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Abstract: 

The integration of cloud computing into banking systems has allowed operations to become scalable, effective, 

and secure, thus completely transforming the financial industry.  Conventional banking systems, typically 

premised upon on-site technology, give way to a number of drawbacks, such as slow transaction processing, high 

operational costs, and limited avenues for scalability.  These shortcomings hinder the adoption of real-time 

detection technologies for fraud, which are a must to counteract financial loss. In this work, we design a novel 

cloud-based fraud detection system for real-time fraud detection in a Core Banking System (CBS) based on CNN 

deployed on AWS Lambda.  We create a deep learning model based on multiple features of a transaction that 

include amount, location, and user behavior, in order to ascertain whether a transaction is fraudulent or legitimate.  

The model performed an F1 of 93.0%, accuracy of 97.5%, precision of 90.9%, and recall of 95.2% in test results 

using AWS Glue for configuration and Amazon RDS for storage.  Appearing with low latencies and high 

throughput, the model is considered good in fraud detection. Our work is a more reliable, scalable, inexpensive, 

and highly efficient method of fraud detection in today's finance systems as compared to the conventional 

methods. 

Keywords: Fraud Detection, Cloud-Based Core Banking System, Convolutional Neural Network (CNN), AWS 

Lambda, Real-Time Prediction, Machine Learning 

1.Introduction: 

Cloud computing has revolutionized conventional ways of doing banking, as it provides scalable, flexible, and 

reasonable solutions[1][2]. Banks get it more secure, store data, and process more transactions using cloud-based 

solutions of finance in real time. [3] [4]. All of these participated in cloud infrastructure and finally led to the 

innovative services of fraud detection in real time, mobile banking, and tailored experiences for customers. The 

cloud will allow any financial institution to cut down on operational cost while improving system reliability and 

agility in the face of changing market demand.[5] [6]. Thus, cloud technology is rapidly becoming an enabler for 

modern banking and the future of digital transformation within the financial world [7]. 

Bank fraud detection systems today are mainly rule-based and basic machine learning models, coupled with 

traditional on-premises infrastructure [8] [9]. These systems are, by their very nature, poorly scalable, expensive 

to maintain, and not able to handle thousands of transactions in real time. Hence, response time lags due to the 

processing of the input, which delays the fraud identification [10]. Majority of such systems are hampered by 

inadequate processing powers and low adaptability, even if some of them use some machine-learning 

techniques.[11] [12]. These systems are under huge stress in the changing pattern of fraud and real-time data 

acquisition, as the demand for fraud detection is increasing.[13] [14]. On the other hand, a lack of cloud scalability 

due to infrastructure being static makes current and flexible fraud detection methods hard to maintain[15] [16]. 

The modern financial fraud detection systems have limited effectiveness because they solely depend on traditional 

on-premise infrastructure, leading to non-scalability, costly operational expenses, and no real-time processing. 

Additionally, these systems are generally unresponsive to changes in fraud trends and are not computationally 

sufficient to run a huge amount of transactions efficiently. Our methodology overcomes these hurdles through 

cloud-based infrastructure and Convolutional Neural Networks (CNNs) to implement low-latency, scalable, real-

time fraud detection through AWS Lambda.  By tapping into cloud-based services such as Amazon RDS for 

storage and AWS Glue for data processing, our approach is making the systems more responsive and cost-
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effective, thus providing a more agile and reliable method of fraud detection. The research enables the creation of 

a scalable, cost-effective and flexible fraud detection system which can handle large transactional volumes with 

versatility as to adjusting to newer patterns of fraud over time. 

1.1.Problem statement: 

As transactions are done instantaneously, online and mobile banking's essentiality has put more and more pressure 

on core banking systems to detect fraud[17] [18]. Because of limited scalability, very high operating costs, and 

slow processing time, traditional fraud-detection systems cannot handle enormous transaction data. Most 

commonly, these systems are based on on-premise infrastructure[19] [20]. As fraud prevention becomes more and 

more sophisticated, the banking systems need to integrate real-time detection models for identifying fraudulent 

transactions with little or no delay [21]. Applying serverless architecture with technologies such as AWS Lambda 

and cloud computing with deep-learning approaches (Convolutional Neural Networks), this study attempts to 

propose a fraudulent detection solution for cloud-based core banking systems that scales and remains 

affordable[22] [23]. The proposed scheme targets high latency reduction, increased accuracy of fraud detection, 

and more flexible response to shifting trends of fraud characteristic in modern-day financial environments[24], 

[25]. 

1.2.Objective: 

1. Develop a cloud-based fraud detection application using Convolutional Neural Networks (CNN).   

2. Ensure real-time fraud detection with low latency using AWS Lambda.   

3. Evaluate the effectiveness of the fraud detection system using critical metrics: accuracy, precision, and recall.   

4. Optimize scalability and cost-effectiveness of fraud detection through cloud infrastructure. 

The rest of the paper is organized as follows. Section 1 with the introduction. Section 2 will discuss the Theoretical 

Background. Section 3 presents the Methodology and Section 4 highlights the results. Section 5 concludes. 

2.Literature review: 

Cloud computing, as suggested by Ghule, promotes innovation and enhances the financial service delivery process 

with agility, considered paramount in the success of any financial organization [26]. Asadi et al., proposed the 

TAM-DTM model with modifications by introducing trust, cost, and security as additional constructs to look into 

the factors influencing cloud computing adoption in the banking industry from a consumer perspective[27]. They 

found that consumers' behavioral intention to use cloud computing is significantly influenced by the perceived 

usefulness and perceived ease of use, which in turn are positively influenced by trust, cost, and security. In 

comparisons with the banking industry, wherein security and trust are a matter of primary concern for the clients 

themselves and also the service providers, Bose et al., discussed the importance of these perspectives in cloud 

adoption[28]. Apostu et al., studied decision-making processes for cloud adoption in the banking industry, with 

respect to business problems that would be solved by this implementation of cloud computing[29]. Elzamly et al., 

showed how performance of ANN can be increased in predicting security levels in the cloud by means of 

combining ANNs with the Levenberg-Marquardt Back Propagation techniques to predict cloud security 

levels[30]. 

Mugyenyi  outlined the Ugandan commercial banks expansion efforts encountering challenges due to exorbitant 

operational costs, demand for IT infrastructure, and inadequate data storage management [31]. The research 

established that scalable data management and storage capabilities of cloud computing could present a possible 

solution. Kshetri et al.,  argued that the developing world needs to harness the benefits of cloud computing while 

minimizing its dangers in order to have access to modern IT infrastructure and to protect sensitive information[32]. 

Buyya et al., investigating the capabilities of InterCloud for cloud systems federation, showed an improvement in 

performance, response time, and cost-effectiveness [33].Cloud computing, according to Aljabre (9), would be the 

new paradigm of the future in business operations and particularly highlighted the competitive advantages that 

smaller businesses stand a better chance of enjoying from its application [34]. The final authors to contribute to 
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this growing body of literature on how companies can benefit from cloud computing as Chard et al., on the idea 

of a "Social Cloud," where social networks would facilitate resource sharing with less security and privacy 

overheads[35]. 

Jhawar et al., have published a paper that presents a new system-Level modular approach to establishing and 

maintaining fault tolerance for cloud environments[36]. Through this high-level mechanism, application 

developers can specify the level of fault tolerance they wish to achieve without the need for in-depth knowledge 

of specific fault-tolerant techniques. From Alzahrani et al., one can derive an overview of mobile cloud computing 

benefits, cons, and challenges that remain to be resolved[37]. Schulte et al., evaluate the state of the art in elastic 

business process management, focusing on infrastructure issues and proposing solutions to scheduling, resource 

allocation, and decentralized coordination problems [38].A novel procedure for long-distance global lightning 

geolocation through the direct detection of sferics was reported by Said et al., with promising results in lightning 

stroke identification with a median accuracy of 1-4 km[39]. Last but not least, Dasgupta et al., famously worked 

out a load balancing scheme by applying a Genetic Algorithm (GA) that had a better capacity of balancing cloud 

infrastructure loads than traditional methods like Round Robin (RR) and First Come First Serve (FCFS)[40]. 

3.Proposed methodology: 

The fraud detection methodology as depicted in Figure 1 is applied in the cloud-based core banking systems. All 

data for processing comes from client interactions, the transaction logs, and even interfacing third parties. Where 

necessary, pre-processing includes the activities of cleaning, normalization, and integration into an ETL pipeline, 

such as AWS Glue, to clean the data before sending it to the cloud databases like those within the Amazon RDS 

portfolio. Convolution neural networks (CNNs) are deep learning fraud detection methods that recognize patterns 

in transactional data. Such a prediction can be done in real time by AWS Lambda since this fraud detection system 

is serverless and infinitely scalable. 

 
Figure 1: Fraud Detection Workflow Using CNN and AWS Lambda 

3.1.Data Collection: 

Fraud detection system demand a holistic, thus requiring transaction data and customer data sourced from different 

domains.  The data include customer interaction data obtained through mobile apps, ATMs, and online systems, 

transaction records of type (deposit, withdrawal, transfer), amount, time, location, and merchant.  This is 

supplemented by integration with third parties, which provides extra data from external services such as credit 

score agencies, fraud detection systems, and payment gateways, lending further credence and richness to the fraud 

detection model. 

3.2.Data Preprocessing: 

Clean, harmonize, and transform raw data into a more ordered structure that could act as a dataset for model 

training. The ETL pipeline runs in AWS Glue, where the first step is data extraction from varying sources, such 

as APIs and cloud storage. Subsequently, data transformations, which entail cleaning, normalization, and feature 
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engineering, are performed to ensure that data is consistent and user-friendly. After transformation, data is loaded 

to Amazon RDS for storage and for use within the real-time training and prediction of fraud detection models. 

3.3. Fraud Detection Model Using CNN: 

In training the CNN to classify transactions based on their features to be either legitimate or fraudulent, the input 

layer of the CNN architecture has been preprocessed to normalize transaction amounts, user activity, and time.  

Convolutional Layers apply their filters over the available input data so that it can figure out patterns such as odd 

transaction amounts or sudden spikes in user activity. These patterns are subsequently forwarded through the Fully 

Connected Layers, after which the data is flattened to yield fraud prediction. Output of the CNN layer is 

represented mathematically by the convolution operation: 

 𝑥𝑗,𝑖 = ∑  

𝑚,𝑛

𝑦𝑗+𝑛,𝑖+𝑚 ⋅ 𝑤𝑛,𝑚 
(1) 

 

Where  the input matrix contains transaction features termed 𝑦; W is the kernel, otherwise called the filter; The 

output feature map is denoted by 𝑥, while j and I are the indices of the output feature map. Now, Activation 

Function (ReLU) actually infuses non-linearity:  

 ReLU(𝑦) = 𝑚𝑎𝑥(0, 𝑦) (2) 

 

The sigmoid function serves for final output regarding binary classes i.e. fraud or not fraud:  

 
𝑥 =

1

1 + 𝑒−𝑧
 

(3) 

 

where output from fully connected layers is indicated by z. The model will be trained using binary cross-entropy 

loss function:  

 

𝐿 = −
1

𝑁
∑  

𝑁

𝑖=1

[𝑥𝑗log(𝑝𝑗) + (1 − 𝑥𝑗)log(1 − 𝑝𝑗)] 
(4) 

 

Here, 𝑝𝑗 represents the predicted probability that the transaction is fraudulent, while 𝑥𝑗 is the actual label (0 for 

genuine, 1 for fraudulent). 

3.4. Model Evaluation: 

It assesses the performance of the CNN model in terms of F1-Score, AUC-ROC, Accuracy, Precision, and Recall 

metrics; the Confusion Matrix provides an assessment of the outcome of how the model has classified data across 

different classes, becoming thus an important tool in the analysis of performance of the model.  The matrix is 

given below: 

 [
𝑇𝑃    𝐹𝑃
𝐹𝑁    𝑇𝑁

] (5) 

 

Where TP = True Positives, FP = False Positives, FN = False Negatives, TN = True Negatives. 

AUC-ROC also measures the area under the ROC curve as an indication for how well the model can differentiate 

between fraudulent and legitimate transactions. 

3.5. Model Deployment: 

For real-time fraud detection without server management, the trained fraud detection model is set up in AWS 

Lambda. AWS Lambda functions are triggered instantly whenever a new transaction occurs. The pre-trained CNN 

model was brought into the Lambda function and deployed through Amazon SageMaker so that the Lambda 
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function could predict in real time for every transaction. As part of the serverless inference, AWS Lambda 

automatically scales for large transaction volumes, ensuring low latency and cost-effective operations 

4.Results and discussions: 

The performance metrics of the fraud detection model used in a cloud core banking system are presented in Table 

1. The model managed to generate a fair amount of predicted observations with an accuracy rate of 97.50%. Out 

of the total false positives, the model has reduced 90.90% Precision against a good Recall of 95.20 %. This 

indicates that the model can identify and classify some potential fraudulent transaction instances, and only a 

handful of them are labeled as negative test cases. The model summary is characterized by an F1-Score of 93.00%, 

which balances Precision and Recall. A further AUC-ROC measure of 0.95+ indicates the model's excellent 

capacity to discriminate between fraudulent and non-fraudulent transaction events.  

Metric Accuracy Precision Recall F1-Score 

AUC-

ROC 

Value 97.50% 90.90% 95.20% 93.00% 0.95+ 

 

Table 1: Performance Evaluation Metrics for Fraud Detection in Cloud-Based CBS 

The metrics for assessing the efficiency of fraud detection in a cloud based core banking system are represented 

in Fig. 2 measurement in accuracy, precision, recall, F1-score, area under the curve receiving operating 

characteristics (AUC-ROC), transaction processing time and latency. Thus, this figure demonstrates all these 

model parameters. In addition, the accuracy and precision of the model are used to assess the efficacy with which 

the model can detect fraudulent conditions with a few false positives. Recall will then give the result for the 

proportion of fraudulent transactions detected. AUC-ROC will signify the distance of the model between a 

fraudulent transaction against an authentic one. Latency and Transaction Processing Time measure the efficiency 

of this system in real-time detection. This graph helps analyze how the fraud detection system strikes a balance 

between model performance and operational efficiency. 

 

Figure 2: Performance Evaluation Metrics for Fraud Detection in Cloud-Based CBS 
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Figure 3: Confusion Matrix for Fraud Detection in Cloud-Based CBS 

The confusion matrix used for evaluating the performance of the fraud detection model in Cloud-Based Core 

Banking System (CBS) is depicted in Figure 3.  The quantities of False Positives (FP), True Negatives (TN), False 

Negatives (FN), and True Positives (TP) are shown.  The matrix serves as an instrument for model evaluation in 

its distinguishing power against genuine and fraudulent transactions.  Lesser counts of False Positives and False 

Negatives imply lesser classification errors, while higher counts of True Positives and True Negatives correlate 

with better accuracy for the model.  Notably, the understanding of the matrix remains central to the working of 

the model in a real ecosystem. 

 

Figure 4: Fraud Detection Model Performance Across Iterations 

With the accuracy, precision, and recall performance measures explained over the five iterations of the fraud 

detection model, case 4 shows in figure 4 of how accuracy went further up from 92% to 97.5%. This indicates 

that the model keeps improving on correctly classifying transactions. Similarly, Precision is increasing from 85% 

to 90.9%, which means there are fewer false alarms and a better detection of fraudulent transactions. Recall also 

increases going from 80% to 95.2%, emphasizing that the model is becoming better at identifying fraud and failing 

to record cases of fraud detected. The performance of the model shows an improvement at every iteration as 

confirmed by the graph's shape, which displays the increasing power of the model at each iteration. 

5.Conclusions: 

The research illustrated the efficacy of using Convolutional Neural Networks (CNN) for fraud detection in a 

Cloud-Based Core Banking System (CBS) emphasizing real-time predictions on AWS Lambda. 97.5% accuracy, 

90.9% precision, and 95.2% recall are among the major outcomes which reveal the capacity of the model to 

identify fraudulent transactions with very minimal latency. These results imply that compared to their usual on-
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premise counterparts, cloud-based fraud detection systems might end up providing much higher efficiency and 

scalability. However, since they are dependent on the cloud infrastructure, they also suffer from security and 

privacy threats. Future research could also focus on hybrid models that merge existing machine learning into the 

designs towards making resilient models that can address possible security threats in cloud environments. 

Research work in interpretability of AI models and distributed computing may yield significant benefits in fraud 

detection. 
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