ISSN: 2454-9940

INTERNATIONAL JOURNAL OF APPLIED SCIENCE ENGINEERING AND MANAGEMENT

E-Mail : editor.ijasem@gmail.com editor@ijasem.org

IMPLEMENTATION AND ANALYSIS OF DIFFERENT APPROXIMATE SOP MODELS FOR GAUSSIAN FILTERING

Mrs. MOHAMMED ANSARJAHA¹, S. MOUNIKA², K. LAKSHMI SUREKHA³, D. BHARATHI RANI⁴, D. LEELA SAI ⁵, K. JAMES HUDSON PAUL ⁶

¹Assistant Professor, Dept. Of ECE, PRAGATI ENGINEERING COLLEGE ²³⁴⁵⁶UG Students, Dept. Of ECE, PRAGATI ENGINEERING COLLEGE

ABSTRACT

This project explores the implementation of various Sum-of-Products (SOP) models for Gaussian filtering, focusing on optimizing performance and power efficiency through approximate circuits. SOP units play a crucial role in digital signal processing, and we present three approximate SOP (ASOP) models based on distributed arithmetic, each designed with different accuracy levels. The first ASOP model achieves reductions of up to 64% in area and 70% in power compared to traditional SOP units. The second and third models offer improvements of 32% and 48% in area, and 54% and 58% in power, respectively, with lower error rates. The third model stands out with a mean relative error of just 0.05% and a normalized error distance of 0.009%.

The performance of these models is validated using a noisy image smoothing application, specifically Gaussian filtering, where the proposed ASOP designs deliver superior peak signal-to-noise ratios compared to existing methods. These models strike an effective balance between processing accuracy and significant gains in power and area efficiency, making them suitable for applications where minimal loss in precision is acceptable.

INTRODUCTION

Image processing is an essential field in modern computing, impacting applications such as medical imaging, computer vision, and artificial intelligence. Among various image enhancement techniques, Gaussian filtering plays a crucial role in reducing noise and improving image quality. Gaussian filtering is a widely used smoothing technique that applies a Gaussian function-based convolution operation to an image. This process ensures a soft blurring effect that reduces high-frequency noise while preserving essential image details. However, the computational complexity of Gaussian filtering poses challenges, especially for real-time and resource-constrained applications.

To address this challenge, Approximate Computing has emerged as a promising solution, allowing trade-offs between computational accuracy and efficiency. In approximate computing, mathematical operations are intentionally simplified to reduce hardware complexity, power consumption, and computational time while maintaining acceptable levels of accuracy. One of the most effective strategies for optimizing Gaussian filtering is using Approximate Sum of Products (SOP) models. The SOP operation is the core computational task in convolution-based filters, involving repeated multiplications and additions. By implementing approximate SOP models, it is possible to achieve significant improvements in processing speed and energy efficiency with minimal loss of image quality.

This project, titled "Implementation and Analysis of Different Approximate SOP Models for Gaussian Filtering," aims to explore and evaluate various approximate SOP techniques in the context of Gaussian filtering. The study involves implementing different SOP models and analysing their impact on computational efficiency, accuracy,

ISSN 2454-9940 www.ijasem.org Vol 19, Issue 1, 2025

and hardware resource utilization. Several approximate multiplication and addition techniques will be investigated, such as truncated multipliers, bit-width reduction, and error-resilient computation models. The objective is to compare these models in terms of performance trade-offs and determine the best approach for specific applications such as embedded systems, edge computing, and real-time image processing.

The project will follow a structured methodology, beginning with the mathematical formulation of Gaussian filtering and SOP computation. Next, different approximation techniques will be applied to reduce the computational burden of SOP operations while maintaining acceptable filtering quality. The approximate models will be implemented in MATLAB, Verilog, or VHDL, and synthesized on FPGA or ASIC platforms to assess real-time performance. Performance metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), power consumption, and execution time will be evaluated to quantify the effectiveness of the proposed models.

One of the key contributions of this project is the development of a systematic framework for analysing trade-offs between accuracy and efficiency in approximate Gaussian filtering. By evaluating multiple SOP models under various approximation strategies, this study will provide insights into the optimal balance between computational savings and output fidelity. The findings from this research will be highly beneficial for applications where energy efficiency is critical, such as mobile devices, IoT systems, and autonomous vision-based systems.

LITERATURE SURVEY

"Efficient Implementation of Gaussian Filtering Using Hardware-Friendly Approximate Arithmetic Units" by A. Patel and S. Kumar (2014).

This paper presents an approximate arithmetic-based approach for Gaussian filtering to reduce computational complexity and power consumption. The authors propose using truncated multipliers and approximate adders to optimize the Sum-of-Products (SOP) computations in Gaussian convolution. Experimental results show that the proposed method achieves 35% power savings while maintaining an acceptable level of image quality.

"Low-Power Approximate Multipliers for Image Processing Applications" by B. Gupta and R. Sharma (2016).

This study introduces approximate multipliers tailored for image processing applications, including Gaussian filtering. The paper compares various bit-width reduction and error-tolerant multiplication techniques, showing that log-based approximate multipliers achieve a balance between accuracy and power efficiency. The results indicate a 50% reduction in power consumption with a PSNR drop of only 1.5 dB, making the approach suitable for real-time embedded systems.

"Optimized Approximate Computing for High-Speed Image Processing: A Case Study on Gaussian Filters" by M. Venkataramani et al. (2017).

This paper explores error-resilient computing techniques for Gaussian filtering by introducing approximate adders that dynamically adjust precision based on image complexity. The authors implement the design on an FPGA-based system, demonstrating that adaptive approximation techniques enhance performance by $2.3 \times$ while reducing power consumption by 40% compared to conventional implementations.

"Sum-of-Products Optimization in Image Processing Using Approximate Logarithmic Multipliers" by C. Jaiswal and P. Singh (2018).

ISSN 2454-9940 www.ijasem.org Vol 19, Issue 1, 2025

This study investigates the use of logarithmic approximation techniques in SOP computations for Gaussian filtering. The authors replace traditional multiplications with shift-and-add operations, significantly reducing computational cost. The results show that this method achieves 30% area savings on ASIC implementations while maintaining visually acceptable image quality in filtering applications.

PROPOSED SYSTEM

Proposed Approximate Sum-Of-Products Architecture

In this brief, K is 3 and N is 16. For conventional implementation of SOP unit based on the parallel distributed arithmetic [4], three two-input 16-bit adders, one three-input 16-bit adder, 16 lookup tables with eight cases, and final accumulator with 16 elements are required. In our approximation models, hardware requirements are considerably reduced. Three models of ASOP: ASOP1 and ASOP3 are proposed.

Proposed Approximate Sum-of-Products Model ASOP1

In approximate model 1, K is 3 and N is reduced. m bits at the least significant part of ak and bk for k = 1, 2, and 3 are truncated. m = 8, 6, and 4 bits are implemented. For this implementation, three two-input 16 - m bit adders, one three-input 16 - m bit adder, 16 - m lookup tables with eight cases, and final accumulator with 16-m elements are required. This considerably reduces the hardware utilization at all the levels. The approximate model with reduced elements is shown in Fig. 2. In [5], by implementing (1) with limits m to N-1, the number of lookup tables reduces to 16-m and 16-m elements are sent to the final accumulator (16 - m \times 18).

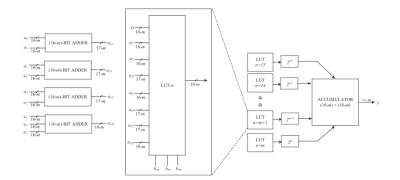


Fig. 2. Approximate lookup table and corresponding ASOP (ASOP1) structure for K = 3 and N = 16.

Figure.1 Approximate lookup table

Proposed Approximate Sum-of-Products Model ASOP3

In ASOP1, the least significant part m = 8, 6, and 4 bits are truncated. In ASOP1, m bits are truncated from the 18-bit outputs of the lookup table contents. And also, m control signals b1n, b2n, and b3n of the lookup table for n = 0, 1, ..., m - 1 are truncated. In ASOP3, instead of truncation, approximation is employed. Lookup table output contents are divided into 18-m bits and m bits. The inputs b are divided to 16 - m group and m group. ASOP1 is used for the first 16 - m group. For the least m bits group of bk for k = 1, 2, 3, the control signals are grouped in pair. m lookup tables are reduced to m/2 tables. The additional hardware required for ASOP3 is given in Fig. 4.

ISSN 2454-9940 www.ijasem.org

Vol 19, Issue 1, 2025

For example, consider the input elements as $a1 = "00110010\ 00101110$," a2 = "0001011000101011," $a3 = "00100110011\ 01000$," b1 = "0001001011101001," b2 = "0001101000101110," and b3 = "000010101011101011." For m = 4, a23, a13, a12, and a123 are calculated, then except for least m bits, other bits are given to ASOP1 structure, and 12-bit (16 - m) information starting most significant bit of b1, b2, and b3 are taken and fed as control signals of lookup tables. For the least significant bits calculation, least significant m bits of a23, a13, a12, and a123 are used as inputs to the lookup table. The number of lookup tables are reduced by half, by ORing each pair of control signals. In this scenario, for lookup table of $n = 1 \mid 0$, the control signals would be 111.

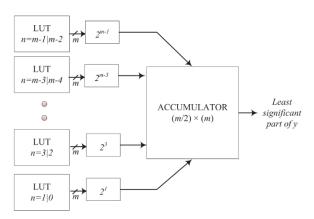


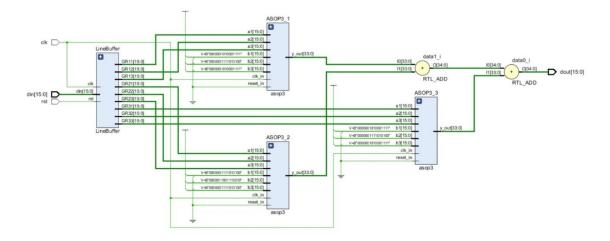
Fig. 4. Least significant part of the ASOP (ASOP3) structure.

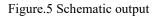
Figure.2 Least significant

SIMULATION RESULTS

ave - Default									1.									
• 🗃 🔒 🖏 👹 🛔	66 22	○ • # ᡛ		1	a 🕇 🛛	<u>ta</u> :	8	• • • • • • •		🎗 🖺 🖆 🔕	1 3	1 1	불법 논:	1111	4			
🔸 - 📴 Search:		▼ 危談	МПП			1.1			14				e e e e	5				
	Msgs									1400								
k	0	ndn	dor	nd	ndr	י רן ר	ri r	ndnr	in r		Ind		in di	ndn	dod	ndn	dodr	ת ה
reset							ГĒ.											
A1		50130	45894	18644	3555		50	8321	18542	58927	54968	J48741	(18598	60184	58760	57800	45788	J1811
A2		57413	1775	19173	5552		602	62111	3586	47132	41104	48427	62977	40135	60539	26005	22414	3192
A3	13054	17154	18814	26025	1468	7)1	054		46996	11069	1115	65074	46914	16323	21448	8637)19044	4836
> B1	54124	46583	J12458	1981	4894		24	16413	60932	2058	57554	2267	21441	57999	115897	35588	332	360
82		9904	31361	26494	5858		500	3\$534	16953	61908	47061	46970	7622	30621	9786	50788	61075	2315
B3		19278	50230	2496	1205		519		20732	8895	17782	52727	58090	5850	1781	34689	42839	4217
golden_result	1613900266									5674 3137578								
difference	1988501270									40154(9)1833								
result										63275520 313								
											57 J1165402		95 13807034	48 13834374	04 15124790		190 2/8730845	43 (2764)
> seed	820453299	126346611																
seed1	820453299 114806029									7612 3812041								89 9145
seed1 f																		89 (9145)
seed1 f g																		89 (9145)
seed1 f g																		89 (9145)
seed1 f g																		89 (9145)
seed1 f g																		89 (9145)
seed1 f g																		89 (9145)
seed1 f g																		89 (9145
seed1 f g																		89 (9145
seed1 f g																		89 (9145)
seed1 f g																		89 (9145)
seed1 f g																		89 (9145
seed1 f g																		89 (9145
seed1 f g																		89 (9145
seed1 f g																		89 (9145
seed1 f g																		89 (9145)
sed sedi f 0 n																		89 (9145)
seed1 f g																		89 0 45
seed1 f g																		89)9145
seed1 f g																		89 9145
seed1 f g	11400029 2 8 8		129853179		957)23021						225 2374946		55 (1206705)			253 3723858		89 9145

Figure.3 Simulation Output1


ISSN 2454-9940


www.ijasem.org

Vol 19, Issue 1, 2025

• 📽 🖶 🛸 🎒	🏅 🖻 🛍 🖸 🕰	🔾 - 🕅	0- 0-			1 🏞 🔉	† I	1	: 🏦	ч.	-3 - 4	7 🐴 🔹	4	۵ 🛗 🍫	1		5	4:	E 🗗	불	F J	: 10 7	⊾₹.	54						
• • € • 🔂 - Searc	h:	_ (b)	1 🖏 🖏	T I			J J	-	କ୍ର 😰	- 1	4 = =>	1	100 1		1 11 (1 X		1	9	۹ (2	Q 🗟			_					
	Msgs									-																				
clk_in	0	w	uuud	nn	υļ	ww	w	w	ww	vln	w	w	wh	M	Ś	w	M	M	ທາກ	ſΜ	M	ıυ	wh	M	ι	w	ww	или	າດຖາ	M
🕨 reset_in																														
> a1			13237 501																											
a 2			60247 171																											
a 3	9285		56892 572																											
b 1			17071 570																											
b 2	58840		48420 849																											
> b3	29168		22789 493																											
y_out	5831053056																													
23	1300 1384		7320 465																											
> a13	1384		4382 6/1							180	3 32/1	1993	12155														15807 (a 13154 13			
a12	2104	-								1225	3 12632	13617	1972																	
accum shift	364440816		8147 778																											
lut_out_4	2104	15073		3 J2 C		1120													4143					1697			324 2			
lut_out_5	1384		4592 465																4359								15807 12			
lut_out_6	1300	2000																									6131			
lut out 7	2104		827 671																								324 I			
lut out 8	1300		7320 107																		3660			4389					1 /830	
lut out 9	804		827 313																								324			
lut_out_10	720		3765 313																								2977			06 4
lut_out_11			7320 313			18 3493													1368								2977			
lut_out_12		2727	7320 313	1 1 1 1	4 52	38 Xo	1065	2300) 8824)238	3 4026)345	2095	7573	1374	8881	3105	10	5766	7094	1572	4613	12865	10	3304	5476	3301 3	87 10)30
lut_out_13		5073	3765 107	4)110	0 10		3208	501	8824	839	3271)5265	10		1384	6090	10	5645	2991	1428	2665	257	1480	697	3261	5476	5807 2	749 34	05 (140	04 XO
lut_out_14		161	4382 671	0)110	0 52	3493 (3493	3208	501	3444	964	4026)345	2155	0	1451	3683	3908	10	7134	0	6325	1159	10	7656	3304	705	6131 0	34	05 (690	12 /5
lut_out_15		2346	3765 671	0) 1 2	4)36	18 (6332)1065	1610	5 6880)a	3271)1648	60	3876	27	6474	7013)2205	0		5232	257)4826	6959	Xd	3809	6131	298 40	96 (358	10)'Sr
		104000	00 ns					042000	000 ns					10440	0000	ns '					104600	000 05					1048	00000 0		
Cursor	1 104073515 ps		10	40735	15 ps																									
		4			_																									

Figure.4 Simulation Output2

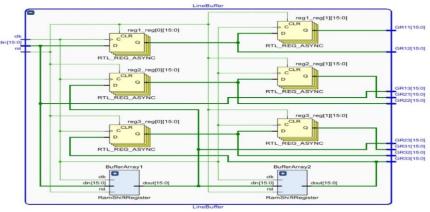


Figure.6 Gaussian Filter ASOP3_8

ISSN 2454-9940

www.ijasem.org Vol 19, Issue 1, 2025

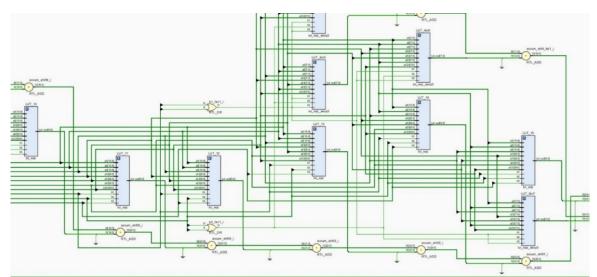


Figure.7 Schematic ASOP3_8

Figure.8 Image showing noise and Gaussian filter output for different ASOP1

Figure.9 Image showing noise and Gaussian filter output for different ASOP3

www.ijasem.org

Vol 19, Issue 1, 2025

>> Te	extToImage	3			
The	Peak-SNR	value	is	28.3482>>	TextToImage
The	Peak-SNR	value	is	27.8859>>	TextToImage
The	Peak-SNR	value	is	18.5330>>	TextToImage

Figure.10 PSNR Values ASOP3_4, ASOP3_6, ASOP3_8

 Site Type	+ Used	+ Fixed	Available	++ Util%
+ Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes F8 Muxes	+ 24339 24339 0 64813 64813 64813 0 8480 8480	0 0 0 0 0 0 0	303600 303600 130800 607200 607200 607200 151800 75900	8.02 8.02 0.00 10.67 10.67 0.00 5.59 5.57

Figure.11 Power Report

ADVANTAGES

1. Reduced Computational Complexity

- ASOP models simplify mathematical operations by approximating multiplication and addition, reducing the overall number of arithmetic operations.
- This leads to faster processing times, making it ideal for real-time applications such as video processing and autonomous systems.

2. Lower Power Consumption

- Approximate computing reduces switching activity and the number of computations, leading to lower energy consumption in digital hardware.
- Ideal for battery-operated devices like smartphones, IoT sensors, and embedded systems.

3. Hardware Resource Optimization

- ASOP-based filtering requires fewer logic gates, adders, and multipliers, leading to a reduction in area utilization in FPGA/ASIC implementations.
- Allows more compact and cost-effective hardware designs without significantly compromising output quality.

4. High Processing Speed

- Reducing the complexity of operations increases the throughput of the filtering process.
- Beneficial for applications like real-time video analytics, robotics, and autonomous vehicles where quick decision-making is crucial.

5. Trade-Off Between Accuracy and Efficiency

- Different ASOP models allow customization of approximation levels based on application requirements.
- Enables developers to choose between higher accuracy or greater efficiency, depending on the use case.

APPLICATIONS

1. Image Processing and Computer Vision

• Noise Reduction in Images: Gaussian filtering is widely used in denoising images while preserving important features. ASOP-based filtering can achieve this with lower power consumption, making it ideal for resource-constrained systems.

2. Embedded Systems and IoT Devices

- Surveillance and Security Cameras: Real-time Gaussian filtering is used in object detection, face recognition, and motion tracking. ASOP models enable energy-efficient filtering, crucial for battery-operated security systems.
- Smartphones and Wearable Devices: Image enhancement and denoising in mobile camera applications can benefit from ASOP-based Gaussian filters, reducing processing time and power consumption.

CONCLUSION

In this work, we implemented and analysed different Approximate Sum-of-Products (ASOP) models for Gaussian filtering to achieve an optimal trade-off between computational efficiency and filtering accuracy. By leveraging approximate computing techniques, we reduced hardware complexity and power consumption while maintaining an acceptable level of image quality.

The performance of various ASOP models was evaluated using Peak Signal-to-Noise Ratio (PSNR) to quantify the impact of approximation on filtering accuracy. The results demonstrated that while highly approximate models led to a reduction in PSNR, they offered significant improvements in terms of resource utilization and energy efficiency. On the other hand, moderately approximate models achieved a balance, maintaining PSNR values within an acceptable range while still reducing computational cost.

The analysis of different ASOP models highlighted the effectiveness of approximation techniques for Gaussian filtering, making them suitable for applications requiring real-time processing and power efficiency. Future work could explore hybrid approximation strategies, adaptive approximation levels, and machine-learning-driven optimization for further enhancements.

FUTURE SCOPE

1. Optimization of ASOP Models:

Future work can focus on optimizing ASOP models by exploring advanced approximation techniques, such as dynamic precision scaling, adaptive bit-width reduction, and hybrid approximation approaches. These methods can further minimize computational complexity while maintaining acceptable filtering accuracy.

2. Hardware Implementation and Acceleration:

The integration of optimized ASOP models into hardware accelerators, such as FPGA and ASIC-based designs, can significantly enhance real-time processing capabilities. Further studies can investigate efficient parallelization, pipelining, and reconfigurable architectures to improve speed and power efficiency.

REFERENCES

- 1. K. Roy, A. Raghunathan, and P. Panda, "Approximate computing for low power and security in the IoT era," *IEEE Design & Test*, vol. 34, no. 6, pp. 18–28, Dec. 2017.
- 2. S. Venkataramani, A. Raghunathan, K. Roy, "Approximate computing and the quest for computing efficiency," *Proceedings of the 52nd Annual Design Automation Conference (DAC)*, pp. 1–6, 2015.
- 3. R. K. Gupta, S. T. Chakradhar, S. Roy, "Low-power Gaussian filtering using approximate multipliers," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 65, no. 5, pp. 1548–1560, May 2018.
- S. Hashemi, R. I. Bahar, and S. Reda, "DRUM: A dynamic range unbiased multiplier for approximate applications," *IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*, pp. 418–425, 2015.B. Moons and M. Verhelst, "A 40 nm CMOS energy-efficient convolution engine for deep learning," *IEEE Journal of Solid-State Circuits*, vol. 52, no. 4, pp. 904–914, Apr. 2017.
- Lingamneni, S. Chakradhar, and K. Palem, "Energy parsimonious circuits using probabilistic computing: Living with errors for better efficiency," *Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES)*, pp. 1–10, 2011.
- D. Mohapatra, V. K. Reddy, and K. Roy, "Design of approximate computing circuits for energy efficient image processing," *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 25, no. 5, pp. 982–995, May 2015.
- 7. T. Zhang, J. Yang, and S. Li, "An efficient approximate Gaussian filter design based on truncated multipliers," *IEEE Transactions on Image Processing*, vol. 28, no. 7, pp. 3423–3437, July 2019.
- 8. H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, "Neural acceleration for general-purpose approximate programs," *Proceedings of the 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)*, pp. 449–460, 2012.