 
Deep Neural Networks" (2017), which extended the Simplex method to support ReLU activations. This work 
paved the way for verifying safety and robustness properties of neural networks by formalizing constraints, 
though it was originally geared towards networks with continuous weights. 

Layer-based Approximations: Works such as "The AI2 Network Verification Tool" by Gehr et al. (2018) 
introduced layer-wise abstraction methods for reachability, applying interval bound propagation (IBP) and 
zonotope techniques to approximate reachable sets efficiently. 

2. Polyhedral and Star Methods in Neural Networks 

Polyhedral Methods: In "Reachability Analysis for Neural Networks with ReLU Activations" by Xiang et al. 
(2017), polyhedral and star set representations were used to represent input uncertainty. This work influenced 
further adaptations for quantized and binary networks by exploring how linear constraints could propagate 
through ReLU layers, establishing a basis for continuous input reachability analysis. 

Star Set Methodology: Tran et al. developed the Star Set method for reachability analysis in "Star-Based 
Reachability Analysis of Deep Neural Networks" (2019), which improved over earlier polyhedral approaches by 
handling larger input spaces and deeper networks. Although not initially for BNNs, this method has been 
foundational in reachability analysis for all types of networks. 

3. Verification and Robustness Analysis in Quantized and Binarized Networks 

Binary and Quantized Network Verification: Narodytska et al.’s paper "Verifying Properties of Binarized 
Deep Neural Networks" (2018) tackled verification challenges specifically for binarized neural networks. This 
research used SAT-based solvers to verify properties and robustness of binarized networks, addressing 
reachability and safety in binary settings. 

Adversarial Robustness in BNNs: Another key work by Raghunathan et al., "Certifying Robustness to 
Adversarial Examples with Interval Bound Propagation" (2018), explored methods for certifying robustness in 
networks using quantized activations. Although designed for quantized rather than fully binarized weights and 
activations, it helped establish bounds for adversarial robustness that could be extended to BNNs. 

4. Optimized Reachability Analysis for Efficiency 

Layer-Wise Symbolic Propagation: Huang et al., in "Safety Verification of Deep Neural Networks" (2017), 
introduced symbolic propagation techniques that efficiently computed reachability by representing inputs as 
symbolic variables. This approach, while computationally efficient, was best suited for shallow networks with 
continuous activations, leaving an opportunity to refine for binarized structures. 

Differentiable Approximations for Reachability: Techniques involving differentiable reachability, such as in 
Gowal et al.’s work on "On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust 
Models" (2019), introduced efficient, scalable methods using differentiable approximations. This was 
particularly impactful in reducing computational cost and supporting scalability in real-time applications. 

5. Reachability and Robustness in Binary Neural Networks 
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Binary Neural Network Frameworks: Papers like "XNOR-Net: ImageNet Classification Using Binary 
Convolutional Neural Networks" by Rastegari et al. (2016) and "Binarized Neural Networks" by Courbariaux et 
al. (2016) laid groundwork for BNN development, emphasizing memory efficiency and faster inference at the 
cost of precision. Although not focused on reachability, these works highlighted specific challenges and 
constraints within BNNs that affect how reachable sets are computed. 

Geometric Approximations for Binary Layers: Liu et al.’s "Provably Robust Deep Learning via Adversarially 
Trained Smoothed Classifiers" (2019) proposed ways to geometrically approximate reachable sets even in 
networks with quantized or binary layers. Their approach also helped define boundaries for binary reachability 
analysis. 

IV. PURPOSE OF THE WORK 
 

1) Identify potential vulnerabilities or strengths in BNNs to improve their reliability and robustness in 
real-world scenarios.  
2) Utilize star methods as a systematic approach for reachability analysis, providing a framework for 
understanding input uncertainties. 
 
 

V. THE PROPOSED WORK 

When developing the proposed algorithms, our goal is to guarantee that theyare more efficient and precise 
than existing solutions. This allows us to showthat the research proposed in this thesis is truly meaningful. In 
addition,gains in efficiency and accuracy allow the proposed techniques to be moresuitable for larger networks, 
batches of data, and disturbance. This wouldshow the advantage of the proposed approaches over existing state-
of-the-artbenchmarks.In sum, the main contributions of this thesis are:The extension of the Star reachability 
algorithms for verifying BNNs oncontinuous input space.The implementation of exact reachability analysis and 
overapproximatereachability analysis algorithms in NNV that are publicly available for furtherevaluation and 

comparison. • A thorough evaluation of the proposed approach in comparison with Marabouand EEVBNN on a 

set of three datasets (MNIST, FMNIST, CIFAR10), and tenbinary neural networks. 

This thesis is organized as follows: Chapter 2 covers the related publishedresearch, Chapter 3 describes the 
foundation of Star-based reachability analysisand BNN neural network verification, Chapter 4 showcases the 
evaluation of the7proposed approach compared to the existing techniques.

 

Figure 1: Binary Blocks 

The Reachability Algorithm: 

1: procedure reach(N,Θ,method) 
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2: R ←Θ 

3: for <i = 1 to k>do 

4: Li ←N.Layers(i) 

5: R ←Li.reach(R,method)  

6:Return R 
 

Table I:The architectures of MLP networks 

 

Table II:Verification results of MLP0 network. 

 

VI. IMPLEMENTATION 

In the exact analysis, a max-pooling or a Sign layermay produce multiple output sets from an input set. 
Therefore, we exploit thepower of parallel computing to process multiple inputs simultaneously at a 
specificlayer to speed up the verification. In addition, we usually use estimated rangesto determine the Sign of 
individual inputs in the reachability of a Sign layer tominimize unnecessary optimization time in the analysis. 

For example, if we knowthe estimated lower bound of xi is ˜li ≥ 0, then we do not need to find its exactlower 

bound li for the analysis as it is always non-negative xi ≥ li ≥˜li ≥ 0.Finally, we note that if a BNN is a BFFNN, 

a more efficient implementation usingDepth-First Search (DFS) with exact reachability [37] can be used to 
verify thenetwork. Compared to the Breadth-First Search (BFS) implementation in this thesisto handle both 
BFFNNs and BCNNs, BFS is faster and more memory-efficient insearching a Counterexample when verifying 
the network. The algorithm will stopimmediately once a counterexample is found.Using the reachable set 
computed in the previous section, verifying the safety ofBNNs defined in the following is straightforward.an 

unsafe specification U defined by a set of linear constraints on the network’s outputsU ≜ {y | Cy ≤ d}, the 

network is called to be safe corresponding to the input set ×, if andonly if R∩ U = ∅, where R is the 

network’s reachable set, i.e., R = N(×). Otherwise,the neural network is unsafe.Similar to verification of 

ReLU networks [36], wecan construct a complete set of counterexamples that makes a BNN unsafe if theexact 

reachability method is used. This is described in the following lemma.Let R = [Θ1,Θ2, . . . ,ΘN] be the exact 

reachable set of a BNN N witha Star input set Θ = ⟨c,V, P⟩, i.e., R = N(Θ), and U ≜ {y | Cy ≤ d} be the 

unsafespecification of the network.If the network is unsafe, i.e., R∩ U ̸= ∅, then a complete setof 

counterexample inputs C is computed as follows:•∀k = 1, 2, . . . , N, Θk ∩ U = Θ′k = ⟨c′k,V′k , P′k 

⟩̸= ∅ (Proposition 3.1.3)Ck = ⟨Θ.c,Θ.V, P′k ⟩, C ← Ck.In the exact reachability of a BNN, the input set and 

output set are definedbased on the same set of predicate variables unchanged in the computation. Whensplitting 

occurs, new constraints on the predicate variables are Therefore, a Star set in the network’s reachableset 

contains all constraints appearing in the input set, i.e., Θk.Pk⊆Θ.P. Whena Star set Θk in the network’s 

reachable set intersects with the unsafe region U,the intersection is an unsafe output set of the network, which is 

also a Star setΘ′k = ⟨c′k,V′k , P′k ⟩ (Proposition 3.1.3). Importantly, we have P′k ⊆ Pk ⊆ P. 

Therefore,any input vectors corresponding to any predicate vectors α = [α1, . . . , αm]T ∈ P′kcause the 

network to be unsafe. In other words, the Star Ck = ⟨Θ.c,Θ.V, P′k ⟩ isa set of counterexamples of the 
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network. We can construct a complete set ofcounterexamples by checking the intersection of all Star sets in the 
reachable setwith the unsafe region U. 

VII. EXPERIMENTAL RESULTS 

Note that on the given examples, the Star-based exact verification approach runs out of time and memory. 
For thisreason, we only presentthe comparison with the overapproximate analysis algorithm. The 

verificationresults of the EEVBNN method’s proposed benchmarks arepresented. Compared to EEVBNN, 

Star underperforms both with regard to the timing andthe number of solved examples.Timing Performance. 
The experiments show that EEVBNN can be 

Table III: Verification results for MLP1-4.  

from 4× to30× faster than Star, depending on a model’s size and the used disturbance value.For example, 

EEVBNN verifies all 500 examples for cifar10-small 6× faster thanStar. This happens because Star 

reachability is aimed at handling continuousinput while EEVBNN works with the quantized one. Star’s ability 

to operate incontinuous space introduces a trade-off as its computational operations are morecomplex. In 

addition, EEVBNN tests its approach on ’solver-friendly’ networksthat contain high-sparsity weights. 

Conservativeness. According to the experiments, EEVBNN solves all the examples,while Star is only able to 

solve ≈ 14% for the MNIST-trained models and ≈ 88%for CIFAR10-trained models. This indicates that 

EEVBNN is less conservativecompared to the Star-based reachability method.Although our approach is 
efficient and41scalable for BFFNNs, it is not scalable for BCNNs with max-pooling layers. Asanalyzed in [38], 
when dealing with large disturbance bounds, more predicatevariables and their associated generators are 
introduced in the reachability of amax-pooling layer. This causes an explosion in memory and computation 
time.It is worth emphasizing that BCNNs using average pooling can achieve the same(or even better) accuracy 
and are amenable to our verification approach [63]. Wehave tried analyzing BCNNs with average pooling using 
our approach. However,we could not compare with Marabou on these networks as Marabou does notcurrently 
support average pooling.In addition, the given representation of Star cannot be efficiently used withquantized 
input space. For this reason, the method implemented in EEVBNNoutperforms Star in terms of timing and 
conservativeness. However, we emphasizethat Star reachability algorithms have been designed to work with 
continuousinput space. While it requires the operations to be more computationally expensive,it allows Star to 
generalize better as it deals with continuous (infinitebut bounded) input space instead of quantized input space 
with finite states like 

EEVBNN. In addition, quantization introduces various sources of errors (rounding,computational noise, etc.). 

All of this may not have an effect when verifying ”basic”benchmarks like MNIST or CIFAR10 but could 

have a huge impact in real-worldtasks. Note that EEVBNN also uses ”solver-friendly BNNs”. These BNNs’ 

weightssparsity is artificially increased during the training process. Such an approach mayalso increase error 
accumulation. Thus, we believe that Star reachability is a goodcomplementary approach when input 
quantization is not an option. 
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This section summarizes the results and how they attempt toanswer the research questions posed in this thesis: 

1.Can we develop a Star-based reachability analysis technique that would allow for verifying binary neural 
networks? 

 It showsthat it is possible to verify BNNs using Star by putting together reachabilityalgorithms that can 
compute a reachable set of the Sign activation layer.This initiated the development of the exact and 
overapproximate reachabilityalgorithms for the Sign layer. The obtained Star-based technique for 
BNNverification was tested on several benchmarks and compared to the existingMarabou framework. We 
included the developed approach into NNV, aneural network verification tool for DNNs and learning-enabled 
Cyber-Physical Systems. 

2. Can we guarantee the soundness and completeness of Star-based BNN verification? 

 Toanswer this question, we address the original definitions of the ERA and ORAalgorithms. Exact reachability 
guarantees soundness and completeness, whilethe overapproximate reachability algorithm is sound but will not 
be complete.To compensate for the incompleteness of the overapproximate algorithm, weconstruct 
counterexamples based on the original input and test them againstthe network. Even though it does not 
guarantee completeness due to therandomness of the process, the experiments show that such an approachallows 
us to identify quite a few input examples that can be successfullyused for adversarial attacks. 

VIII. CONCLUSION 

In this thesis, we have extended the star reachability algorithms for verifyingBNNs with continuous input space. 

The proposed exact and overapproximatereachability algorithms were compared to two existing frameworks — 

Marabouand EEVBNN — and evaluated using 9 different BNNs trained on three datasets:MLP0−4 and XNOR0 

for Marabou trained on MNIST and FMNIST respectively,and mnist-small, mnist-large, cifar10-small, cifar10-

large for EEVBNN trained onMNIST and CIFAR10. For MLP0−4 we used the following disurbance values{0.1, 

0.15, 0.2, 0.3, 0.5, 1, 3, 5, 10, 15}. For XNOR0 - {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Formnist-small, mnist-large - 
{0.1, 0.3}, for cifar10-small, cifar10-large - {2/255, 8/255}.The experiments show that the proposed method is 
more efficient and scalablethan the SMT-based approach implemented in Marabou. On smaller BFFNNs, 

theexact and overapproximate verification algorithms can be 3600× and 5700× fasterthan Marabou. For 

XNOR0, we demonstrate that the Star-based approach is 44.6×and 3877.25× faster than Marabou. On larger 

BFFNNs and higher disturbancevalues, Marabou keeps running into the timeout without providing any 
solutions.Our approach also proves to be less conservative than Marabou. For example,on the MLP0 BFFNN 

network, for δ = 1, Marabou proves (25 + 13)/46 ≈ 82.6%of the cases while our approach (both exact and 

overapproximate) proves 100%of the cases. On the XNOR0 BCNN network, for δ = 0.3, Marabou proves 

only(20 + 7)/50 = 54% while ours is (30 + 12)/50 = 84%. Importantly, on largenetworks, i.e., MLP1−4 (Table 

4.3), Marabou cannot prove any cases, i.e., 0%, whileour exact method proves 100% cases for MLP1−4 and the 

overapproximate onealso proves ≥ 96% cases for MLP1−4. We also run into results inconsistency 

whencomparing to Marabou. Marabou qualifies MLP0 as unsafe on some of the examples,while our approach 

shows that the network’s performance is not disruptedby applying the given disturbance to the given image. In 

addition, when runninginto a timeout on some of the examples, Marabout declares the network to beunsafe 
(SAT) instead of unknown (UNK). This issue grows as the disturbancevalues and network sizes increase. Our 
approach underperforms compared tothe quantization-based technique proposed in EEVBNN. We emphasize 
that Starrepresentation is not designed to handle quantized input space. However, westill included the 
comparison with EEVBNN to give a complete picture of ourapproach. 
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