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ABSTRACT 

This study investigates the reachability of binary neural networks (BNNs) when subjected to continuous inputs, utilizing star 
methods for analysis. As BNNs gain prominence in various applications, understanding their behavior in the face of continuous 
variations is crucial for ensuring reliability and safety. The star method framework allows for the encapsulation of input 
uncertainties, providing a systematic approach to assess the reachability of neural network outputs. Through a combination of 
theoretical analysis and practical experimentation, this research elucidates the potential impacts of continuous inputs on BNN 
performance and robustness. The findings offer valuable insights for developers and researchers aiming to enhance the 
deployment of BNNs in real-world scenarios. 

Keywords: Binary Neural Networks, Reachability Analysis, Continuous Inputs, Star Methods, Neural Network Robustness, Input 
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I. INTRODUCTION 

DNNs have become a popular technique for complex problems in various areas such as computer vision [3], natural language 

processing [4], and information retrieval [5]. They are being used in various fields like robotics [6], healthcare[7], agriculture [8], 

construction [9], etc. In order to handle such a vast set of tasks, different deep neural networks possess different architectures [10]. 

Architecture of a DNN is defined by the number of parameters the network implements (neurons and synapses), layers, activation 

functions, etc. Depending on the task’s complexity, larger architecture and datasets may be required to unlock better 

performance, which usually requires more training time. In addition, the architecture of a real-world DNN may grow 

exponentially in the number of parameters [11]. This becomes an issue when a DNN needs to be deployed on an edge device or as 

part of an embedded system, especially if in real-time conditions. To run applications in embedded systems, several demands must 

be met:(a) low power and memory consumption, (b) high accuracy, and (c) real-time performance. While modern training 

techniques allow (b) and (c) successfully,(a) is usually complicated by the usage of floating-point arithmetic format and a 

generally large scale of the models. One of the ways of overcoming the highlighted issues has been the usage of simplified DNN 

architectures [12]. One type of such architecture is called BNNs [13–20]. BNNs utilize binarization, a 1-bit quantization where 

the values of the weights and layers can only have a limited number of values(for example, -1 or +1). These architectures enable a 

sizable reduction in memory consumption while preserving accuracy. In addition, they allow for a replacement of heavy 

operations with lightweight bitwise ones, which makes them hardware friendly. 

Unlike other DNNs, BNNs use only Linear and Sign activation functions to reduce the number of floating-point arithmetic 

computations, which increases performance. This makes BNNs easy to deploy on devices that have limited computational and 

memory resources. For example, binary neural networks can beused on mobile devices to perform image recognition for various 

applications [21]. 

They can also be used to perform advanced speech recognition restricting word error rate [22]. Similarly, they can be 

implemented as part of software for robot adapted microcontrollers. For example, BNNs can be deployed in FPGAS, which 
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requires architectures and hardware adjustments [23]. Besides, they can serve as accelerators for parallelization of processes in 

embedded systems [24]. Similar to DNNs, BNNs are vulnerable to adversarial attacks [25, 26] in which slightly changing the 

inputs can completely fool a well-trained and highly accurate network. Adversarial attacks on DNNs exploit their vulnerabilities 

to input that underwent slight perturbations. These perturbations reveal significant security and reliability challenges in DNN-

based applications [27] by creating adversarial examples. Adversarial examples cause DNNs to misclassify them without affecting 

human perception [28]. Multiple techniques have been proposed to generate adversarial examples, including white-box ones (the 

architecture and weights are available in advance) and black-box ones (the attacker has no knowledge of the model’s internals). 

To defend against these attacks, the researchers have introduced techniques that include adversarial training to improve their 

robustness [29], and neural network verification approaches that aim to mathematically prove that for a given input space, the 

network’s predictions remain stable [30]. 

While being efficient and easy to deploy, BNNs are generally more challenging to train and verify because of a performance-

accuracy trade-off [31]. Only a few neural network verification methods have been proposed to deal with BNNs, and most of 

them require input quantization, which omits an infinite number of possible input states. For instance, the BDD-based methods 

[32] perform quantitative robustness analysis of BNNs based on constructing equivalent binary decision diagrams from the 

networks with quantized input data. The EEVBNN tool[2] can perform neural network verification for BNNs with quantized 

input space by converting the networks into SAT problems. It is important to emphasize that input quantization is an extra man-

made step to ease neural network verification. 

By reducing an input space to a discrete set, quantization makes the verification process more efficient with respect to 

computational time and resources. However, input quantization causes a decrease in the accuracy of neural networks after 

training, especially in those used for control purposes [33, 34], because originally, the networks were trained to work on 

continuous input space. Verifying BNNs on continuous input space allows accounting for all possible input states, increasing the 

certainty of the performed verification. The SAT/SMT-based neural network verification methods proposed in [1, 35] can verify 

BNNs on continuous input space, but they are not scalable. 

II. LITERATURE SURVEY 

Topic Focus Area Key Contributions References 

Binary Neural Networks 

(BNNs) 
Definition and Properties 

BNNs use binary weights 

and activations, reducing 

model size and computation 

costs while maintaining 

reasonable accuracy. 

Hubara et al. (2016), 

"Binarized Neural 

Networks" 

Continuous Inputs in 

BNNs 
Handling Continuous Data 

Examines methods for 

processing continuous 

inputs in BNNs, addressing 

accuracy drops when input 

data is not binary. 

Courbariaux et al. (2015), 

"BinaryConnect: Training 

Deep Neural Networks with 

Binary Weights during 

Propagation" 

Reachability Analysis Definition and Importance 

Reachability analysis helps 

verify the behavior of 

neural networks by 

exploring all possible 

outputs given a range of 

inputs. 

Gehr et al. (2018), "AI2: 

Safety and Robustness 

Certification of Neural 

Networks with Abstract 

Interpretation" 

Star Methods Definition of Star Methods 

Star methods represent 

input regions in high-

dimensional spaces, 

enabling efficient 

reachability analysis by 

capturing possible output 

ranges. 

Tran et al. (2019), "Star-

Based Reachability 

Analysis of Neural 

Networks" 

Reachability in 

Continuous Inputs for 

BNNs 

Challenges & Solutions 

Analyzes the difficulty of 

reachability in BNNs with 

continuous inputs, focusing 

on adaptation methods 

using star approaches. 

Xiang et al. (2018), 

"Reachability Analysis and 

Robustness Verification of 

Binarized Neural 

Networks" 
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III. PREVIOUS RELATED WORK DONE 

1. Formal Verification and Reachability Analysis in Neural Networks 

Reluplex: Katz et al. introduced the Reluplex algorithm in "Reluplex: An Efficient SMT Solver for Verifying Deep Neural 
Networks" (2017), which extended the Simplex method to support ReLU activations. This work paved the way for verifying 
safety and robustness properties of neural networks by formalizing constraints, though it was originally geared towards networks 
with continuous weights. 

Layer-based Approximations: Works such as "The AI2 Network Verification Tool" by Gehr et al. (2018) introduced layer-wise 
abstraction methods for reachability, applying interval bound propagation (IBP) and zonotope techniques to approximate 
reachable sets efficiently. 

2. Polyhedral and Star Methods in Neural Networks 

Polyhedral Methods: In "Reachability Analysis for Neural Networks with ReLU Activations" by Xiang et al. (2017), polyhedral 
and star set representations were used to represent input uncertainty. This work influenced further adaptations for quantized and 
binary networks by exploring how linear constraints could propagate through ReLU layers, establishing a basis for continuous 
input reachability analysis. 

Star Set Methodology: Tran et al. developed the Star Set method for reachability analysis in "Star-Based Reachability Analysis 
of Deep Neural Networks" (2019), which improved over earlier polyhedral approaches by handling larger input spaces and deeper 
networks. Although not initially for BNNs, this method has been foundational in reachability analysis for all types of networks. 

3. Verification and Robustness Analysis in Quantized and Binarized Networks 

Binary and Quantized Network Verification: Narodytska et al.’s paper "Verifying Properties of Binarized Deep Neural 
Networks" (2018) tackled verification challenges specifically for binarized neural networks. This research used SAT-based solvers 
to verify properties and robustness of binarized networks, addressing reachability and safety in binary settings. 

Adversarial Robustness in BNNs: Another key work by Raghunathan et al., "Certifying Robustness to Adversarial Examples 
with Interval Bound Propagation" (2018), explored methods for certifying robustness in networks using quantized activations. 
Although designed for quantized rather than fully binarized weights and activations, it helped establish bounds for adversarial 
robustness that could be extended to BNNs. 

 

4. Optimized Reachability Analysis for Efficiency 

Layer-Wise Symbolic Propagation: Huang et al., in "Safety Verification of Deep Neural Networks" (2017), introduced symbolic 
propagation techniques that efficiently computed reachability by representing inputs as symbolic variables. This approach, while 
computationally efficient, was best suited for shallow networks with continuous activations, leaving an opportunity to refine for 
binarized structures. 

Differentiable Approximations for Reachability: Techniques involving differentiable reachability, such as in Gowal et al.’s 
work on "On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models" (2019), introduced 
efficient, scalable methods using differentiable approximations. This was particularly impactful in reducing computational cost 
and supporting scalability in real-time applications. 

5. Reachability and Robustness in Binary Neural Networks 
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Binary Neural Network Frameworks: Papers like "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural 
Networks" by Rastegari et al. (2016) and "Binarized Neural Networks" by Courbariaux et al. (2016) laid groundwork for BNN 
development, emphasizing memory efficiency and faster inference at the cost of precision. Although not focused on reachability, 
these works highlighted specific challenges and constraints within BNNs that affect how reachable sets are computed. 

Geometric Approximations for Binary Layers: Liu et al.’s "Provably Robust Deep Learning via Adversarially Trained 
Smoothed Classifiers" (2019) proposed ways to geometrically approximate reachable sets even in networks with quantized or 
binary layers. Their approach also helped define boundaries for binary reachability analysis. 

IV. PURPOSE OF THE WORK 
 

1) Identify potential vulnerabilities or strengths in BNNs to improve their reliability and robustness in real-world scenarios. 
2) Utilize star methods as a systematic approach for reachability analysis, providing a framework for understanding input 
uncertainties. 
 
 

V. THE PROPOSED WORK 

When developing the proposed algorithms, our goal is to guarantee that they are more efficient and precise than existing 
solutions. This allows us to show that the research proposed in this thesis is truly meaningful. In addition, gains in efficiency and 
accuracy allow the proposed techniques to be more suitable for larger networks, batches of data, and disturbance. This would 
show the advantage of the proposed approaches over existing state-of-the-art benchmarks. In sum, the main contributions of this 
thesis are: The extension of the Star reachability algorithms for verifying BNNs on continuous input space. The implementation of 
exact reachability analysis and over approximate reachability analysis algorithms in NNV that are publicly available for further 

evaluation and comparison. • A thorough evaluation of the proposed approach in comparison with Marabou and EEVBNN on a 

set of three datasets (MNIST, FMNIST, CIFAR10), and ten binary neural networks. 

This thesis is organized as follows: Chapter 2 covers the related published research, Chapter 3 describes the foundation of 
Star-based reachability analysis and BNN neural network verification, Chapter 4 showcases the evaluation of the7proposed 
approach compared to the existing techniques, Chapter 5 presents a discussion of the work along with the conclusions. 

 

Figure 1: Binary Blocks 

The Reachability Algorithm: 

1: procedure reach(N,Θ,method) 
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2: R ←Θ 

3: for <i = 1 to k>do 

4: Li ←N.Layers(i) 

5: R ←Li.reach(R,method) 

6:Return R 
 

Table I: The architectures of MLP networks 

 

Table II:Verification results of MLP0 network. 

 

 

 

Figure 2: MLP0 verification mismatch for δ = 0.1. 

VI. IMPLEMENTATION 

In the exact analysis, a max-pooling or a Sign layer may produce multiple output sets from an input set. Therefore, we exploit the 
power of parallel computing to process multiple inputs simultaneously at a specific layer to speed up the verification. In addition, 
we usually use estimated ranges to determine the Sign of individual inputs in the reachability of a Sign layer to minimize 

unnecessary optimization time in the analysis. For example, if we know the estimated lower bound of xi is ˜li ≥ 0, then we do not 

need to find its exact lower bound li for the analysis as it is always non-negative xi ≥ li ≥˜li ≥ 0.Finally, we note that if a BNN is a 

BFFNN, a more efficient implementation using Depth-First Search (DFS) with exact reachability [37] can be used to verify the 
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network. Compared to the Breadth-First Search (BFS) implementation in this thesis to handle both BFFNNs and BCNNs, BFS is 
faster and more memory-efficient in searching a Counterexample when verifying the network. The algorithm will stop 
immediately once a counterexample is found. Using the reachable set computed in the previous section, verifying the safety of 
BNNs defined in the following is straight forward an unsafe specification U defined by a set of linear constraints on the 

network’s outputsU ≜ {y | Cy ≤ d}, the network is called to be safe corresponding to the input set ×, if and only if R∩ U = ∅, 

where R is the network’s reachable set, i.e., R = N(×). Otherwise, the neural network is unsafe. Similar to verification of ReLU 

networks [36], wecan construct a complete set of counterexamples that makes a BNN unsafe if theexact reachability method is 

used. This is described in the following lemma.Let R = [Θ1,Θ2, . . . ,ΘN] be the exact reachable set of a BNN N witha Star 

input set Θ = ⟨c,V, P⟩, i.e., R = N(Θ), and U ≜ {y | Cy ≤ d} be the unsafe specification of the network. If the network is unsafe, 

i.e., R∩ U ̸= ∅, then a complete setof counterexample inputs C is computed as follows:•∀k = 1, 2, . . . , N, Θk ∩ U = Θ′k = 

⟨c′k,V′k , P′k ⟩̸= ∅ (Proposition 3.1.3)Ck = ⟨Θ.c,Θ.V, P′k ⟩, C ← Ck.In the exact reachability of a BNN, the input set 

and output set are defined based on the same set of predicate variables unchanged in the computation. When splitting occurs, new 

constraints on the predicate variables are Therefore, a Star set in the network’s reachable set contains all constraints appearing in 

the input set, i.e., Θk.Pk⊆Θ.P. When a Star set Θk in the network’s reachable set intersects with the unsafe region U,the 

intersection is an unsafe output set of the network, which is also a Star setΘ′k = ⟨c′k,V′k , P′k ⟩ (Proposition 3.1.3). 

Importantly, we have P′k ⊆ Pk ⊆ P. Therefore,any input vectors corresponding to any predicate vectors α = [α1, . . . , αm]T ∈ 

P′kcause the network to be unsafe. In other words, the Star Ck = ⟨Θ.c,Θ.V, P′k ⟩ isa set of counterexamples of the network. 

We can construct a complete set of counter examples by checking the intersection of all Star sets in the reachable setwith the 
unsafe region U. 

VII. EXPERIMENTAL RESULTS 

Note that on the given examples, the Star-based exact verification approach runs out of time and memory. For this reason, we 
only present the comparison with the over approximate analysis algorithm. The verification results of the EEVBNN 

method’s proposed benchmarks are presented. Compared to EEVBNN, Star underperforms both with regard to the timing 

and the number of solved examples. Timing Performance. The experiments show that EEVBNN can be 

Table III: Verification results for MLP1-4.  

Table IV:Verification results for the networks presented by EEVBNN 
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from 4× to30× faster than Star, depending on a model’s size and the used disturbance value. For example, EEVBNN verifies 

all 500 examples for cifar10-small 6× faster than Star. This happens because Star reachability is aimed at handling continuous 

input while EEVBNN works with the quantized one. Star’s ability to operate incontinuous space introduces a trade-off as its 

computational operations are more complex. In addition, EEVBNN tests its approach on ’solver-friendly’ networks that 

contain high-sparsity weights. 

Conservative ness. According to the experiments, EEVBNN solves all the examples, while Star is only able to solve ≈ 14% for 

the MNIST-trained models and ≈ 88%for CIFAR10-trained models. This indicates that EEVBNN is less conservative compared to 

the Star-based reachability method.Although our approach is efficient and41scalable for BFFNNs, it is not scalable for BCNNs 
with max-pooling layers. Asanalyzed in [38], when dealing with large disturbance bounds, more predicate variables and their 
associated generators are introduced in the reachability of a max-pooling layer. This causes an explosion in memory and 
computation time.It is worth emphasizing that BCNNs using average pooling can achieve the same(or even better) accuracy and 
are amenable to our verification approach [63]. Wehave tried analyzing BCNNs with average pooling using our approach. 
However, we could not compare with Marabou on these networks as Marabou does not currently support average pooling. In 
addition, the given representation of Star cannot be efficiently used with quantized input space. For this reason, the method 
implemented in EEVBNNout performs Star in terms of timing and conservativeness. However, we emphasize that Star 
reachability algorithms have been designed to work with continuous input space. While it requires the operations to be more 
computationally expensive, it allows Star to generalize better as it deals with continuous (infinite but bounded) input space instead 
of quantized input space with finite states like 

EEVBNN. In addition, quantization introduces various sources of errors (rounding,computational noise, etc.). All of this may not 

have an effect when verifying ”basic”benchmarks like MNIST or CIFAR10 but could have a huge impact in real-world tasks. 

Note that EEVBNN also uses ”solver-friendly BNNs”. These BNNs’ weights sparsity is artificially increased during the 

training process. Such an approach mayalso increase error accumulation. Thus, we believe that Star reachability is a good 
complementary approach when input quantization is not an option. 

This section summarizes the results and how they attempt to answer the research questions posed in this thesis: 

1.Can we develop a Star-based reachability analysis technique that would allow for verifying binary neural networks? 

It shows that it is possible to verify BNNs using Star by putting together reachability algorithms that can compute a reachable set 
of the Sign activation layer. This initiated the development of the exact and over approximate reachability algorithms for the Sign 
layer. The obtained Star-based technique for BNN verification was tested on several benchmarks and compared to the existing 
Marabou framework. We included the developed approach into NNV, a neural network verification tool for DNNs and learning-
enabled Cyber-Physical Systems. 

2. Can we guarantee the soundness and completeness of Star-based BNN verification? 

To answer this question, we address the original definitions of the ERA and ORA algorithms. Exact reachability guarantees 
soundness and completeness, while the over approximate reachability algorithm is sound but will not be complete.To compensate 
for the incompleteness of the over approximate algorithm, we construct counterexamples based on the original input and test them 
against the network. Even though it does not guarantee completeness due to the randomness of the process, the experiments show 
that such an approach allows us to identify quite a few input examples that can be successfully used for adversarial attacks. 

3. Can the proposed technique be efficient enough to outperform existing approaches that verify neural networks on continuous 
input space? 

http://www.ijasem.org/


       ISSN 2454-9940 

     www.ijasem.org 

    Vol 19, Issue 1, 2025 

 
 
 

321 

we evaluate our approach on the respective benchmarks when comparing it to existing solutions. To compare our approach to 
Marabou, which works with networks on continuous input space, we evaluate exact and over approximate reachability analysis on 

5 BFFNNs (MLP0−4) and 1 BCNN(XNOR0) trained on MNIST and FMNIST datasets, respectively. We evaluateMLP0−4 on 500 

examples for 10 different disturbance values, while XNOR0is evaluated on 300 examples for 6 disturbance values. The 
experiments show that our approach is significantly faster than Marabou on their proposed benchmarks. For instance, the exact 

and over approximate verification can be3600× and 5700× faster than Marabou on a small network with 220 neurons. 

Additionally, our approach is also less conservative and more efficient than Marabou when dealing with severe L∞ norm attacks, 

i.e., attacks with large disturbance bound δ. For example, Marabou reaches a timeout of 5,000seconds when verifying the small 
network with δ > 1 while our approach can prove the robustness of the network within 1 second. However, the proposed approach 
underperforms when compared to EEVBNN on the given benchmarks. It is understandable as EEVBNN works with quantized 
input space, which is not the primary target of this thesis. 

VIII. CONCLUSION 
In this thesis, we have extended the star reachability algorithms for verifying BNNs with continuous input space. The 

proposed exact and over approximate reachability algorithms were compared to two existing frameworks — Marabou 

and EEVBNN — and evaluated using 9 different BNNs trained on three datasets:MLP0−4 and XNOR0 for Marabou 

trained on MNIST and FMNIST respectively,and mnist-small, mnist-large, cifar10-small, cifar10-large for EEVBNN 

trained on MNIST and CIFAR10. For MLP0−4 we used the following disurbance values{0.1, 0.15, 0.2, 0.3, 0.5, 1, 3, 

5, 10, 15}. For XNOR0 - {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. For mnist-small, mnist-large - {0.1, 0.3}, for cifar10-small, 
cifar10-large - {2/255, 8/255}.The experiments show that the proposed method is more efficient and scalable than the 
SMT-based approach implemented in Marabou. On smaller BFFNNs, the exact and over approximate verification 

algorithms can be 3600× and 5700× faster than Marabou. For XNOR0, we demonstrate that the Star-based 

approach is 44.6×and 3877.25× faster than Marabou. On larger BFFNNs and higher disturbance values, Marabou 

keeps running into the timeout without providing any solutions. Our approach also proves to be less conservative 
than Marabou.  
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