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Abstract: 

Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. 

Encouraged by these results, we pro-vide an extensive empirical evaluation of CNNs on large- scale video classification using 

a new dataset of 1 million YouTube videos belonging to 487 classes. We study multiple approaches for extending the 

connectivity of a CNN in time domain to take advantage of local spatial-temporal information and suggest a multi resolution, 

for related architecture as a promising way of speeding up the training. Our best spatio temporal networks display significant 

performance improvements compared to strong feature-based baselines (55.3% to 63.9%), but only a surprisingly mod- est 

improvement compared to single-frame models (59.3% to60.9%).We further study the generalization performance of our best 

model by retraining the top layers on the UCF- 101 Action Recognition dataset and observe significant performance 

improvements compared to theUCF-101 baseline model (63.3% up from 43.9%). 
 

1. Introduction 

            Images and videos have become ubiquitous on the internet, which has encouraged the development of algorithms 

that can analyze their semantic content for various applications, including search and summarization. Recently, 

Convolutional Neural Networks (CNNs) [15] have been demonstrated as an effective class of models for understanding 

image content, giving state-of-the-art results on image recognition, segmentation, detection and retrieval [11, 3,2, 20,9, 

18].The key enabling factors behind these results were techniques for scaling up the networks to tens of millions of 

parameters and massive labeled datasets that can support the learning process. Under these conditions, CNNs have been 

shown to learn powerful and interpretableimage features [28].Encouraged by positive results in do- main of images, we 

study the performance of CNNs in large-scale video classification, where the networks have access to not only the 

appearance information present in single, static images, but also their complex temporal evolu- tion. There are several 

challenges to extending and applying CNNs in this setting. 

2. Related Work 

The standard approach to video classification [26, 16, 21, 17] involves three major stages: First, local visual fea- tures 

that describe a region of the video are extracted ei- ther densely[25]orates parseset of interest points[12,8]. Next, the features 

get combined into a fixed-sized video- level description. One popular approach is to quantize all features using a learned k-

means dictionary and accumulate the visual words over the duration of the video into histograms of varying spatio-temporal 

positions and extents [13].Lastly, a classifier (such as an SVM) is trained on the resulting ”bag of words” representation to 

distinguish among the visual classes of interest. 

Convolutional Neural Networks[15]area biologically- inspired class of deep learning models that replace all  three stages 

with a single neural network that is trained end to end from raw pixel values to classifier outputs. The spa- tial structure of 

images is explicitly taken advantage of for regularization through restricted connectivity between layers(local filters), 

parameter sharing(convolutions) and special local in variance-building neurons(max pooling).Thus, these architectures 

effectively shift the required engineering from feature design and accumulation strategies to de-sign of the network 

connectivity structure and hyper param- eter choices. 

 

3.Models 

Unlike images which can be cropped and rescaled to a fixed size, videos vary widely in temporal extent and can- not be 

easily processed with a fixed-sized architecture. In this work we treat every video as a bag of short, fixed-sized clips. Since 

each clip contains several contiguous frames in time, we can extend the connectivity of the network in time dimension to 

learn spatio-temporal features. There are multiple options for the precise details of the extended connectivity and we 

describe three broad connectivity pattern categories(EarlyFusion, Late Fusion and Slow Fusion)be- low. Afterwards, we 

describe a multi resolution architecture for addressing the computational efficiency. 
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Figure1: Explored approaches for fusing information over temporal dimension through the network.  

Red, green and blue boxes indicate convolutional, normalization and pooling layers respectively. In the Slow Fusion model, 

the depicted columns share parameters. 

 

Time Information Fusion in CNNs 

We investigate several approaches to fusing information across temporal domain (Figure 1): the fusion can be done early 

in the network by modifying the first layer convolutional filters to extend in time, or it can be done late by placing two 

separate single-frame networks some distance in time apart and fusing their outputs later in the processing. We first describe 

a base line single frame CNN and then discuss its extensions in time according to different types of fusion. 

Multi resolution CNNs 

Since CNNs normally take on order so weeks to train on large-scale datasets even on the fastest available GPUs, the 

runtime performance is a critical component to our ability to experiment with different architecture and hyper parameter 

settings. This motivates approaches for speeding up the models while still retaining their performance. There are multiple 

front soothes endeavors, including improvements in hardware, weight quantization schemes, better optimization algorithms 

and initialization strategies, but in this work we focus on changes in the architecture that enable faster running times 

without sacrificing performance. 

One approach to speeding up the networks is to reduce the number of layers and neurons in each layer, but simi- lar to 

[28] we found that this consistently lowers the performance. Instead of reducing the size of the network, we conducted 

further experiments on training with images of lower resolution. However, while this improved the running time of the 

network, the high-frequency detail in the images proved critical to achieving good accuracy. 

 
 

 

 
 

Figure 2: Multiresolution CNN architecture. 

  4.Learning 

Data augmentation and preprocessing. 

Following[11],we take advantage of data augmentation to reduce the effects of overfitting. Before presenting an example 

to a network, we preprocess all images by first cropping to center region, resizing them to 200 ×200 pixels, randomly 

sampling a 170×170 region, and finally randomly flipping the images horizontally with 50% probability. These 

preprocessing steps are applied consistently to all frames that are part of the same clip. A sala step of preprocessing. We 

subtract a constant value of 117 from raw pixel values, which is the approximate value of the mean of all pixels in our 
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images. 

5.Results 

We first present results on our Sports-1M dataset and qualitatively analyze the learned features and network predictions. 

We then describe our transfer learning experiments on UCF-101. 

 

Experiments on Sports-1M 

Dataset. The Sports-1M dataset consists of 1 million YouTube videos annotated with 487 classes. The classes are 

arranged in a manually curated tax on omy that contains internal nodes such as Aquatic Sports, Team Sports, Winter Sports, 

Ball Sports, Combat Sports, Sports with Animals, and generally becomes fine-grained by the leaf level. For example, our 

data set contains 6 different types of bowling, 7 different types of American football and 23 types of billiards. 

Training. We trained our models over a period of one month, with models processing approximately 5 clips per second 

for full-frame networks and up to 20 clips per second for multi-resolution networks on assign le model replica. The rate of 

5 clips per second is roughly 20 times slower than what one could expect from a high-end GPU, but, we expect or each 

comparable speeds overall given that we use 10-50 model replicas. We further estimate the size of our dataset of sampled 

frames to be on the order of 50 million examples and that our networks have each seen approximately 500 million 

examples throughout the training period in total. 

Video-level predictions. To produce predictions for an entirevideowerandomlysample20clipsandpresenteach clip 

individually to the network. Every clip is propagated throughthenetwork4times(with different crops and flips). 

  

Figure 3:Predictions on Sports-1M test data.  

 

Blue (first row) indicates ground truth label and the bars below show model predictions sorted in decreasing confidence. 

Green and red distinguish correct and incorrect predictions, respectively. 

 

 
 

 

 

Figure 4. Filters learned on first layer of a multiresolution network. 

 

Left: context stream, Right: fovea stream. No- table the fovea stream learns gray scale, high-frequency features while the 

context stream model slower frequencies and colors. GIF soft moving video features can be found on Number of nodes in all 

layers. 

Quantitative results. The results for the Sports-1M dataset test set, which consists of 200,000 videos and 4,000,000 

clips, are summarized in Table 1.As can be seen from the table, our networks consistently and significantly out, perform the 
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feature-based baseline. We emphasize that the 

feature-based approach computes visual words 

densely over the duration of the video and 

produces predictions based on the entire 

video-level feature vector, while our 

networks only see 20 randomly sampled clips 

individual ally. Moreover, our networks 

seem to learn well despite significant label 

noise the training videos are subject to incorrect annotations and even the correctly-labeled videos often contain a large 

amount of artifacts such as text,effects, cuts, and logos, none of which we attempted to filter out explicitly. 

  Contributions of motion. We conduct further experiments to understand the differences between the single- frame 

network and networks,that have access to motion information. We choose the Slow Fusion network as a representative 

motion-aware network because it performs best. We compute and compare the per-class average precision for all Sports 

classes and highlight the ones that exhibit largest differences. Manually inspecting some of the associated 

clips(Figure4),we qualitatively observe that the motion-aware network clearly benefits from motion in- formation in some 

cases, but these seem to be relatively uncommon .On the other hand, balancing the improvements from access to motion 

information, we observe that motion aware networks are more likely to under,perform when there is camera motion 

present. We hypothesize that the CNNs struggle to learn complete in variance across all possible angles and speeds of 

camera translation and zoom. 

 

Table 1: Classes for which a (motion-aware) Slow Fusion CNN performs better than the single-

frame CNN (left)and vice   versa (right), as measured by difference in per-class average precision 

5.Conclusions 

Our results indicate that while the performance is not particularly sensitive to the architectural details of the connectivity in 

time, a Slow Fusion model consistently per- forms better than ,the early and late fusion alternatives. Surprisingly, we find 

that a single-frame model already displays very strong performance, suggesting that local motion cues may not be critically 

important, even for a dynamic dataset such as Sports. We also identified mixed-resolution architectures that consist of a 

low-resolution context and a high- resolution fovea stream as an effective way of speeding up CNNs without sacrificing 

accuracy. 

Our transfer learning experiments on UCF-101 suggest that the learned features are generic and generalize other video 

classification tasks. In particular, we achieved the highest transfer learning performance by retraining the top 3 layers of the 

network. 

In future work we hope to incorporate broader categories in the dataset to obtain more powerful and generic features, 

investigate approaches that explicitly reason about camera motion, and explore recurrent neural networks as a more 

powerful technique for combining clip-level predictions into global video-level predictions. 
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