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Abstract 

This paper explores the Caesar Cipher cryptography method as a foundational approach to data 

security, emphasizing its role in safeguarding information from unauthorized groups. The 

Caesar Cipher, a classic and straightforward encryption technique, substitutes each letter in the 

plaintext with another letter, shifted by a fixed number within the alphabet. Despite its 

simplicity, the Caesar Cipher can effectively protect data integrity by transforming sensitive 

information without altering the plaintext structure. The study demonstrates how Caesar Cipher 

encryption can contribute to data protection in secure communications and data recovery, 

highlighting its adaptability as a stepping stone for more complex encryption mechanisms in 

information security. 
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1.Introduction 

In the ever-evolving landscape of digital communication, ensuring data security has become a 

paramount concern. Cryptography, the science of encoding and decoding information, plays a 

vital role in safeguarding sensitive data. Among the earliest and most well-known 

cryptographic techniques is the Caesar Cipher, named after Julius Caesar, who is believed to 

have used this method to protect his military messages. 

The Caesar Cipher is a substitution cipher that shifts each letter in the plaintext by a fixed 

number of positions down the alphabet. For example, with a shift of 3, 'A' becomes 'D', 'B' 

becomes 'E', and so on. This simple method transforms readable data into an unintelligible 

format, thus maintaining confidentiality during transmission. 

While the Caesar Cipher is relatively easy to break by modern standards, it laid the foundation 

for more complex encryption algorithms used today. It illustrates the basic principles of data 

obfuscation and symmetric key encryption, where both the sender and the receiver must know 

the encryption key (i.e., the shift value). In data security, even such rudimentary encryption 

techniques can be useful for educational purposes and understanding the fundamentals of more 

advanced cryptographic systems. The Caesar Cipher continues to be a valuable tool in teaching 

the core concepts of encryption, key management, and data protection. 
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2. Related work: 

Cryptanalysis refers to techniques for breaking into cryptographic security systems and gaining 

access to the contents of encrypted messages, even when the cryptographic key is unknown by 

Kirchhoff’s principle, which is the paramount principle in modern cryptosystems [1]. It 

attempts to discover a meaningful pattern inside a given ciphertext to recover the corresponding 

plaintext or key. Such cryptanalysis techniques have been studied and gradually improved with 

the evolution of cryptosystems over past decades. This cryptanalysis technology can be applied 

to encryption for audio encryption and face recognition [2] used in real life. 

Recently, a new class of artificial intelligence (AI)-based cryptographic attacks on digital 

cryptosystems have been proposed to gain efficient, meaningful cipher cracking and 

classification results [3]. The AI algorithms based on deep neural networks have led to huge 

improvements in computer vision medical image processing machine translation and the 

generation of virtual data [4] that are almost identical to the real data, and the attacks on cyber 

information security over the past decade [5]. More recently, generative adversarial networks 

(GANs) have produced great results for image generation, translation, resolution enhancement, 

and synthesis [6]. These advances in GAN models can even generate realistic face images from 

virtual people In addition, few studies break and emulate ciphertexts using GANs [7]. 

Reference [8] demonstrated that CipherGAN was capable of providing the underlying cipher 

mapping between unpaired ciphertext and plaintext for automated cryptanalysis without any 

prior knowledge, such as the character frequency distribution observed in natural language. 

This new class of AI-based cryptanalysis has been proposed to gain efficient and meaningful 

cipher cracking results. Especially, generative adversarial networks (GANs) have produced 

great results for image generation and translation. These advances in GANs models can even 

generate realistic data. A language model must represent both the feature distributions at 

sequential data point, and the possibly intricate temporal dynamics of those variables [9]. In 

particular, we want to properly represent the conditional distribution of temporal transitions in 

multivariate sequential data. The recently introduced StarGAN is an efficient method for multi-

domain image-to-image translation, which takes in as input images in different domains and 

learns to flexibly translate the input image into the output image in the target domain, instead 

of learning a fixed translation, such as black-to-blond hair [10]. As a result, Star GAN can learn 

image-to-image translations with a single learning model that covers multiple domains. 

3.Methodology 

To propose a UC−GAN network model for multi-domain cryptanalysis that is based on Star 

GAN using a single unified generator and discriminator model. In our model, as in Cipher 

GAN, our objective is to train the generator on multiple cipher and plain domains without any 

prior knowledge. However, the two models differ in the number of generators. Figure shows 

the process of UC-GAN and Cipher GAN generating plaintext from the ciphertext. As the 

Cipher GAN model is based on the Cycle GAN model, each generator must be used for each 

ciphertext domain. However, the proposed UC-GAN model uses only a single unified generator 

for multiple ciphertext domains based on the Star GAN model. 
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Figure: The process of generating the plaintext from the ciphertext with (a) the Cipher GAN 

model; (b) the proposed UC-GAN model. 

Furthermore, we suggest an adversarial loss that supports the conversion of all source domain 

data into the target single data (multi-cipher to single-plain) or (single-plain to multi-cipher) 

with only one training process. Similar to Cipher GAN, the goal of our approach is to train the 

generator G on various cipher and plain domains with no previous information. The 

fundamental distinction is that we employ a single unified generator (G) and discriminator (D) 

across several cipher domains. The primary distinction between our model and Cipher GAN is 

that the Cipher GAN requires a ratio of the number of G and D to the number of 

ciphertext/plaintext domains. Therefore, our method is greatly improved in representing multi-

domain on discrete random variables. The experiment results show that our proposed model 

can break and emulate multiple substitution ciphers (Caesar, Vigenere, and substitution cipher) 

in only one training process. 

 

Figure: The process of creating data used for model training. (a) Embedding for continuous 

relaxation; (b) label concatenation. Finally, concatenated 𝐸(𝑥)∥𝑐E(x)∥c is an input for the 

unified generator G. 
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The process of creating data used for model training. To build UC−GAN, we use 

embedding E for continuous relaxations before the main process as embedding 

space 𝑊𝑒𝑚𝑏Wemb and timing space 𝑊𝑡𝑖𝑚𝑒Wtime. The embedding E consists of a one-hot 

vector step and a simplex to embedding step. In the one-hot vector step, each character is 

represented by a one-hot vector with the length of v (v = 26 in our setting). To make embedding 

vector 𝐸(𝑥)E(x), it computes 𝑟=𝑡·𝑊𝑒𝑚𝑏r=t·Wemb and 𝐸(𝑥)=r||𝑊𝑡𝑖𝑚𝑒E(x)=r||Wtime, where 

the original one-hot vector 𝑡t from the original data 𝑥x, with embedding 

space 𝑊𝑒𝑚𝑏Wemb and additional timing space 𝑊𝑡𝑖𝑚𝑒Wtime. Such continuous relaxation 

makes it possible to back-propagate when we are training neural network models with 

preserved information. In our setting, we assume that the original data x consists of the number 

of N characters.Therefore, 𝑡∈{0,1}𝑁×𝑣t∈{0,1}N×v and 𝑊𝐸𝑚𝑏∈ℝ𝑣×𝐸WEmb∈ℝv×E and 𝑊

𝑡𝑖𝑚𝑒∈ℝ𝑁×𝑇Wtime∈ℝN×T are trained parameters which we have to update when the training 

is processed. Finally, the input data of the model are created by concatenating the embedding 

data and the target domain label. 

Datasets 

a collection of digitized text samples in American English, for our experiments. There are four 

domains in the training dataset and the test dataset plaintext (PT), Caesar cipher (CT1), 

Vigenere cipher (CT2), and substitution cipher (CT3). The dataset is encrypted with Caesar, 

Vigenere, and Substitution ciphersFurthermore, each data row in our dataset consists of N = 

100 characters. As a result, we can extract 4,537,600 characters. For the training dataset, each 

domain has a number of 9600 data rows to consider both the known-plaintext attack (KPA) 

scenario and the ciphertext-only attack (COA) scenario. In KPA settings, the attacker can 

access the encryption method, which means the attacker has the number of n pairs. Otherwise, 

in COA settings, the attacker has only ciphertexts, which means they have the number of n 

ciphertexts. We extract 9600 data rows for each 4 domains to show accurate unsupervised 

learning results. Therefore, the training dataset has 9600 × 4 × N(100) = 3,840,000 characters. 

4. Results 

As described above, we demonstrate that our UC-GAN can successfully break the Caesar, 

Vigenère, and Substitution ciphers using only one unified generator. In addition, our unified 

method can learn these discrete distributions for all multi-ciphers-to-plain domains Our 

encryption emulation can reconstruct all types of ciphertexts from a single plaintext, such 

as PT→CT1, PT→CT2, and PT→CT3 for the plain-to-multi-ciphers domain In addition, the 

proposed model can emulate all types of ciphertext to a single plaintext for multi-cipher-to-

plain. We measured the accuracy of the model using test data per each epoch. To test the model, 

the test data was used as the input of the model, and one generator generates three ciphertexts 

according to the labeled target. The model accuracy was calculated by comparing the generated 

ciphertext with the target ciphertext.  However, the convergence speed was different for 

different ciphers and Caesar and Substitution were broken faster than Vigenère.  the results of 

the ciphertext generated by the model from the plaintext and the target ciphertext created by 
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the three cipher methods. Texts that do not match between the target ciphertext and the 

generated ciphertext are marked in red, showing that most of the texts match 

 

Figure: The proposed method tests the process and accuracy results. (a) proposed method 

test curves for multi-cipher-to-single plain recovery; (b) proposed method test curves for 

single-plain-to-multi-cipher recovery; (c) multi-cipher-to-single-plain recovery test results; 

(d) single-plain-to-multi-cipher recovery test results. 

Table: Hyper parmeter tuning experiments. 

 

In the first round of the experiment, we investigated the impact of batch size on the different 

cipher attacks. First, we set the batch size to 8 and ran the training process for both ciphers to 

plain and plain to cipher attacks.  and b demonstrate the network training process on a cipher 

to plain and plain to cipher, respectively. 

http://www.ijasem.org/


        ISSN 2454-9940 

      www.ijasem.org 

    Vol 19, Issue 2, 2025 

 
 

194 

 Discussion 

We suggested a novel unsupervised deep-learning model that is more flexible and efficient than 

existing information extraction techniques for translating ciphertext-to-plaintext across various 

cipher domains. The proposed model is based on generative adversarial networks (GANs). As 

described above, by competing for a generative deep neural network against a discriminative 

deep neural network, the GAN model creates samples that seem to come from the training set. 

Especially, Cipher GAN is a GAN-based model that is an unsupervised cryptanalytic method 

to break substitution ciphers without any prior knowledge. However, Cipher GAN requires the 

number of generators and discriminators to be in proportion to the number of 

ciphertext/plaintext domains. Unlike Cipher GAN, we proposed UC−GAN, which consists of 

a unified generator and a discriminator using only a single deep neural network for multiple 

domains. The proposed UC−GAN model was able to perform extremely well on multiple 

substitution ciphers, achieving near-flawless accuracy. The experimental results were carried 

out using three types of classical ciphers Caesar, Vigenere, and Substitution ciphers. In 

addition, we compared the model performance of our model with that of the Cycle GAN model. 

Conclusion 

This paper examined the underlying privacy dangers that behavioural identity detection 

technologies in VR potentially pose. First, we demonstrated that even simple classification 

approaches could identify the participants with a high detection rate utilising behavioural 

features in VR. Following that, we investigated how reliably these trained classifiers can be 

used to identify the same person performing different tasks. The study then demonstrated how 

ineffective intentional user behaviour changes are to circumvent these classifiers. Then, we 

investigated the impact of the user’s physical attributes on the classification of behavioural 

identity. Finally, we demonstrated the behavioural data types with the highest variance, which 

should be assigned a higher priority when creating behavioural privacy protection solutions 

such as behaviour filters. These findings highlight the importance of offering greater privacy 

protection tools for VR users to benefit both VR consumers and the VR industry. Also, while 

numerous models exist in the literature for detecting identity from user behaviour, our main 

objective in this study was not to reproduce and evaluate all of them. Instead, we focused on 

highlighting the potentially harmful capabilities of some of this field’s most widely used 

models. Specifically, we sought to demonstrate the dangers these models pose to user privacy 

and underscore the importance of further research to mitigate these risks. 
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