

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1268

Cyber Threat Detection based on Artificial Neural

Networks using Event Profiles
1Ms P.Janaki, 2 NAGIREDDY HARINI REDDY, 3 PENDRI SHIVA PRAJWAL REDDY,

4 KANAPARTHI PRAMOD CHANDRAPAL, 5 RAMADASU YASHWANTH

2,3,4,5U.G. Scholor, Department of IOT, Sri Indu College Of Engineering & Technology, Ibrahimpatnam, Hyderabad.

1 Assistant Professor, Department of IOT, Sri Indu College Of Engineering & Technology, Ibrahimpatnam, Hyderabad.

ABSTRACT One of the major challenges in cybersecurity is the provision of an automated and effective

cyber-threats detection technique. In this paper, we present an AI technique for cyber-threats detection, based

on artificial neural networks. The proposed technique converts multitude of collected security events to

individual event profiles and use a deep learning-based detection method for enhanced cyber-threat detection.

For this work, we developed an AI-SIEM system based on a combination of event profiling for data

preprocessing and different artificial neural network methods, including FCNN, CNN, and LSTM. The

system focuses on discriminating between true positive and false positive alerts, thus helping security analysts

to rapidly respond to cyber threats. All experiments in this study are performed by authors using two

benchmark datasets (NSLKDD and CICIDS2017) and two datasets collected in the real world. To evaluate

the performance comparison with existing methods, we conducted experiments using the five conventional

machine-learning methods (SVM, k-NN, RF, NB, and DT). Consequently, the experimental results of this

study ensure that our proposed methods are capable of being employed as learning-based models for network

intrusion-detection, and show that although it is employed in the real world, the performance outperforms the

conventional machine-learning methods.

INDEX TERMS Cyber security, intrusion detection, network security, artificial intelligence, deep neural

networks.

I. INTRODUCTION

With the emergence of artificial intelligence (AI) techniques,

learning-based approaches for detecting cyber attacks, have

become further improved, and they have achieved significant

results in many studies. However, owing to constantly

evolving cyber attacks, it is still highly challenging to protect

IT systems against threats and malicious behaviors in

networks. Because of various network intrusions and

malicious activities, effective defenses and security

considerations were given high priority for finding reliable

solutions [1], [2], [3], [4].

Traditionally, there are two primary systems for detecting

cyber-threats and network intrusions. An intrusion

prevention system (IPS) is installed in the enterprise

network, and can examine the network protocols and flows

with signature-based methods primarily. It generates

appropriate intrusion alerts, called the security events, and

reports the generating alerts to another system, such as

SIEM. The security information and event management

(SIEM) has been focusing on collecting and managing the

alerts of IPSs. The SIEM is the most common and

dependable solution among various security operations

solutions to analyze the collected security events and logs

[5]. Moreover, security analysts make an effort to investigate

suspicious alerts by policies and threshold, and to discover

malicious behavior by analyzing correlations among events,

using knowledge related to attacks.

Nevertheless, it is still difficult to recognize and detect

intrusions against intelligent network attacks owing to their

high false alerts and the huge amount of security data [6], [7].

Hence, the most recent studies in the field of intrusion

detection have given increased focus to machine learning and

artificial intelligence techniques for detecting attacks.

Advancement in AI fields can facilitate the investigation of

 1

network intrusions by security analysts in a timely and

automated manner. These learning-based approaches require

to learn the attack model from historical threat data and use

the trained models to detect intrusions for unknown cyber

threats [8], [9].

A learning-based method geared toward determining whether

an attack occurred in a large amount of data can be useful to

analysts who need to instantly analyze numerous events.

According to [10], information security solutions generally fall

into two categories: analyst-driven and machine learning-driven

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1269

solutions. Analyst-driven solutions rely on rules determined

by security experts called analysts. Meanwhile, machine

learning-driven solutions used to detect rare or anomalous

patterns can improve detection of new cyber threats [10].

Nevertheless, while learning-based approaches are useful in

detecting cyber attacks in systems and networks, we

observed that existing learning-based approaches have four

main limitations.

First, learning-based detection methods require labeled

data, which enable the training of the model and evaluation of

generated learning models. Furthermore, it is not

straightforward to obtain such labeled data at a scale that allow

accurate training of a model. Despite the need for labeled data,

many commercial SIEM solutions do not maintain labeled

data that can be applied to supervised learning models [10].

Second, most of the learning features that are theoretically

used in each study are not generalized features in the real

world, because they are not contained in common network

security systems [3]. Hence, it makes difficult to utilize to

practical cases. Recent efforts on intrusion detection research

have considered an automation approach with deep learning

technologies, and performance has been evaluated using well-

known datasets like NSLKDD [11], CICIDS2017 [12], and

Kyoto-Honeypot [13]. However, many previous studies used

benchmark dataset, which, though accurate, are not

generalizable to the real world because of the insufficient

features. To overcome these limitations, an employed learning

model requires to evaluate with datasets that are collected in

the real world.

Third, using an anomaly-based method to detect network

intrusion can help detect unknown cyber threats; whereas it

can also cause a high false alert rate [6]. Triggering many false

positive alerts is extremely costly and requires a substantially

large amount of effort from personnel to investigate them.

Fourth, some hackers can deliberately cover their malicious

activities by slowly changing their behavior patterns [10],

[14]. Even when appropriate learning-based models are

possible, attackers constantly change their behaviors, making

the detection models unsuitable. Moreover, almost all security

systems have been focused on analyzing short-term network

security events. To defend consistently evolving attacks, we

assume that over long-term periods, analyzing the security

event history associated with the generation of events can be

one way of detecting the malicious behavior of cyber attacks.

These challenges form the primary motivation for this

work. To address these challenges, we present an AI-SIEM

system which is able to discriminate between true alerts and

false alerts based on deep learning techniques. Our proposed

system can help security analysts rapidly to respond cyber

threats, dispersed across a large amount of security events.

For this, the proposed the AI-SIEM system particularly

includes an event pattern extraction method by aggregating

together events with a concurrency feature and correlating

between event sets in collected data. Our event profiles have

the potential to provide concise input data for various deep

neural networks. Moreover, it enables the analyst to handle all

the data promptly and efficiently by comparison with long-

term history data.

The main contributions of our work can be summarized as

follows:

• Our proposed system aims at converting a large amount of

security events to individual event profiles for processing

very large scale data. We developed a generalizable

security event analysis method by learning normal and

threat patterns from a large amount of collected data,

considering the frequency of their occur- rence. In this

study, we specially propose the method to characterize the

data sets using the basepoints in data preprocessing step.

This method can significantly reduce the dimensionality

space, which is often the main challenge associated with

traditional data mining techniques in log analysis.

• Our event profiling method for applying artificial

intelligence techniques, unlike typical sequence-based

pattern approaches, provides featured input data to

employ various deep-learning techniques. Hence, because

our technique is able to facilitate improved classification

for true alerts when compared with conventional

machine-learning methods, it can remark- ably reduce the

number of alerts practically provided to the analysts.

• For the applicability, we evaluate our system with real

IPS security events from a real security operations center

(SOC) and validate its effectiveness through performance

metrics, such as the accuracy, true positive rate (TPR),

false positive rate (FPR) and the F-measure. Moreover, to

evaluate the performance comparison with existing

methods, we conducted experiments using the five

conventional machine-learning methods (SVM, k- NN,

RF, NB and DT). And we also perform an evaluation by

applying our method to two benchmark datasets (i.e.,

NSLKDD, CICIDS2017), which are most commonly used

in the field of network intrusion detection research.

In this study, to decompose a large amount of collecting

events into individual event occurrence profiles, we apply the

TF-IDF mechanism. We also generate the event profiles by

computing the similarity value among each TF-IDF event sets

and appointed basepoints. The generated event profiles are fed

2

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1270

into the input-layer of the FCNN, CNN, and LSTM models,

which are executed in AI-SIEM. Consequently, using two

well-known benchmark datasets and two real datasets

collected from operating IPS, we aim to show the applicability

of our system for defending IT systems against the cyber

threats.

For evaluation, we are aware of the limitation of NSLKDD

and CICIDS2017 datasets, but they remain widely used

benchmarks for comparing machine-learning methodologies.

Hence, we also conduct a performance comparison with

existing methods using the real datasets and additional two

benchmark datasets. Above all, machine-learning approaches

obtained a good performance using benchmark datasets, also

need to achieve satisfactory performance for the real data.

The remainder of this paper is structured as follows. In

Section II, we introduce the background information for the

proposed system. Section III provides existing works on

learning-based intrusion or attack detection. In Section IV, we

describe the overview for our proposed system and data

labeling. In section V, we specify the methodology used in this

study in more detail. Section VI provides the implementation

of the FCNN, CNN, and LSTM models for this study. Section

VII introduces datasets for experiments. Section VIII presents

the detailed evaluation results of experiments and comparison

with other methods. Finally, the conclusion and future work

discussed in Section IX

II. PRELIMINARIES

In this section, we shortly discuss the background information

for our study. We start by describing the overview of the

IDS/IPS and the SIEM, and introduce the deep learning

techniques. Finally, we describe our big data platform for the

proposed AI-SIEM system.

A. IDS / IPS and SIEM

1) IDS / IPS

An intrusion detection system (IDS) monitors the network

activity and reports on observation of any security violations

[6]. Unlike the IDS, an intrusion prevention system (IPS) can

block a detected network connection by closing port or

dropping the packets. An IPS has become an indispensable

system for most types of organizations or industries owing to

the wide growing nature of data and the internet. Nevertheless,

intelligent network attacks still persist in today’s network, and
there are limitations to detect and respond network intrusions

by an IPS system [15]. This is because they mainly use less-

capable signature-based detection, as opposed to anomaly

detection methods. Meanwhile, speedy attacks are occurring

more frequently with new intrusion methods [6], [16]. Most of

all, the majority of IPS solutions have a high false positive rate

and are limited in detecting any unknown or new attacks. In

addition, in [14], the authors presented six limitations for an

IPS such as the challenges of volume, accuracy, diversity,

dynamics, low-frequency attacks, and adaptability. These

limitations lead to seriously restrict precise decision by an

SOC security analyst.

2) SIEM

A SIEM has been considered an important component of

enterprise networks and security infrastructures, with a focus

on enterprise information technology (IT) security, which

provides an overall view of the security management. In

general, SIEM collects relevant data produced in an

organization from various sources, making it possible to detect

cyber threats by matching patterns [17], [18], [19]. The SIEM

system allows the consolidation and comprehensive

evaluation of security alerts and logs collected from network

security systems (e.g., firewall and IDS / IPS). Particularly

with analyzing IDS/IPS alerts (security events) in SIEM, the

analyst make an effort to find cyber attacks using pre-defined

security policies and threshold. Moreover, to discover

consolidated malicious behavior, they carry out analyzing

correlations between security events and relevant situations

based on already known patterns of cyber threats.

Security events are continually generated from many types

of network security systems (e.g., IPS and FW); thus, they are

heterogeneous with an extremely diverse distribution. This

brings challenges to discriminate true positive alerts from false

ones in a traditional policy-based threat detection system.

Moreover, practice shows that this method of analyzing is

extremely complex, high costly and only operable with large

personnel effort [18].

For cyber-threat detection, the SIEM analysts spend an

immense amount of effort and time to differentiate between

true security alerts and false security alerts in collected events.

Hence, in recent years, to address this challenge, one of the

main focuses within the development of SIEM has been the

application of machine-learning and artificial-intelligence

(AI)-learning techniques, which is referred to here as AI-based

SIEM. Although the application of these techniques has

offered improvement in reducing human labor, there are still

several challenges for an AI-based SIEM. As mentioned

above, there are major limitations such as (1) the

comparatively high level of analyst interaction required, (2)

lack of labeled data, and (3) constantly evolving attacks [10],

[14].

B. DEEP LEARNING TECHNIQUES

In recent years, the deep learning technique has been greatly

advanced in many areas, and it is ongoing in many industries

beyond an area of machine learning that applies neurons as

mathematical structures similar to human neural network. The

most widely used deep neural network are convolutional

model and recurrent model.

CNNs are generally effective to learn the spatial features of

data such as image processing, and RNNs are the more

suitable method that can learn using time-continuously

differentiable features of data. CNNs are architectures

especially designed to deal with spatial data. Because of the

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1271

awareness of the partially specific feature of the input, specific

local characteristic, and shared parameter schemes, CNNs are

employed in many fields [20], [21], [22]. CNNs have already

yielded remarkable outcomes in many fields such as image

classification [23], biomedical text analysis [24], and malware

classification [3], [25], [26], [27], [28], [29]. For network

intrusion detection, many studies showed the feasibility of

CNN for the identification of malicious events, network flow

and connection in the network [30], [31].

Recurrent structures are capable of learning the sequence

information in the data. The well-known recurrent structures

are RNN and LSTM [32], [33]. LSTM has a special recurrent

architecture designed to advance the storage ability, compared

to RNNs. This is mainly because RNN is able to store past

input information for short time, that degrades its ability to

model a long-term structure for the input sequence [34].

Hence, LSTM networks have an additional component called

the forget gate. Because LSTM can effectively perform to

learn long sequence data, it also has enabled successfully

empirical results in areas such as speech recognition and

machine translation [3], [10].

C. BIG DATA PLATFORM

Typically, a big data platform is used to collect data on

security events from IPS and maintain security logs over long-

term periods. The big data platform can also be specialized in

analyzing data and quickly recognizing cyber threats [35],

[36]. This is because historical data collected over long-term

periods in the platform can help investigate and respond to

cyber threats. For this, we have developed the scalable big data

platform based on distributed computing technologies,

particularly for collecting, processing, storing, correlating, and

analyzing the security event logs.

Figure 1 shows the system architecture of our big data

platform. The platform mainly consists of a data collection

system, data processing system, data analysis and data storage

system to analyze cyber-threat information using long-term

security data. Using the techniques for large-scaled data

processing, this platform is capable of continually collecting

the numerous streamed security events and processing the data

in real-time [37]. Based on the big data platform, our proposed

methods can be coupled with AI-based SIEM. In this work, by

adopting AI technique to the platform, true alerts can be better

differentiated from false alerts in the real world.

III. RELATED WORKS

In this section, we discuss previous studies for deep learning-

based intrusion detection and real security event analysis

research. In recent years, many studies in cybersecurity focus

on AI-based intrusion detection, and different AI and machine

learning-based techniques have been proposed to improve the

ability of cyber threat detection [1], [2], [3], [15], [38], [39].

Although these studies have achieved significant result using

AI and machine learning-based techniques, they are still

limited to specific test datasets such as NSLKDD. Other

research studies however, have used security events and logs

collected from the real world [8], [10], [40], [41], [42]. These

studies are closer to our study for addressing the above-

mentioned challenges. Especially, Liao et al. [39], Du et al.

[40], and K. Zhang et al. [42] have used the TF-IDF mecha-

nism like our method.

A. DEEP LEARNING-BASED INTRUSION DETECTION

Naseer et al. [1] proposed, implemented and trained

intrusion detection models using different deep neural network

architectures including CNNs, Autoencoders, and RNNs.

These models were trained on the NSLKDD training dataset

and evaluated on both test datasets provided by NSLKDD.

DCNN and LSTM models showed a performance of 85% and

89% accuracy, respectively, on test dataset.

FIGURE 1. The architecture of our big data platform for AI-based SIEM

4

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1272

B. Zhang et al. [2] divided methods for network intrusion

detection into two types: direct methods using single

algorithm and combination method by combination of several

methods. The author proposed a new detection model based

on a directed acyclic graph (DAG) and a belief rule base

(BRB). The results showed that compared with conventional

detection models, the DAG‐BRB combination model had a

higher detection rate using KDD 99 dataset.

Wang et al. [3] proposed a hierarchical spatial and temporal

features-based intrusion detection system (HAST-IDS) that

automatically learns network traffic features. The main idea is

that the spatial features of network traffic are first learned

using deep CNNs and then learns the temporal features are

learned LSTM networks. The experiments were conducted by

DARPA and ISCX datasets.

Vinayakumar et al. [15] developed a hybrid intrusion

detection system which has the capability to analyze the

network and host-level activities. It employed distributed deep

learning model with DNN for processing and analyzing very

large scale data in real-time. The DNN model was selected by

comprehensively evaluating their performance in comparison

to classical machine learning classifiers on various benchmark

IDS datasets such as NSLKDD and UNSW-NB15.

Khan et al. [38] propose a novel two-stage deep learning

model, based on a stacked auto-encoder with a soft-max

classifier, for efficient network intrusion detection. The

authors conducted several experiments on two public datasets:

the benchmark KDD99 and UNSW-NB15 datasets. This study

achieved results, up to 99.9% for the KDD99 dataset and

89.1% for the UNSW-NB15 dataset.

Liao et al. [39] proposed a new algorithm based on the k-

NN classifier method using TF-IDF for modeling program

behavior in intrusion detection regarding system calls. In [29],

with the k-NN classifier, the frequencies of system calls are

used to describe the program behavior. For this, text

categorization techniques, such as TF-IDF, are adopted to

transform each system call data to a vector and measure the

similarity between two program system call activities. Authors

report that the TF-IDF-based k-NN classifier appears to be

well applicable to the domain of intrusion detection in the field

of malware detection.

B. REAL SECURITY EVENT ANALYSIS

Shen et al. [8] developed the system for predicting security

events through deep learning, which is called Tiresias.

Authors presented a system that leverages RNNs to predict

future events on a machine, based on previous observations. It

tested on a dataset of 3.4 billion security events collected from

a commercial IPS, and showed that its approach is effective in

predicting the next event that will occur on a machine with a

precision of up to 0.93. In addition, the system also

accomplished a high precision for a complex situation and

maintained stable results.

Veeramachaneni et al. [10] developed end-to-end machine

learning techniques that predict cyber attacks significantly

better than existing systems by continuously incorporating

input from human experts. The analyst directly labeled data

with a ranked metric over several months, and these labeled

data were provided to the supervised learning module to

predict whether an attack would occur. This study showed that

the technique, using six anomaly detection methods, can

detect 85 percent attacks, which is roughly three times better

than previous benchmarks, while also reducing the number of

false positives by a factor of 5. The system was tested on 3.6

billion pieces of data known as “log lines,” which were

generated by millions of users over a period of three months.

Specially, the hybrid approaches of auto-encoders have been

recently proposed for anomaly detection.

Du et al. [40] proposed DeepLog, a deep neural network

model employing LSTM to train a system’s log patterns (e.g.,

log key patterns and corresponding parameter value patterns)

from normal execution. This work uses the term frequency

inverse document frequency (TF-IDF) vector to the log key

and parameter value anomaly detection models for identifying

abnormal log entries. The author showed that DeepLog

outperformed existing log-based anomaly detection methods,

achieving an F-measure of 96% in HDFS data and an F-

measure of 98% in OpenStack data.

Oprea et al. [41] used belief propagation to detect early-

stage enterprise infection from DNS logs. They proposed a

new framework based on belief propagation inspired from

graph theory. They demonstrated that the techniques perform

well on two large datasets. The authors achieved high

accuracy on two months of DNS logs. Moreover, they apply

the algorithms to 38TB of web proxy logs collected at the

border of a large enterprise. This framework used "hints" data

that was manually provided by the SOC security analysts.

K. Zhang et al. [42] proposed a novel system that

automatic-ally parses streamed console logs and detects early

warning signals for IT system failure prediction. The system

used an automation approach with text mining techniques,

such as term frequency - inverse document frequency (TF-

IDF) and it employed LSTM for deal with specific labeled

data in the training process. The paper compared proposed

technology with state-of-the-art machine learning approaches

and showed the advantage and potentials of the system in

prediction of complex IT failures.

The closest study to this paper is Tiresias [8]. Tiresias

focused on anomaly detection for prediction of event in a noisy

environment with a wide variety of events. However, in order

to improve the accuracy for event prediction, Tiresias used the

sequence-based approach with RNN for occurred security

events. Whereas we adopt the concurrency-based approach

with deep-learning to address the limitation of sequence-based

method, which is detailed in the next Section.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1273

FIGURE 2. The workflow and architecture for the developed AI-based SIEM system

IV. SYSTEM OVERVIEW

This section describes the architecture of the proposed AI-

SIEM system for artificial intelligence-based threat detection.

The AI-SIEM system employs not only deep learning

techniques but also data preprocessing mechanism that

enables the handling of very large-scale network events.

Specially, the main goal of the AI-SIEM is to automatically

analyze network security events related to true alerts for

detecting cyber-threats and execute multiple analysis engines.

It also utilizes the processing capability of the several

graphical processing unit (GPU) cores for faster and parallel

analysis.

Figure 2 presents the workflow and architecture for the

developed artificial intelligent (AI)-based SIEM system. The

AI-SIEM system comprises three main phases: The data

preprocessing, artificial neural networks-based learning

engine, and real-time threat detection phase.

The first preprocessing phase in the system, termed event

profiling, aims at providing concise inputs for various deep

neural networks by transforming raw data. In the data

preprocessing phase, data aggregation with parsing, data

normalization stage using TF-IDF mechanism, and event

profiling stage are consecutively performed in the AI-SIEM

system. Each stage generates event data sets, event vectors,

and event profiles, respectively, and the output is utilized in

next each stage, as shown in Figure 2. This phase not only

precedes the data learning stage but also precedes the

conversion of raw security events to the deep-learning

engine’s input data when the system operates on detecting

network intrusions in real time. The second AI-based learning

engine employs three artificial neural networks for modeling.

For the data learning stage, the preprocessed data are fed into

the three artificial neural networks, and each ANN performs

learning to find the most accurate model. Finally, in real-time

threat detection, each ANN model mechanically classifies

each security raw event using the trained model, and the

dashboard shows the only recognized true alerts to security

analysts for reducing false ones.

Each stage for data preprocessing is detailed in Section V,

and second ANNs for data learning phase are described in

Section VI.

A. DATA LABELING FOR LEARNING

In this subsection, we discuss the data labeling of security

events for supervised learning. As mentioned above, to

employ the supervised learning method, a labeled data is

essential. For this, analysts should be able to label several

months of data heuristically. In other words, analysts need to

label the raw events as “Normal” or as “Threat,” based on

whether it belongs to a type of attack by analyzing correlations

among raw security events. However, owing to a rapidly

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1274

𝑖,j

growing number of security events and unknown cyber

threats, the labeling of numerous data is time-consuming and

costly. In addition, it is difficult to acquire the labeled security

event dataset based on the action of SOC security experts in

the real world.

By investigating occurred cyber attacks, most of detected

attacks can be categorized as system hacking, denial of

service, network attacks, scanning attacks, and suspicious

authenti-cation activities. These attack types are determined

by the SOC security analysts based on correlation among

attack duration time, the number of attacker's IP, and

importance of victim system.

In our study, to provide an available dataset for supervised

learning, we had to carry out dataset labeling according to

utilizing recorded information in the threat detection report list

(e.g., attack start time, attack end time, and attacker’s ip

address information). The threat detection reports are made by

the SOC analysts during raw data collecting periods. The

labeling operation is automatically performed by the data

labeling module in our system. First, the system extracts

timestamps and network information from the threat detection

one event set using the sliding window by predefined interval,

which can belong to overlapping sets by configuration. In

other words, the sliding window allows overlapping of one log

over multiple profiles. In this, we apply a concurrency-based

pattern instead of a sequence-based pattern [8], and the

number of concurrency event name types in each event set is

regarded as deterministic features for true-positive events.

This is primarily because the ordering of events can change

slightly based on unknown situations. For example, if there are

two event sequences, a = 4→5→6→4→5→6, and sequence b

= 4→5→6→5→4→6, the ordering of the two sequences is
clearly different; however, the event occurrences of the two

sequences are the same. However, in the real world, the

sequence may be changed in IPS by system processes,

resources, and network,; therefore we adopt the concurrency-

based method that depends on co-occurrence information,

which is not as tight as the sequence, but allows the calibration

of the gap of changeable sequence.

Whenever the window slides at an interval of the pre-defined

time_interval, each raw event data in the window is

aggregated into several event sets 𝐸𝑆𝑇=𝑡 by source address Si

report, for each recorded threat detection result. Next, the data

labeling tool in the system, investigates correlation of extract-

ed threat information on raw security event, with each threat

using the big data platform. The security events that are

correlated with IP address and time of each threat are labeled

as “THREAT (Attack name),” and others are labeled as

“NORMAL.” The labeled result of our collected datasets is

explained in Section VII.

V. METHODOLOGY

In this section, we describe an event profiling method for

preprocessing. The method is composed of data aggregation

and decomposition, TF-IDF normalization, and generating

event profile. we first present an event set extraction method

for the data preprocessing. Then, the event vectorization using

TF-IDF for event profiles is described in detail. Finally, we

present the event profiling method for inputs into three deep

learning models. The proposed method was basically

motivated by the observation that raw event data can be

profiled by concurrent event sets. By combining each

proposed method sequentially, the preprocessing for AI

engine is operated as shown in Figure 2:

A. DATA AGGRERATION AND DECOMPOSITION

Finding a profiling method to represent a pattern in a large

amount of data can help to summarize much information from

the event data and utilize the inputs for deep learning.

To deal with a large amount of streaming event data in the

real world, we needed a method to find one representative data

set that identifies several events; thus, we generate the

statistical event sets. The basic idea of our method is to extract

the occurrence information regarding other events

simultaneously generated with it. Once the raw events are

collected in the big data platform, each event is mapped into

and destination address Dj.

FIGURE 3. Data aggregation and data decomposition by source and
destination address using sliding window.

Consequently, a number of event data sets are produced for

one window time in our system. Figure 3 shows data

aggregation and data decomposition by source and destination

address using sliding window. For example, in case of first

window 𝑇𝑖 , occurred event set { 𝑒5 = 2 , 𝑒13 = 6 , 𝑒17 = 1,
𝑒25 = 2 , 𝑒48 = 2 , ∙∙∙ } is decomposed to S1ES = { 𝑒17 =
1, 𝑒13 = 1, 𝑒25 = 1 …}, S2ES ={ 𝑒5 = 2, 𝑒13 = 3, 𝑒25 = 1
…}, and S3ES={𝑒13 = 3, 𝑒65 = 2, 𝑒48 = 1 …} by connection

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1275

𝑛=1

j

unit. This operation is continuously performed on learning

data.

B. TF-IDF DATA NORMALIZATION

In this subsection, event sets, which contain the frequency of

unique event name such as event set 𝐸𝑆𝑖, are transformed into

a representation suitable for the learning algorithm and

classifiers. For this, we use the vector space model which is

the most commonly used document representation in the field

of information retrieval.

We seek to adopt this technique to make an intrusion

detection model. The occurrences of IPS events can be used to

characterize the IPS pattern and transform each event set into

a vector. Moreover, it is assumed that event sets belonging to

the same concurrency will be nearby in vector space. Hence,

as shown in Table 1, we substitute a different factor in threat

detection for the concept of each factor in text categorization

to apply the vector space model.

In the applied model, each event set is represented by a

vector of occurred events. Note that m indicates the number of

rows in the learning dataset, and n indicates the number of

event name types. An m-by-n matrix E denotes the collection

of event sets belonging to the learning dataset, where each

entry represents the occurrence of an event in an event set, i.e.,

E = (𝑒𝑖j), where 𝑒𝑖j is the weight of event j in event set i.

Let 𝑎𝑖j denote the j th column TF-IDF value in the i th row

of the dataset. To convert input data for deep learning with the

above pre-processed dataset to corresponding event profile,

our goal is to create mapping 𝐹: 𝐸 → 𝐸𝑃, where EP represents

the event profile dataset corresponding to 𝐸 and 𝐸 =
{𝐸𝑛}𝑚 , the entity of which is 𝐸𝑖 = {𝑒1, 𝑒2, 𝑒3, … 𝑒𝑛}. Hence,

the number 𝑚 indicates the number of rows in the dataset, and

the number 𝑛 is the number of event categories 𝑒𝑖 . The

dimension of the TF-IDF event set vector equals the size of n

columns in the collection, which has a dependency on what

kind of event occurred. Hence, whereas there could be

thousands of different types, it is necessary that overfitting

caused by a high dimension is reduced.

TABLE 1. Various symbols and notations used

There are several ways of determining weight 𝑒𝑖j.
Let 𝑡𝑓𝑖j be the frequency of j th event in event set i, 𝑚 the

number of event sets in the entire dataset A,

𝑛 is the number of unique event names in the entire dataset A,

and 𝑛j is the total number of times event j occurs in the entire

collection.

Although there is simple Boolean weighting and frequency

weighting, i.e., 𝑒𝑖j= 𝑡𝑓𝑖j, the particular weighting approach is

the so-called term frequency - inverse document frequency

(TF-IDF) weighting as follows :

𝑚

𝑒𝑖j = 𝑡𝑓𝑖j × 𝑙𝑜𝑔 (
𝑛

) (1)

TF-IDF is a statistical technique to index the term according

to their importance, as it is based on vectors that represent the

term frequency as well as term presence [43]. In this manner,

the numerical value of a repeatedly occurring event exhibits a

low weight, while the value of a very rarely occurring event

will receive a high weight.

As a result of TF-IDF, matrix A is constructed, of which the

columns length corresponds to the number of events M in the

data collection, and the number of rows correspond to the

number of event sets. Matrix A is composed of event vectors.

As mentioned in section III, Liao et al. [39] employed the

TF-IDF for learning program behavior in malicious activities

detection based on the frequencies of system calls invoked

during a program execution time. Table 1 presents the

substitution concept of TF-TDF for our AI-SIEM system.

For dimensionality reduction, the well-known principal

component analysis (PCA) and singular value decomposition

(SVD) methods are used in many deep-learning fields.

However, we developed a new method based on basepoints as

presented in next subsection. The primary reason is we assume

that network intrusion data is broadly located in high-

dimensional space. In addition, we also assume that malicious

security events had high deviations among their value and they

are mixed together with normal data. Particularly, we perform

experiment for comparison with SVD, and the result is

presented in Section VIII.

C. TRANSFORM EVENT PROFILE

In this subsection, for transforming event vectors to event

profile data, we first calculate the similarity of the entire

event set with each basepoint set. The basic idea of our data

preprocessing to reduce the high dimensionality is to calculate

the cosine similarity between each data in the collections

(training data) and the data of 𝑘 basepoints and the measured

cosine similarities are used to characterize event patterns.

For this, in this step, our method first appoints 𝑘 basepoints,

the number of which is given within 0.20–0.30 percent of n, in

the training data set.

Terms

TF-IDF For

Common Text

Categorization

TF-IDF for

Malware
Detection in

Liao et al. [39]

Substitution of

TF-IDF for our

System

𝑚
total number of

documents
total number of

processes
total number of

event sets

𝑛
total number of
distinct words

total number of
distinct system

calls

total number of
unique event

names

𝑛𝑖
number of times i

th word occurs

number of times
i th system call

was issued

number of times
i th event was

issued

𝑡𝑓𝑖j
frequency of 𝑖 th
word in the j th

document

frequency of i th
system call in

process j

frequency of 𝑖 th

event in
event set j

𝐷j
j th training
document

j th training
process

j th training
event set

X test document test process test event set

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1276

𝑖=1
j=1

𝑖=1

I j=1

𝑖=1

,

) ⎦

To appoint k basepoints, we need to find the particular event

vectors that have rarely occurred over the dataset. This is

mainly because the similarity value may be diverse when

comparing a rarely occurring event set with other events, while

the similarity value among repeatedly occurring event sets

resemble. The latter case is not effective for deep learning.

Hence, for appointing k basepoints, first, the 10–20 most rare

event list is prepared, the event set that contains events in the

rare list, is only selected for the basepoint. Next, to reduce

redundancy among basepoints, if there is a redundant

basepoint after calculating similarities among k basepoints, it

is substituted by another event vector. By iteratively perform-

ing this procedure, sets of k basepoints are constructed.

Next, we define a set BV, which consists of 𝑘 unique

basepoints with different attributes, as the reference points for

measuring similarity, and calculate the cosine similarities

𝑠𝑖𝑚 (𝐸, 𝐵𝑉) between each training data 𝐸 and each data in

the basepoint set BV. The 𝑠𝑖𝑚(A, B) function is measured by

the cosine similarity value between two event-set vectors. The

cosine similarity is defined as follows:

𝑎1,1
𝖥 𝑎2,1

𝖩

𝑎1,2 𝑎1,3

𝑎2,2 𝑎2,3

⋯

𝑎1,𝑛

𝑎2,𝑛
⎤

= 𝑠𝑖𝑚𝑀 I
𝑎3,1

I

𝗁⎣𝑎𝑚,1

𝑎3,2 𝑎3,3

⋮
𝑎𝑚,2 𝑎𝑚,3

𝑏1,1 𝑏2,1
𝖥
I𝑏1,2 𝑏2,2

I ⋮
⎣𝑏1,𝑛 𝑏2,𝑛

=

⋱
⋯

⋯

⋱
⋯

𝑎3,𝑛 ,
⋮ I

𝑎𝑚,𝑛⎦
𝑏k,1 ⎤
𝑏k,2 I)

⋮ I
𝑏k,𝑛⎦

(5)

𝑠(𝐸1 , 𝑏𝑣1) 𝑠(𝐸1 , 𝑏𝑣2)
𝖥

𝑠(𝐸2 , 𝑏𝑣1) 𝑠(𝐸2 , 𝑏𝑣2)
I

𝑠(𝐸1 , 𝑏𝑣3)
𝑠(𝐸2 , 𝑏𝑣3)

⋯

𝑠(𝐸1 , 𝑏𝑣k)
⎤

𝑠(𝐸2 , 𝑏𝑣k)
I

I 𝑠(𝐸3 , 𝑏𝑣1) 𝑠(𝐸3 , 𝑏𝑣2)
I ⋮

⎣𝑠(𝐸𝑚, 𝑏𝑣1) 𝑠(𝐸𝑚, 𝑏𝑣2)

𝑠(𝐸3 , 𝑏𝑣3)

𝑠(𝐸𝑚 , 𝑏𝑣3)
⋱
⋯

𝑠(𝐸3 , 𝑏𝑣k) I
⋮ I

𝑠(𝐸𝑚 , 𝑏𝑣k)⎦

(6)

(* s denotes cosine similarity.)

Result matrix (6) of the similarities between each event set

and k basepoints is provided to FCNN, CNN, and LSTM in

the next section as an important part of the input data. In

practice, the matrix data are formatted as a csv file. Each data

row in one csv file becomes one input data that is fed into the
𝑑 ∙ 𝑞 ∑𝑁 𝑑𝑖𝑞𝑖 first layer of artificial neural networks.

𝑠𝑖𝑚(𝑑, 𝑞) =

‖𝑑‖‖𝑞‖ =
 𝑖=1

√∑𝑁 𝑑2 √∑𝑁 𝑞2 (2) Moreover, owing to resource exhaust problem by
𝑖=1 𝑖 𝑖=1 𝑖

insufficient memory of most systems, dealing with a matrix or

Given 𝑘 basepoints in the form of BV = [𝑏𝑣1, 𝑏𝑣2, 𝑏𝑣3,
⋯ , 𝑏𝑣k], where 𝑏𝑣𝑖 = {e1, e2, e3, … en} and 𝑏𝑣𝑖 ∈ E, BV < E,

and the converted dataset is the similarity matrix EP =
[𝑒𝑝1 , 𝑒𝑝2, 𝑒𝑝3, ⋯ , 𝑒𝑝𝑚] , where it is an ordered set of 𝑒𝑝𝑖 =

{ sim (Ei , 𝑏𝑣1), sim(Ei, 𝑏𝑣2), sim(Ei, 𝑏𝑣3) ,…, sim (Ei ,
𝑏𝑣𝑚) } and 𝑖 is from 1 to 𝑚. The final transformed dataset

EP is produced as follows:

collection with numerous data requires particular matrix

operation mechanisms such as data dividing.

VI. DEEP LEARNING MODELS

In this section, we present the artificial neural networks

(ANNs) that compose the AI-SIEM system. As mentioned

above, our deep-learning engine consists of a multi-learning

engine such as FCNN, CNN, and LSTM which are

𝐸 =

𝑎1,1 𝑎1,2 𝑎1,3
𝖥 𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3

𝑎1,𝑛

⋯ 𝑎2,𝑛
⎤

𝑎3,𝑛

collectively named EP-ANN.

A. FCNN Model

I ⋮ ⋱ ⋮ I
⎣𝑎𝑚,1 𝑎𝑚,2 𝑎𝑚,3 ⋯ 𝑎𝑚,𝑛⎦

(3)

The FCNN is the most common deep learning network, in

which each node in fully connected layers is connected to

every node of next layer. In an FCNN, each node is connected

𝐵𝑉 =

𝖥
𝑏1,1 𝑏1,2

I𝑏2,1 𝑏2,2
⋯

𝑏1,𝑛 ⎤
𝑏2,𝑛 I

to all the nodes in the previous layer, and each connection has

respectively different and specific weight, which is not shared
I ⋮ ⋱ ⋮ I
⎣𝑏k,1 𝑏k,2 ⋯ 𝑏k,𝑛⎦

𝑠𝑖𝑚𝑀(𝐸 , 𝐵𝑉𝑇)

by each node. In past, while the FCNN is simpler than

common CNNs and RNNs, it had been known that the

degrading of performance for accuracy was caused by the

problem of vanishing gradient during backward propagation.

(𝐸1,𝑖)𝑛
𝖥 ⎤

𝖩 I (𝐸2,𝑖)𝑛 I 𝖥
(𝑏𝑣1,j)𝑛

⎤
(𝑏𝑣2,j)𝑛 ⎞

However, the back-propagation problem, which had restricted

the development of an artificial neural network, was resolved
by the emergence of the rectified linear unit (ReLU) activation

I (𝐸3,𝑖)𝑛 I (4)
= 𝑠𝑖𝑚𝑀

𝑖=1 I (𝐸4,𝑖)𝑛 I (𝑏𝑣3,j)𝑛 I function.
I I 𝑖=1 I

I ⋮ I
𝗁 ⎣ (𝐸𝑚,𝑖)𝑛 ⎦

I ⋮
⎣ (𝑏𝑣k,j

I
I

𝑛
j=1 𝘭

Consequently, to avoid the vanishing gradient problem by

Sigmoid function, most deep-learning methods generally use

the ReLU activation function. We also adopted the leaky

rectified linear unit (leaky ReLU) scheme as the activation

function, similar to RELU. The softmax function with a cross

entropy cost function at the last layer, generate the final result

 9

j=1

𝑇

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1277

for each input data. The common formulas for sigmoid, ReLU

and Leaky ReLU, softmax activation function are as follows:

To train our FCNN, the preprocessed data were fed to the

FCNN, and training was performed by tuning the parameter

configuration to over 1000 epochs with a learning rate of 0.001.
1

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =
1 + 𝑒−𝑥

𝑅𝑒𝐿𝑈 = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 = {
0 .01𝑥 𝑓𝑜𝑟 𝑥 < 0

𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

𝑒𝑥𝑖

(7)

(8)

(9)

The implemented FCNN diagram is shown in Figure 4.

b. CNN Model

CNNs are neural network architectures especially designed

to deal with spatial data. For CNN, the data of input layer

consists of 2D or 3D array such as the pixel value of the image

information. The core layers of CNN are convolutional layers

(Conv) and max pooling layers. A Conv layer receives input

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) = 𝑛
j=1

𝑒𝑥j (10) as a unit and convolves it using filters to produce an ongoing

data to transfer into next layers.

In FCNN, three-layer multi-layer perceptron (MLP) with a

softmax function in the final layer is same as a multi-class

logistic regression model. In general, an MLP with n hidden

layers can be mathematically formulated as follows [15]:

In a Conv layer, the filters read overall inputted data by the

slicing and extract the key features. In addition, convolution is

performed by calculating the scalar product between the input

chunk and each filter. The features that are extracted by each

𝐻(𝑥) = 𝐻𝑛(𝐻𝑛−1 (𝐻𝑛−2 (⋯ (𝐻1(𝑥))))))) (11) filter are aggregated to a new feature set, which is called the

feature map. Because the convolutional layer consists of a

In this study, we designed and implemented the FCNN for

AI-SIEM platform. Parameters for building neural networks

such as the number of hidden layers, output class, and

activation function types for each layer can be dynamically

configured in the platform.

FIGURE 4. The architecture of implemented fully connected neural
network (FCNN)

After performing repetitive testing, we adopted a multi-

layer perceptron (MLP) model with eleven layers comprising

one input layer, nine hidden layers, and an output layer. In

particular, we built a suitable architecture that has one input

layer and, nine hidden layers that had 1650, 1850, 2048, 1792,

1536, 1280, 1024, 768, and 512 nodes, respectively. We

composed the activation functions using the leaky rectified

linear unit (leaky ReLU) scheme as the activation function,

instead of Sigmoid. The softmax function with a cross entropy

cost function at the output layer, produces the final outputs, as

shown in Figure 4. The softmax layer, which is composed of

a cross-entropy cost function at the output layer, produces the

final multiple outputs.

group of filters, it produces a feature map for each filter, and

the data of feature maps are aggregated together to generate

data for output [8], [22].

The designed and implemented CNN was comprised an

input layer, four convolutional layers, three max pooling

layers, and an output layer with one fully connected layer.

Each of the front three convolutional layers in CNN was

followed by max pooling layers for subsampling. We placed

the dropout layer at the front of each convolutional layer

except for the last.

The input layer in the implemented CNN is dynamically

shaped. Because the CNN is generally specialized for 2D or

3D pixel data of the processing image, we need to transform

each pre-processed event profile row into a 2D array. Hence,

we transform each element of the input data vector into an N

× N 2D array form, where empty positions in the 2D array are

replaced with zero. Each input layer can then be variously

shaped by the size of defined features for learning based on

CNN. The implemented architecture for CNN is described in

Figure 5, and the depicted CNN can be used to learn the data

where the features ranging from number of features is 169-

196.

C. LSTM Model

An LSTM has a special recurrent architecture designed to

advance the storage ability.

Figure 5 presents the constructed architecture of the
recurrent neural network in our deep learning model. An

input layer’s vector sequence x = {𝑥𝑡−𝐿+1, 𝑥𝑡−𝐿, … 𝑥𝑡−1, 𝑥𝑡}
with length L is passed with weighted connections to a layer
of multiple recurrently connected hidden layers to compute
first the hidden layer’s vector sequences h = {
ℎ𝑡−𝐿+1, ℎ𝑡−𝐿, … ℎ𝑡−1, ℎ𝑡}, and then the output vector

sequence y = {𝑦𝑡−𝐿+1, 𝑦𝑡−𝐿, … 𝑦𝑡−1, 𝑦𝑡}. In common LSTM,

each output vector yt is used to parameterize the probability
distribution Pr(xt+1|yt) of the next inputs xt+1 [42], [44].

∑

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1278

FIGURE 5. The architecture of implemented convolutional neural network (CNN).

Given the temporal dependencies between the event
profiles, in this work, we employ LSTM to model the temporal
correlations of event profiles. An RNN is a connectivity
pattern that computes on a sequence of vectors 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ,

using a recurrence formula of the form ℎ𝑡 = 𝑓𝛩 (ℎ𝑡−1 , 𝑥𝑡),

where 𝑓, an activation function and 𝜃, a parameter, are used
at each timestamp to process. To avoid the vanishing
gradient problems with RNNs, gradient clipping and gating
concepts are introduced [33].

An LSTM is an upgraded network of RNN. Unlike classical

RNNs, LSTM tries to address the problem of long-term

dependencies by introducing a purpose-built memory cell to

store information of previous time steps [42].

Within this model, instead of propagating the state without

multiplicative updates at each step, it is stored in memory cell

𝐶𝑡 , which receives additive updates, merged with a method

for removing irrelevant inputs from the memory cell of

previous time steps [45]. Following the notation in Zaremba

et al. [45], [46] the computation of LSTM unit at time step t is

formally represented as follows:

Here, ⊙ represents element-wise multiplication. where 𝑥𝑡

denotes an input vector, ℎ𝑡 denotes hidden state vector, 𝐶𝑡

denotes cell state vector, 𝑜𝑡 denotes output vector, 𝑖𝑡 denotes

input vector, and 𝑓𝑡 denotes forget state vector, while terms

W and 𝑏 denote weights and biases, respectively.

Gates of memory cells consist of “input,” “output,” and

“forget” gates. In principle, these gates enable the gradient to

propagate when the model propagates through multiple steps

for a long time. This is because the LSTM removes irrelevant

information through the input gate 𝑖𝑡, memorizes information

only until necessary using the forget gate 𝑓𝑡, and outputs only

relevant information using the output gate 𝑜𝑡.

𝑓𝑡 = σ(W𝑓 ∙ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)

𝑔𝑡 = 𝑡𝑎𝑛ℎ(Wg ∙ [ℎ𝑡−1; 𝑥𝑡] + 𝑏g)

𝑖𝑡 = σ(W𝑖 ∙ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡

𝑜𝑡 = σ(W𝑜 ∙ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡)

(12)

FIGURE 6. The architecture of implemented long short-term memory.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1279

In our study, we constructed LSTM with 1–8 multi-layers

and N hidden layers; an example of the architecture is shown

in Figure 6. It must be noted that if there is one multi-layer, the

neural network is an RNN. The RNN cell and LSTM cell can

be easily substituted for each other because they both support

in TensorFlow. To construct a suitable LSTM network with

the optimal number of multi-layers and hidden layer, we used

several dynamic configurations until the best performance was

obtained. Consequently, we observed that the optimal number

of multi-layers is 2–4 and optimal the number of hidden layers

is 256–512. Although the multi-layers are deeper, this

accuracy is not considerably advanced. However, a longer

training period is required. Moreover, because our proposed

AI-SIEM system can model the LSTM through dynamic

configuration, the optimal LSTM network related to each

learning data can be constructed by our system.

VII. DATASETS

This section describes the datasets. The four datasets used for

testing, are NSLKDD, CICIDS 2017, and the two real datasets

collected in the SOC.

A. NSLKDD

The NSLKDD dataset is the new revised version of the

KDDCUP99. Tavallaee et al. [47] had discovered a number of

duplicated records in the original KDDCUP99 dataset, which

had an impact on the performance of model training and

evaluation on the dataset. NSLKDD is a refined version of the

dataset to address discovered statistical problems.

Some advantages over KDDCUP99 are that the complexity

can be reduced and bias toward frequent records by machine

learning algorithms can be prevented. However, this new

version of the dataset still suffers from some of the problems

discussed by McHugh in [48] and may not be a perfect

representation of existing real networks. Because recent NIDS

research still uses this dataset for performance evaluations, we

believe it is regarded as an effective benchmark to help us

compare different methods.

The training is performed on KDDTrain data which contain

22 attack types and testing is performed on KDDTest data

which contains 17 additional attack types. These attacks can

be categorized into four different types with some common

properties for training and testing. The four categories of

attacks are: Denial of Service (DoS), Probe, Remote to Local

(R2L) and User to Root (U2R).

B. CICIDS 2017

In 2017, the Canadian Institute for Cybersecurity (CIC)

published an intrusion detection dataset named CICIDS2017

[54]. This dataset provides the labeled data for the field of

network intrusion detection research and contains benign

activities and attacks, which was collected for five days log

(from Monday to Friday). While the first day log contains

normal activity and only includes the benign data, the other

days contain the data points for various attacks together with

benign data. The number of data points is approximately 2.8

million with 85 features including the label information.

The implemented attacks include Brute Force FTP, Brute

Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet

and DDoS. The dataset has used the B-Profile system

(Sharafaldin, et al. [49]) to profile the abstract behavior of

human interactions and generate naturalistic benign

background traffic.

C. REAL DATASETS

Our dataset has been collected from two large enterprise

systems, named ESX-1 and ESX-2. The security raw events

were collected over 5 months for ESX-1, over 30 days for

ESX-2, respectively, in which the detecting threat information

was separately recorded by the SOC security analysts

whenever a network intrusion occurred. The list of threat

detection information contains threat occurrence time, related

attacks, category of attack, respond contents, attack IP address,

and victim network information.

In our datasets, we investigated 798 detecting cyber threats

in ESX-1, which are dispersed across the entire collection

period. Looking at the type of occurred attacks in recorded

cyber threats, there are 240 scanning, 547 system hacking, and

11 worm attacks. Similarly, in ESX-2 there are 941 scanning,

3,077 system hacking, and 51 worm attacks. This categorizing

of attack type was manually performed by SOC analysts. By

category, the system hacking attack includes a cross site script,

DDoS, brute force attack, and injection attack. A trojan and

backdoor attack belongs to scanning attack. Overall the

number of attacks were found 4,079 cyber-threats.

TABLE 2. Distribution of Security Events in ESX-1 Dataset

ID Prefix of Event name count percentage

e2 UDP Packet Flooding 1,048,926 21.9

e4 UDP Source-IP Flooding 718,788 15.2

e40 SIP Vulnerability Scanner 644,683 13.5

e7 TCP Connect DOS 553,362 11.6

e16 TCP Invalid port 291,985 6.1

: : : :

: : : :

e15
Psyber Streaming

Server(4000/tcp)
156,750 3.3

e7 HTTPD Overflow 115,477 2.4

e21
NTP Amplification DDoS

Attack BOT.B
107,617 2.3

: : : :

Total 4,782,342 100

On two datasets, we correlated each occurred attack with

raw IPS security events using the above-mentioned

timestamps and network information. It results that the

correlated 230,026 (4.8 %) raw events are labeled as

“THREAT,” and the others 4,552,315 are labeled “NORMAL”

in ESX-1. Moreover, in ESX-2, the correlated 1,122,636

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1280

(5.9%) raw event data are labeled as “THREAT” and 17.8

million raw event are labeled as “NORMAL.”

Table 2 shows statistics of event name which collected in

the ESX-1 dataset. Looking at the distribution in entire dataset,

the top three events e2, e4, and e40 comprise nearly 50 percent

of the collected data. The false positive rate of very frequently

occurred event is relatively high, which lead to show a large

amount of data to security analysts, and seriously restrict

precise decision.

Table 3 presents the summarized description for NSLKDD,

CICIDS 2017, ESX-1, and ESX-2 datasets which are used to

evaluate the performance. Table 3 describes the summary

which includes raw data collecting periods, the number of raw

data, a percentage of threat (abnormal) data, and the number

of attack categories.

TABLE 3. The summarized description for each dataset used to
evaluate the performance

CICIDS

Table 4 shows the results of event profiling for the ESX-2

dataset for various window time intervals and sizes. The

number of generated event profiles and the processing time

demonstrates that when the Window Interval is increased, the

number of generated event profiles and the processing time are

reduced. This is because a shorter window time interval leads

to further operation of the event profile processing. By contrast,

if the Window Size is further increased, the number of

generated event profiles and the processing time also

increased. Hence, Window Interval and Window Size need to

be optimally chosen for modeling. We did not determine the

window interval and size for performance evaluation only

based on the results of Table 4. In addition, we conducted the

test by changing the window Interval and Window Size for

finding the optimal values in terms of accuracy, TPR, and FPR

besides the result of Table 4. For effective evaluation, we

empirically applied a configuration using a Window Interval

of 60 s and a Window Size of 10 min for the experiments

conducted in this paper. Our proposed method aims to perform
NSLKDD

2017
ESX-1 ESX-2 modeling by learning all the data, and consequently, we tried

to perform profiling for all data without any missing portion

of it. For this, all security events can be included in the event

profile if and only if the window interval is less than or equal

to the window size. This configuration can be modified in real

environments based on the volume of data and system

performances.

D. DATA VISUALIZATION WITH t-SNE

Figure 7 and Figure 8 present the distributional characteristic

of the dataset used in this study. For this, we adopted t-

Stochastic Nearest Neighbor (t-SNE) mechanism.
TABLE 4. Result of event profiling of the ESX-2 dataset for different
window configurations

The t-SNE is not only commonly utilized for vector data

visualization but also considered as embedding tools to

visualize high-dimensional data. The t-SNE is able to visualize

high-dimensional data into two-dimensional maps by learning

two-dimensional embedding vectors that preserves neighbor

structures among high-dimensional data. The N data rows in

dataset are randomly selected, which are visualized by

performing analysis in t-SNE [3], [50]. Figure 7 and Figure 8

represent the maps that are visualized by t-SNE for CICIDS

2017 and ESX-2, respectively. The t-SNE plots in the figure

show that the normal and attack data points located nearby in

the same space, which makes it very hard to classify them into

either normal or attack. Although the t-SNE plots of normal

and attack data are clustered, it clearly finds out that those are

not linearly separated. In general, it is known that deep

learning is then effective at dealing with high-dimensional

data with non-linearity [51], which is one of the reasons we

employ deep learning approaches to detect cyber threats.

In addition, as shown in Figure 7 and Figure 8, the data

distribution visually seen by t-SNE regarding our dataset

means that the dataset is not to be easily categorization in

comparison with the benchmark datasets.

Window

interval

(Sampling
Window Size

interval)

of

generated

event

profiles

(learning

data)

 ESX-2

of

Average

logs in
Processing

each event
Time

profile

 1 min 193,158 6.36 440 s

 2 min 278,157 8.95 443 s

60 sec 5 min 482,945 13.09 704 s

 10 min 782,056 16.41 1,323 s

 20 min 1,305,667 19.12 2,855 s

 1 min 96,646 6.35 381 s

 2 min 139,661 9.14 396 s

120 sec 5 min 241,796 13.10 546 s

 10 min 391,866 16.67 854 s

 20 min 646,254 20.06 1,338 s

 1 min 45,720 6.38 397 s

 2 min 61,031 8.77 378 s

300 sec 5 min 96,875 13.06 434 s

 10 min 156,413 16.65 573 s

 20 min 258,409 19.88 819 s

Collecting

Periods
In 1999

03/Jul/2017 –

07/Jul/2017

01/Jul/2017 –

31/Dec/2017

01/Aug/2018 –

31/Aug/2018

of raw 148.4 K 698 K 4,552 K 18,955 K

data (Train (125.9 K / (593 K / 105 (3,870 K (16, 112 K /

/ Test) 22.5K) K) / 682 K) 2,843 K)

Percentage

of Threat
Alerts in

56.9 %

8.3 %

4.8 %

5.9 %

test Data

of Attack

Categories
4 7 3 3

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1281

FIGURE 7. t-SNE visualization of CICIDS2017 dataset.

FIGURE 8. t-SNE visualization of ESX-2 dataset.

VIII. EXPERIMENTS AND RESULTS

In this section, we report the experimental results are

performed with the two benchmark datasets and our two

collected real datasets. We start by describing test environ-

ment with testbed. We then present the metric for experiment.

Continually, we present the SVD and conventional machine-

learning methods for various comparison of evaluation the

performance. we discuss the experimental results in sub-

section E, and finally we present the implemented system by

our proposed methods.

destination ip address, port information, protocol, flow

information, and rule names. When these security events are

stored in conventional SIEM, they are stored in a standardized

format with minor additions such as data tagging and data

enrichment. Because the collected ESX-1, ESX-2 is a set of

several types of IPS / IDS data stored through this process, it

can be considered that it is sufficiently applicable to other

SIEM and SOC.

For real environments when we conduct the test, we

implemented a sensor emulator that can substitute for a real

IPS system. It uses the syslog protocol to send to the AI-SIEM

system, by reading security event dataset and synthetically

generating syslog packets. For the two benchmark datasets,

the sensor emulator also reads the learning data and testing

data in the local system, and sends them to the AI-SIEM

system.

Our proposed EP-ANN in AI-SIEM was implemented

using TensorFlow [52]. The hardware used to evaluate the

performance of the EP-ANN methods are clusters of server

with Intel Xeon with 2.5 GHz (32 CPU cores) and 128GB

memory. Two Nvidia Tesla P100 GPUs are used as the

accelerator.

B. METRICS AND EXPERIMENTAL SETUP

1) FOUR METRICS

To evaluate the performance, four metrics are adopted:

accuracy, TPR, FPR, and F-measure, which are all commonly

used for learning-based methods in the field of intrusion

detection. TPR is used to evaluate the system’s performance

with respect to its threat detection. FPR is used to evaluate

misclassifications of normal data. F-measure is the harmonic

mean of the precision and FPR(recall), where Precision= TP /

(TP+FP) is the percentage of true attacks among all attacks

classified, where TP (True Positive) is the number of attack

data that is correctly classified as an attack, and FP (False

Positive) is the number of normal data that is incorrectly

classified as an attack. TN (True Negative) the number of

normal data that is correctly classified as normal, and FN

(False Negative) is the number of attack data that is incorrectly

classified as normal. The definitions for accuracy, TPR, FPR,

and F-measure are presented below:

A. TEST EVIRONMENTS

For testing, we constructed the purpose-built testbed where

for conducting performance evaluations. This testbed consists

of the big data platform and the AI-SIEM system. Moreover,

in the SOC, we also had collected real-world IPS data over

several months.

𝑇𝑃
𝑇𝑃𝑅 =

𝑇𝑃 + 𝐹𝑁

𝐹𝑃
𝐹𝑃𝑅 (𝑅𝑒𝑐𝑎𝑙𝑙) =

𝑇𝑁 + 𝐹𝑃

𝑇𝑃 + 𝑇𝑁

(13)

(14)

After minor data filtering, we constructed the dataset using

collected data for performance evaluations as described in the

previous section. In general, the format of security event of

IPS/IDS is different between devices or vendors, but majority

of events always contain timestamp, source ip address,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =

(15)
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

(16)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

14

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1282

2) ROC

In order to evaluate the quality of detection performance, we

show a receiver operating characteristic (ROC) curve and

measure an area under curve (AUC) value as significant

comparison metrics.

ROC curve is a plot of FPR against TPR of binary

classifiers. FPR corresponds to the proportion of normal data

points incorrectly predicted as attack to all normal data points.

TPR, also called sensitivity or recall, corresponds to the

proportion of attack data points that are correctly predicted

attack to all attack data points. ROC curve shows a trade-off

between sensitivity and FPR. The closer the ROC curve is to

the top-left border, the better the quality of predictions by the

prediction model and vice versa [1]. Additionally, AUC is

defined as area under the ROC curve, which is a measure of

how well a binary classifier can perform predictions of labels.

A perfect binary classifier has an AUC = 1, and a greater value

of AUC shows better performance. Any AUC value less than

0.5 means poor performance of the classifier [1].

C. COMPARISON WITH SVD

As singular value decomposition (SVD) is the one of the most

commonly used methods for dimensionality reduction in

machine learning, we compare the performance of our method

with SVD.

SVD is the method to diagonalize a matrix as in eigenvalue

decomposition. Note that eigenvalue decomposition by

eigenvalues and eigenvectors is applicable only to square

matrices, and is also a diagonalization method applicable only

to some square matrices [53]. Whereas, SVD is useful because

the technique is applicable to all m × n matrices whether they

are square matrices or not. SVD for an m × n matrix in real

space is defined as follows:

𝐴 = 𝑈 × Z × 𝑉𝑇 (17)

where 𝑈 is an m-by-m orthonormal matrix, 𝑉 is an n-by-n

orthonormal matrix and Z is an m-by-n diagonal matrix. Here,

an orthogonal matrix is a matrix in which the result of

multiplication of itself or its transposed matrix or the result

thereof is an identity matrix.

A diagonal matrix is a matrix in which the entries outside

the main diagonal are all zero. The value of the diagonal

element of the diagonal matrix derived from the SVD is called

the singular value of matrix 𝐴. For dimensionality reduction,

a k-by-k submatrix Z′ can be extracted from the m-by-n

diagonal matrix Z, and m-by-k submatrix 𝑈′ can be extracted

from m-by-m orthonormal matrix 𝑈.

According to SVD, the dimensionally reduced matrix m-by-

k 𝐴′ of m-by-n matrix 𝐴 is defined as 𝐴′ = 𝑈′ × Z′, where k

is the size of the reduced dimensionality for n. That is, we can

obtain 𝐴′ where the dimension is reduced from original

dimension n to dimension k. To evaluate the performance

comparison with SVD, we conducted accuracy comparison

regarding the cases which the reduced dimension k of SVD is

equal to the number of basepoints in our proposed method, as

shown in Table 11.

D. COMPARISON WITH CONVENTIONAL ML METHODS

Before the emergence of deep learning technology, many

conventional machine learning methods were adopted in

intrusion detection systems for anomaly detection. Recently,

it is also used in progressing. To evaluate the performance

comparison with existing methods, we conducted experiments

using well-known conventional machine-learning methods

such as support vector machine (SVM) [54], k-nearest

neighbor (k-NN) [55], random forest (RF) [56], naive Bayes

(NB) [57], and decision tree (DT) [58]. Each conventional

method is implemented in the WEKA library and Libsvm

package [59] and all methods used the default parameters

provided by the WEKA and Libsvm libraries.

E. EXPERIMENT RESULTS

In this subsection, we discuss the experimental results which

is performed for evaluating the performance metrics such as

accuracy, TPR, FPR, and F-measure. In addition, we present

that the result with our proposed method achieved better

performance in comparison with SVD for reducing the

dimensionality space.

First, Table 5 shows the experimental result of accuracy for

NSLKDD, CICIDS, ESX-1, and ESX-2 respectively. Overall,

the proposed methods achieved superior performance

comparison with the conventional machine-learning methods.

For the NSLKDD dataset, EP-FCNN model delivered top

accuracy of 0.958, EP-CNN remained runner-up in models

with 0.952, in three EP-ANN model, respectively. For

CICIDS 2017, in all experimented methods except the naïve

Bayes, the accuracy of each model was close to 0.98, and we

could see that the performance of accuracy was similar.

Next, in Table 5, looking at our collected real ESX-1 and

ESX-2 datasets, we can see that the proposed EP-ANN modes

outperform the conventional existing machine-learning

methods in overall experiment cases on the accuracy. In details,

the result of EP-FCNN, EP-CNN and EP-LSTM achieved

0.933, 0.952, and 0.923 for ESX-1 respectively, while the

experimental results of the conventional machine-learning

methods remained near 0.90. For EDX-2, where the number

of data is approximately four times of data in the ESX-1, the

gap of performance appears a larger difference. Although both

EP-FCNN and EP-CNN achieved accuracy scores of 0.947

and 0.936, the other conventional methods results near 0.85.

On the whole, the overall best accuracy was delivered by the

proposed EP-ANN models with accuracy score of 0.93-0.99

in four experiment datasets.

The detailed results are shown in Table 6 and Table 7. The

results for benchmark dataset NSLKDD and CICIDS 2017 are

presented in Table 6, and for real dataset ESX-1, ESX-2 are

presented in Table 7. The objectives of testing as shown as

Table 6 aims to compare our methods with conventional

machine-learning methods using benchmark datasets. In

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1283

contrast, the testing result as shown as Table 7 aims to report

whether each method is able to achieve satisfactory

performance for the real data.

In Table 6, for NSLKDD, TPR was 0.905 for the k-NN,

0.891 for the RF, and 0.941 for the proposed EP-FCNN. For

FPR, the EP-LSTM yielded the best performances with 0.025

(Although NB was the lowest 0.013, it is meaningless because

of the lowest accuracy). Whereas 0.819 TPR of SVM is

relatively low. In particular, EP-FCNN performs better than

other methods for the F-Measure. For CICIDS 2017 dataset,

although the performance of all the methods except Naive

Bayes was almost equal, the scores TPR, FPR, and F-measure

of the proposed EP-ANNs are better than others as shown in

Table 6. From these results, we conclude that EP-ANNs are

more effective methods for the benchmark datasets.

TABLE 5. Test results of accuracy for various conventional machine-learning methods and our proposed.

Accuracy

 NSLKDD CICIDS2017 ESX-1 ESX-2

 SVM 0.897 0.968 0.901 0.867

Conventional
k-NN 0.909 0.978 0.905 0.858

Machine Learning
Random Forest 0.930 0.979 0.900 0.858

 Naive Bayes 0.698 0.621 0.692 0.616

 Decision Tree 0.919 0.979 0.900 0.858

Our Proposed
EP-FCNN 0.958 0.995 0.933 0.947

Method
EP-CNN 0.952 0.988 0.952 0.936

 EP-LSTM 0.950 0.986 0.923 0.926

TABLE 6. Detailed Test results for various conventional machine-learning methods and our proposed methods using benchmark datasets.

NSLKDD CICIDS2017

 TPR FPR ACC F-Measure TPR FPR ACC F-Measure

 SVM 0.819 0.035 0.897 0.881 0.925 0.023 0.968 0.912

Conventional
k-NN 0.905 0.088 0.909 0.903 0.986 0.023 0.978 0.944

Machine Learning
Random Forest 0.891 0.036 0.930 0.923 0.987 0.022 0.979 0.946

 Naive Bayes 0.301 0.013 0.698 0.457 0.994 0.463 0.621 0.492

 Decision Tree 0.868 0.036 0.919 0.910 0.987 0.022 0.979 0.946

Our Proposed
EP-FCNN 0.941 0.029 0.958 0.952 0.982 0.002 0.995 0.987

Method
EP-CNN 0.926 0.028 0.952 0.945 0.985 0.011 0.988 0.971

 EP-LSTM 0.919 0.025 0.950 0.943 0.978 0.011 0.986 0.967

TABLE 7. Detailed Test results for various conventional machine-learning methods and our proposed methods using real datasets.

ESX-1

(# of raw data : 4,783,342)

ESX-2

(# of raw data 18,955,737)

 TPR FPR ACC F-Measure TPR FPR ACC F-Measure

 SVM 0.926 0.105 0.901 0.786 0.379 0.030 0.858 0.503

Conventional
k-NN 0.928 0.101 0.905 0.791 0.382 0.031 0.858 0.505

Machine Learning
Random Forest 0.926 0.106 0.900 0.785 0.382 0.031 0.858 0.505

 Naive Bayes 0.873 0.352 0.692 0.527 0.489 0.376 0.616 0.141

 Decision Tree 0.928 0.106 0.900 0.783 0.382 0.030 0.858 0.505

Our Proposed
EP-FCNN 0.885 0.059 0.933 0.781 0.899 0.049 0.947 0.688

Method
EP-CNN 0.902 0.041 0.952 0.833 0.895 0.061 0.936 0.643

 EP-LSTM 0.982 0.086 0.923 0.773 0.929 0.073 0.926 0.620

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1284

In Table 7, we observed that F-measure of all the methods

degraded more than the results of NSLKDD and CICIDS 2017.

However, for ESX-2, the TPR of the conventional machine-

learning methods is close to 0.38. Whereas TPR scores of our

methods retained near 0.90. Moreover, as shown in Figure 9,

the result of AUC based on the ROC curve shows excellent

results. The AUC values of our method were 0.967, 0.970, and

0.963 by EP-FCNN, EP-CNN, and EP-LSTM, respectively,

without degradation. The AUC values for the conventional

machine learning method were 0.777, 0.595, and 0.811 by

SVN, NB, and DT, respectively; these exhibit remarkably

degraded the performance for a large amount of data.

FIGURE 9. Comparison of ROC curves and AUC of experiment for ESX-
1 and ESX-2 datasets.

dataset, are employed in the real world, the performance of

overall accuracy is not as reliable as those of benchmark

datasets. Nevertheless, the accuracy performance of our three

EP-ANN models were not significantly degraded, despite the

large amount of data and a lack of benchmark dataset features,

such as seen in the result for ESX-2. By contrast, the accuracy

of conventional methods had degraded from approximately

0.90 to 0.85.

To evaluate classification performance of multi-

categorization, TPR is measured for each data class of

NSLKDD and ESX-2, as shown in Table 8 and Table 9,

respectively. In Table 8 and Table 9, when examining detailed

classification for each class, the classification accuracy for

“DoS”, “Normal” in NSLKDD, and “System hacking,

Scanning” in ESX-2 are fairly superior. Hence, we analyze

that it can't be performed sufficient data learning regarding

"R2L" because there are very few, if any, data instances that

are included as "R2L" type in the learning data. However, the

proposed AI-SIEM system presents relatively promising

results in terms of accurate classification performance, when

compared with conventional machine-learning methods. In

addition, we need to improve our learning methods to model,

not only for major attack data, but also for infrequent attack

data, as shown as Table 9.

TABLE 8. Detailed Multi-classification performance for NSLKDD

Classification of NSLKDD (TPR)

 DoS Probe R2L U2R Normal

SVM 0.933 0.784 0.000 0.230 0.965

k-NN 0.990 0.856 0.348 0.650 0.912

Random Forest 0.990 0.915 0.000 0.600 0.964

Naive Bayes 0.139 1.000 1.000 0.000 0.987

Decision Tree 0.979 0.851 0.001 0.550 0.964

EP-FCNN 0.984 0.834 0.210 0.050 0.971

EP-CNN 0.985 0.774 0.453 0.730 0.972

EP-LSTM 0.934 0.886 0.737 0.672 0.975

TABLE 9. Detailed Multi-classification performance for ESX-2 dataset

Classification of ESX-2 (TPR)

Based on the results of this experiment, we are able to arrive

at two meaningful conclusions. First, our mechanisms are

capable of being employed as learning-based models for

network intrusion detection. When the performance

evaluations were conducted using two well-known benchmark

System

Scanning Worm Normal

datasets such as NSLKDD and CICIDS2017, the result proved

as capable as the conventional machine-learning models. This

means that our proposed methods, employed in the AI-SIEM

system, have applicability for learning-based network

intrusion detection. Second, when the conventional learning-

based methods, which accomplish a good result by benchmark

Table 10 shows learning time and response time for the

ESX-2 dataset. By this result, average response time is near 3

microseconds, which means that our system is capable of

analyzing hundreds of event profiles for one second. This

 Hacking

EP-FCNN 0.892 0.816 0.983 0.951

EP-CNN 0.897 0.918 0.920 0.939

EP-LSTM 0.931 0.912 0.000 0.927

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1285

capacity is considered sufficient performance to operate our

system for detection in real-time.

The results obtained by our method are compared with

those of the SVD, which is known as the conventional

reducing dimensionality, in Table 11. Note that q indicates the

number of basepoints in our method, and the reduced

dimensionality in SVD. For the experiment, the ESX-1 dataset

was used, and the input data for deep learning were in the same

format, which consisted of m rows and q columns. From Table

11, it can be seen that our method outperforms the SVD

method in each experiment.

TABLE 10. Learning time and response time for each method.

Figure 10 shows examples of dashboard screen-captures.

When the AI-SIEM system detects the cyber threat using EP-

ANN models, the result of the analysis is positioned in the red-

zone part as shown in Figure 10-(a). Whereas, in the case of

normal status, the result is depicted in the blue-zone as in

Figure 10-(b). With this dashboard, the AI-SIEM system can

provide intuitive monitoring for SOC analysts. Moreover,

only true positive alerts detected by the AI-SIEM system are

shown to the SOC security analysts through the dashboard

GUI. This enables the number of alerts that need investigation

to be reduced, thus decreasing the cost of false positive alerts.

Learning Time

Dataset : ESX-2

Average Response

Time in Real-Time

TABLE 11. The result of accuracy for comparison our method with SVD

Accuracy (dataset = ESX-1)

 Our method SVD

EP-FCNN (q =20) 0.912 0.726

EP-FCNN (q = 40) 0.933 0.863

EP-FCNN (q= 80) 0.943 0.856

EP-CNN (q =20) 0.912 0.751

EP-CNN (q = 40) 0.952 0.922

EP-CNN (q= 80) 0.923 0.877

EP-LSTM (q =20) 0.907 0.691

EP-LSTM (q = 40) 0.923 0.826

EP-LSTM (q= 80) 0.941 0.892

F. SYSTEM DEPLOYMENT

As explained above, the AI-SIEM system consists of event

profile and artificial neural networks (EP-ANN). This system

aims at protecting a number of IT systems and servers in an

enterprise network, and does not have to be co-located with an

IPS and the asset systems.

For system operations in practice, this is typically placed

either on the access network of an enterprise with an IPS, or in

the external SOC. The system is either used by a security

manager of enterprise in the former case or the SOC analysts

in the latter case. Thus, each module for data learning, model

deployment, and real-time threat detection needs a dashboard

GUI, and such a dashboard is depicted in Figure 10.

(a) (b)

(c)

FIGURE 10. The dashboard screen-captures of the AI-based SIEM system
for real-time monitoring. (a)threat detection visualization, (b) normal state
visualization (c) The view for event profiles and cyber threat lists.

IX. CONCLUSION

In this paper, we have proposed the AI-SIEM system using

event profiles and artificial neural networks. The novelty of

our work lies in condensing very large-scale data into event

profiles and using the deep learning-based detection methods

for enhanced cyber-threat detection ability. The AI-SIEM

system enables the security analysts to deal with significant

security alerts promptly and efficiently by comparing long-

term security data. By reducing false positive alerts, it can also

help the security analysts to rapidly respond to cyber threats

dispersed across a large number of security events.

For the evaluation of performance, we performed a

performance comparison using two benchmark datasets

(NSLKDD, CICIDS2017) and two datasets collected in the

real world. First, based on the comparison experiment with

other methods, using widely known benchmark datasets, we

showed that our mechanisms can be applied as one of the

SVM 85 m 32 s 24 ms

Random Forest 1 m 12 s < 1 ms

EP-FCNN 28 m 12 s 4.2 ms

EP-CNN 17 m 20 s 2.3 ms

EP-LSTM 14 m 23 s 1.3 ms

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1286

learning-based models for network intrusion detection.

Second, through the evaluation using two real datasets, we

presented promising results that our technology also

outperformed conventional machine learning methods in

terms of accurate classifications.

In the future, to address the evolving problem of cyber

attacks, we will focus on enhancing earlier threat predictions

through the multiple deep learning approach to discovering the

long-term patterns in history data. In addition, to improve the

precision of labeled dataset for supervised-learning and

construct good learning datasets, many SOC analysts will

make efforts directly to record labels of raw security events

one by one over several months.

REFERENCES

[1] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal,

K. Han, "Enhanced Network Anomaly Detection Based on Deep

Neural Networks," IEEE Access, vol. 6, pp. 48231-48246, 2018.

[2] B. Zhang, G. Hu, Z. Zhou, Y. Zhang, P. Qiao, L. Chang, "Network
Intrusion Detection Based on Directed Acyclic Graph and Belief Rule

Base", ETRI Journal, vol. 39, no. 4, pp. 592-604, Aug. 2017
[3] W. Wang, Y. Sheng and J. Wang, "HAST-IDS: Learning hierarchical

spatial-temporal features using deep neural networks to improve

intrusion detection," IEEE Access, vol. 6, no. 99, pp. 1792-1806,
2018.

[4] M. K. Hussein, N. Bin Zainal and A. N. Jaber, "Data security analysis

for DDoS defense of cloud based networks," 2015 IEEE Student
Conference on Research and Development (SCOReD), Kuala

Lumpur, 2015, pp. 305-310.

[5] S. Sandeep Sekharan, K. Kandasamy, "Profiling SIEM tools and

correlation engines for security analytics," In Proc. Int. Conf.

Wireless Com., Signal Proce. and Net.(WiSPNET), 2017, pp. 717-

721.
[6] N.Hubballiand V.Suryanarayanan,‘‘False alarm minimization

techniques in signature-based intrusion detection systems: A

survey,’’ Comput. Commun., vol. 49, pp. 1-17, Aug. 2014.
[7] A. Naser, M. A. Majid, M. F. Zolkipli and S. Anwar, "Trusting cloud

computing for personal files," 2014 International Conference on

Information and Communication Technology Convergence (ICTC),
Busan, 2014, pp. 488-489.

[8] Y. Shen, E. Mariconti, P. Vervier, and Gianluca Stringhini, "Tiresias:

Predicting Security Events Through Deep Learning," In Proc. ACM
CCS 18, Toronto, Canada, 2018, pp. 592-605.

[9] Kyle Soska and Nicolas Christin, "Automatically detecting

vulnerable websites before they turn malicious,", In Proc. USENIX

Security Symposium., San Diego, CA, USA, 2014, pp.625-640.
[10] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, K. Li,

"AI2: training a big data machine to defend," In Proc. IEEE

BigDataSecurity HPSC IDS, New York, NY, USA, 2016, pp. 49-54
[11] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu and Ali A. Ghorbani,

"A detailed analysis of the kdd cup 99 data set," In Proc. of the

Second IEEE Int. Conf. Comp. Int. for Sec. and Def. App., pp. 53-58,
2009.

[12] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani, "Toward generating

a new intrusion detection dataset and intrusion traffic
characterization", Proc. Int. Conf. Inf. Syst. Secur. Privacy, pp. 108-

116, 2018.
[13] [online] Available: http://www.takakura.com/Kyoto_data/

[14] N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, "A deep learning

approach to network intrusion detection," IEEE Trans. Emerg. Topics
Comput. Intell., vol. 2, pp. 41-50, Feb. 2018

[15] R. Vinayakumar, Mamoun Alazab, K. P. Soman, P. Poornachandran,

Ameer Al-Nemrat and Sitalakshmi Venkatraman, "Deep Learning

Approach for Intelligent Intrusion Detection System," IEEE Access,
vol. 7, pp. 41525-41550, Apr. 2019.

[16] W. Hu, W. Hu, S. Maybank, "Adaboost-based algorithm for network
intrusion detection," IEEE Trans. Syst. Man B Cybern., vol. 38, no.

2, pp. 577-583, Feb. 2008.

[17] T.-F. Yen et al., "Beehive: Large-scale log analysis for detecting
suspicious activity in enterprise networks", Proc. 29th Annu.

Comput. Security Appl. Conf., New York, NY, USA, 2013, pp. 199-

208.
[18] K.-O. Detken, T Rix, C Kleiner, B Hellmann, L. Renners, "Siem

approach for a higher level of it security in enterprise networks", In

Proc. IDAACS, Warsaw, Poland, 2015, pp. 322-327.
[19] en.wikipedia.org,“Security information and event management,”

2016 [Online] Available: https://en.wikipedia.org/wiki/Security-
_information_and_event_management.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based

learning applied to document recognition," Proc. IEEE, vol. 86, no.
11, pp. 2278-2324, Nov. 1998.

[21] C. Dong, C. C. Loy, K. He and X. Tang, "Image Super-Resolution

Using Deep Convolutional Networks," in IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp. 295-

307, 1 Feb. 2016.
[22] A. Karpathy, "Connecting images and natural language," Ph.D.

dissertation, Fac. Comput. Sci., Stanford Univ., Stanford, CA, USA,

2016.
[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet

classificationwith deep convolutional neural networks," In Proc. of

the 25th Int. Conf.on Neural Inf. Proc. Systems -Volume 1, ser.
NIPS’12, 2012, pp. 1097-1105.

[24] Q. Zhu, X. Li, A. Conesa, and C. Pereira, “Gram-cnn: a deep learning

approach with local context for named entity recognition in
biomedical text,” Bioinformatics, vol. 34, no. 9, pp. 1547–1554,

2017.

[25] W.Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic
classification using convolutional neural network for representation

learning,” In Proc. Int. Conf. on Infor. Net. (ICOIN), Da Nang,

Vietnam, Jan. 2017, pp. 712–717.

[26] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, “Intrusion detection

using convolutional neural networks for representation learning,” In

Proc. Int. Conf. Neural Information Springer, 2017, pp. 858–866.

[27] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-day
malware detection based on supervised learning algorithms of API

call signatures,” In Proc. 9th Australas. Data Mining Conf., vol. 121.

Ballarat, Australia, Dec. 2011, pp. 171-182.
[28] E. Raff, J. Sylvester, and C. Nicholas, “Learning the PE header,

malware detection with minimal domain knowledge,'' In Proc. 10th

ACMWorkshop Artif. Intell. Secur. New York, NY, USA, Nov. 2017,
pp. 121-132.

[29] J. Gu et al., "Recent advances in convolutional neural networks",
CoRR, pp. 187-332, Dec. 2017

[30] Kehe Wu, Zuge Chen, Wei Li, "A Novel Intrusion Detection Model

for a Massive Network Using Convolutional Neural Networks",
Access IEEE, vol. 6, pp. 50850-50859, 2018

[31] Taejoon Kim, Sang C. Suh, Hyunjoo Kim, Jonghyun Kim and Jinoh

Kim, "An Encoding Technique for CNN-based Network Anomaly
Detection," In Proc. IEEE International Conference on Big Data

(IEEE BigData), Seattle, WA, USA, Jan. 2019, pp. 2960-2965.

[32] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran and S.
Venkatraman "Robust Intelligent Malware Detection Using Deep

Learning," IEEE Access, vol. 7, pp. 46717-46738, Apr. 2019

[33] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436-444, 2015.

[34] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient

flow in recurrent nets: the difficulty of learning long-term
dependencies,” 2001.

[35] D. Sisiaridis and Olivier Markowitch, "Reducing Data Complexity in

Feature Extraction and Feature Selection for Big Data Security
Analytics", In Proc. Int. Conf. Data Intel. and Sec. (ICDIS), South

Padre Island, TX, USA, May 2018, pp. 43-48.

[36] V. N. Inukollu, S. Arsi, S. R. Ravuri, "Security issues associated with

big data in cloud computing", International Journal of Network

Security & Its Applications, vol. 6, no. 3, pp. 45, 2014.
[37] Jong-Hoon Lee, Young Soo Kim, Jong Hyun Kim, Ik Kyun Kim and

Ki-Jun Han "Building a big data platform for large-scale security data

http://www.ijasem.org/
http://www.takakura.com/Kyoto_data/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 1, 2025

1287

analysis," In Proc. Int. Conf. Infor. Com. Tec. Conv. (ICTC), Jeju,
South Korea, 2017, pp. 976-980.

[38] F. A. Khan, A. Gumaei, A. Derhab and A. Hussain, "A Novel Two-

Stage Deep Learning Model for Efficient Network Intrusion
Detection," in IEEE Access, vol. 7, pp. 30373-30385, 2019.

[39] Min Du, Feifei Li, Guineng Zheng and Vivek Srikumar, "DeepLog:
Anomaly Detection and Diagnosis from System Logs through Deep

Learning," In Proc. ACM CCS 17, Dallas, Texas, USA, pp. 1285-

1298.
[40] Y. Liao and V. Vemuri, "Use of K-nearest neighbor classifier for

intrusion detection,'' Comput. Secur., vol. 21, no. 5, pp. 439-448, Oct.

2002.
[41] A. Oprea, Z. Li, T. Yen, S. H. Chin and S. Alrwais, "Detection of

Early-Stage Enterprise Infection by Mining Large-Scale Log Data,"

2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, Rio de Janeiro, 2015, pp. 45-56.

[42] Ke Zhang, J. Xu, M. R.Min, G. Jiang, K. Pelechrinis, and Hui Zhang.

"Automated IT system failure prediction: A deep learning approach,"

In Proc. IEEE Int. Conf. Big Data (IEEE BigData), Washington, DC,

USA, Dec. 2016, pp. 1291-1300.

[43] J. Han and M. Kamber, “Data Mining Concepts and Techniques,”
Morgan Kaufmann Publishers, 02nd edition, 2006, pp. 364-365.

[44] A. Graves, “Generating sequences with recurrent neural networks,”
arXiv preprint arXiv:1308.0850, 2013.

[45] E. C. R. Shin, D. Song, R. Moazzezi, "Recognizing functions in

binaries with neural networks," In Proc. the 24th USENIX Security

Symposium (USENIX Security '15), CA, USA, 2015, pp 611-626.
[46] W. Zaremba, I. Sutskever, O. Vinyals, Recurrent neural network

regularization, Sep. 2014, [online] Available:

http://arxiv.org/abs/1409.2329.
[47] M. Tavallaee, E. Bagheri, W. Lu, A. Ghorbani, "A detailed analysis

of the KDD Cup 1999 data set", Proc. 2nd IEEE Symp. Comput.

Intell. Secur. Defense Appl., pp. 1-6, 2009.
[48] J. McHugh, “Testing intrusion detection systems: A critique of the

1998 and 1999 DARPA intrusion detection system evaluations as

performed by Lincoln Laboratory,” ACM Trans. Inf. Syst. Security,

vol. 3, no. 4, pp. 262–294, 2000.

[49] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "Toward

generating a new intrusion detection dataset and intrusion traffic
characterization," ln Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy

(ICISSP), 2018, pp. 1-8.
[50] L. van der Maaten and G. E. Hinton, "Visualizing data using t-SNE,"

J. Mach. Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.

[51] D. Kwon, K. Natarajan, S. C. Suh, H. Kim, and J. Kim, “An empirical

study on network anomaly detection using convolutional neural
networks,” In Proc. 2018 IEEE 38th Int. Conf.on Dist. Comp.

Systems (ICDCS), 2018, pp. 1595–1598.

[52] M. Abadi et al. (Mar. 2016). "TensorFlow: Large-scale machine

learning on heterogeneous distributed systems." [Online].
Available:https://arxiv.org/abs/1603.04467

[53] D. Kalman, "A singularly valuable decomposition: The SVD of a

matrix," College Math. J., vol. 27, no. 1, 1996, pp. 2-23
[54] G. Wang, J. Yang, R. Li, "Imbalanced SVMBased Anomaly

Detection Algorithm for Imbalanced Training Datasets", ETRI

Journal, vol. 39, no. 5, pp. 621-631, Oct. 2017.
[55] W. Li, P. Yi, Y. Wu, L. Pan, J. Li, "A new intrusion detection system

based on KNN classification algorithm in wireless sensor network",
J. Elect. Comput. Eng., Jun. 2014.

[56] N. Farnaaz and M. A. Jabbar, "Random forest modeling for network

intrusion detection system," Procedia Comput. Sci., vol. 89, pp. 213-
217, Jan. 2016.

[57] N. Moustafa and J. Slay, "The evaluation of network anomaly

detection systems: Statistical analysis of the UNSW-NB15 data set
and the comparison with the KDD99 data set," Inf. Secur. J.,

GlobalPerspective, vol. 25, nos. 1-3, pp. 18-31, 2016.

[58] C. Khammassi and S. Krichen, "A GA-LR wrapper approach for

feature selection in network intrusion detection," Comput. Secur.,
vol. 70, pp. 255-277, Sep. 2017

[59] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector

machines,” ACM transactions on Intelligent Systems and

Technology (TIST), vol. 2, no. 3 p. 27, 2011.

http://www.ijasem.org/
http://arxiv.org/abs/1409.2329

