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Abstract 

Hierarchical clustering is a widely used method to analyze data. See Murtagh and Contreras (2012); 

Krishnamurthy et al. (2012); Heller and Ghahramani (2005) for an overview and pointers to 

relevant work. In a typical hierarchical clustering problem, one is given a set of n data points and 

a notion of similarity between the points.  The output is a hierarchy of clusters on the input. 

Specifically, a dendrogram (tree) is constructed where the leaves correspond to the n input data 

points and the root corresponds to a cluster containing all data points. Each internal node of the 

tree corresponds to a cluster of the data points in its subtree. The clusters (internal nodes) become 

more refined as we move down the tree. The goal is to construct the tree so that these deeper 

clusters contain points that are relatively more similar. 

 

1. Introduction 

Hierarchical clustering is a widely used method to analyze data. See Murtagh and Contreras (2012); 

Krishnamurthy et al. (2012); Heller and Ghahramani (2005) for an overview and pointers to 

relevant work. In a typical hierarchical clustering problem, one is given a set of n data points and 

a notion of similarity between the points.  The output is a hierarchy of clusters on the input. 

Specifically, a dendrogram (tree) is constructed where the leaves correspond to the n input data 

points and the root corresponds to a cluster containing all data points. Each internal node of the 

tree corresponds to a cluster of the data points in its subtree. The clusters (internal nodes) become 

more refined as we move down the tree. The goal is to construct the tree so that these deeper 

clusters contain points that are relatively more similar. 

 

There are many reasons for the popularity of hierarchical clustering, including that the number of 

clusters is not predetermined and that the clusters produced induce taxonomies that give 

meaningful ways to interpret data. 

Methods used to perform hierarchical clustering are divided into two classes: agglomerative and 

divisive. Agglomerative algorithms take a bottom-up approach and are more commonly used than 

divisive approaches (Hastie et al., 2009). In an agglomerative method, each of the n input data 

points starts as its own cluster. Then iteratively, pairs of similar clusters are merged according to 

some appropriate notion of similarity. Perhaps the most popular definition of similarity is average 

linkage where the similarity between two clusters is defined as the average similarity between all pairs 

of data points in the two clusters. In average linkage agglomerative clustering the two clusters with the 

highest average similarity are merged at each step. Other variants are also popular. Related examples 

include: single linkage, where the similarity between two clusters is the maximum similarity between 

any pair of single data points in different clusters, and complete linkage, where the distance is the 

minimum similarity between any pair of single data points in different clusters. 

Divisive algorithms take a top-down approach where initially all data points are placed into a 

single cluster. They recursively perform splits, dividing a cluster into smaller clusters that will be 

further subdivided. The process continues until each cluster consists of a single data point.  In each 
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step of the algorithm, the data points are partitioned such that points within each cluster are more 

similar than points across clusters. There are several approaches to perform divisive clustering. One 

example is bisecting k-means where k-means is used at each step with k = 2. For details on bisecting 

k-means, see Jain (2010). 

Motivation: Hierarchical clustering has been used and studied for decades. There has been some work 

on theoretically quantifying the quality of the solutions produced by algorithms, such as Ackerman et 

al. (2012); Ackerman and Ben-David (2016); Zadeh and Ben-David (2009); Ben-David and Ackerman 

(2008); Dasgupta (2016). Much of this work focuses on deriving the structure of solutions created by 

algorithms or analytically describing desirable properties of a clustering algorithm. Though the area has 

been well-studied, there is no widely accepted formal problem framework. Hierarchical clustering 

describes a class of algorithmic methods rather than a problem with an objective function. Studying 

a formal objective for the problem could lead to the ability to objectively compare different methods; 

there is a desire for the community to investigate potential objectives, which would further support 

the use of current methods and guide the development of improvements. 

This paper is concerned with investigating objectives for hierarchical clustering. It gives a natural 

objective and leverages its structural connection to average linkage agglomerative clustering to 

prove this algorithm obtains a constant approximation to the best possible clustering. In contrast to 

this positive result, single linkage, complete linkage, and bisecting k-means are shown to have 

superconstant (i.e. scaling with the number of data points) approximation ratios. This paper also 

provides some divisive algorithms that have comparable theoretical guarantees to average linkage. 

Problem Formulation: Towards this paper’s goal, we begin by trying to establish a formal problem 

framework for hierarchical clustering. Recently, Dasgupta (2016) introduced a new problem 

framework for hierarchical clustering. This work justified its proposed objective by establishing that 

for several sample problem instances, the resulting solution corresponds to what one might expect 

out of a desirable solution. This work spurred considerable interest and there have been several 

follow up papers (Charikar and Chatziafratis, 2017; Dasgupta, 2016; Roy and Pokutta, 2016). 

Related Work (Other Cost Functions): Recently a contemporaneous paper (Cohen- Addad et al., 

2017) done independently has been published. This paper considers a class of objectives motivated 

by the work of Dasgupta (2016). For their objective, they also derive positive results for average 

linkage clustering and additionally give axiomatic properties that are desirable in an objective for 

hierarchical clustering. Ma and Dhavala (2018) consider combining Dasgupta’s objective function 

with prior knowledge about the data set. Wang and Wang (2018) suggests an alternate objective with 

the goal of comparing the clusterability across different input graphs, rather than just different 

clusterings for a single input graph. Both Chierchia and Perret (2019) and Monath et al. (2019) 

propose continuous objective functions with the goal of applying gradient descent. Lattanzi et al. 

(2019) and Abboud et al. (2019) both strive to make more efficient (parallelized and raw runtime, 

respectively) versions of classical clustering algorithms, and judge the resulting quality via 

comparing iteration-by-iteration against what the classical algorithm would have done. Wang and 

Moseley (2020) propose an objective function for which bisecting k-means achieves a constant 

approximation. 

 

2. Preliminaries 

In this section, we give preliminaries including a formal definition of the problem considered and basic 

building blocks for later algorithm analysis. 

In the Reward Hierarchical Clustering Problem there are n input data points given as a set V . There 

is a weight wi,j   0 between each pair of points i and j denoting their similarity, represented as a 

complete graph G. The output of the problem is a rooted tree T where the leaves correspond to the 

data points and the internal nodes of the tree correspond to clusters of the points in the subtree. We 

will use the indices 1, 2, . . . n to denote the leaves of the tree. For two leaves i and j, let T [i ∨ j] 

denote the subtree rooted at the least common ancestor of i and j and let the set leaves-outside(T [i 
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∨ j]) denote the number of leaves in T that are not in T [i ∨ j]. The objective is to construct T to 

maximize the rewad optimal solution to maximizing rewardG(T ).  Thus, there is an optimal solution 

for the rewardG(T ) objective that is binary. 

2.1 Analyzing Agglomerative Algorithms 

In this section, we discuss a method for bounding the performance of an agglomerative algorithm. 

When an agglomerative  algorithm  merges  two  clusters  A, B,  this  determines the least common 

ancestor for any pair of nodes i, j  where i ∈ A and j  ∈ B.  Given this, we define the reward gain 

due to merging A and B as, merge-rewG(A, B) := (n − |A| − 

|B|)    a∈A,b∈B wab Notice that the final reward rewardG(T ) is exactly the sum  

over iterations of the reward gains, since each edge is counted exactly once: when  

its endpoints are merged into a single cluster. Hence, rewardG(T ) = merges A,  

 
 

3. Conclusion 

One motive for developing an analytic framework is that it may help clarify and explain our 

observations from practice.   In this case, we have shown that average linkage is a 1 -

approximation to a particular objective  function  (Theorem  1),  and  the  analysis  that does so helps 

to explain what average linkage is optimizing. We have also shown that average-linkage can be no 

better than a 1 -approximation One open problem is to devise new algorithms and determine the best 

approximation ratio possible for the problem. The current state of the art is a (0.336)-approximation 

based on semi-definite programming  Can this be improved further? Another open problem is to find a 

characterization of graphs that excludes some of the worst-case ones used to prove negative results. Is 

there a formal way to restrict inputs that allows for better objective guarantees? 

We mention that similar results to ours for average-linkage have been shown by Cohen- Addad et 

al. In this work, it is shown that average-linkage is a 1 -approximation for a related objective function 

when there are dissimilarity scores between the points. 

Another open direction is the possibility of other objective functions. What are single linkage, 

complete linkage, and bisecting k-means optimizing for? One quirk shared by both Dasgupta’s cost 

objective and our reward objective is that the optimal tree is always binary. This is not appropriate 

for all applications; for example, in the classical application of biological taxonomy, groups 

typically contain much more than two subgroups. Can we devise an objective function which 

incentivizes non-binary trees? 
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