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ABSTRACT One of the major challenges in cybersecurity is the provision of an automated and effective 

cyber-threats detection technique. In this paper, we present an AI technique for cyber-threats detection, based 

on artificial neural networks. The proposed technique converts multitude of collected security events to 

individual event profiles and use a deep learning-based detection method for enhanced cyber-threat detection. 

For this work, we developed an AI-SIEM system based on a combination of event profiling for data 

preprocessing and different artificial neural network methods, including FCNN, CNN, and LSTM. The 

system focuses on discriminating between true positive and false positive alerts, thus helping security analysts 

to rapidly respond to cyber threats. All experiments in this study are performed by authors using two 

benchmark datasets (NSLKDD and CICIDS2017) and two datasets collected in the real world. To evaluate 

the performance comparison with existing methods, we conducted experiments using the five conventional 

machine-learning methods (SVM, k-NN, RF, NB, and DT). Consequently, the experimental results of this 

study ensure that our proposed methods are capable of being employed as learning-based models for network 

intrusion-detection, and show that although it is employed in the real world, the performance outperforms the 

conventional machine-learning methods. 

 

INDEX TERMS Cyber security, intrusion detection, network security, artificial intelligence, deep neural 

networks. 

 

I. INTRODUCTION 

With the emergence of artificial intelligence (AI) techniques, 

learning-based approaches for detecting cyber attacks, have 

become further improved, and they have achieved significant 

results in many studies. However, owing to constantly 

evolving cyber attacks, it is still highly challenging to protect 

IT systems against threats and malicious behaviors in 

networks. Because of various network intrusions and 

malicious activities, effective defenses and security 

considerations were given high priority for finding reliable 

solutions [1], [2], [3], [4]. 

Traditionally, there are two primary systems for detecting 

cyber-threats and network intrusions. An intrusion 

prevention system (IPS) is installed in the enterprise 

network, and can examine the network protocols and flows 

with signature-based methods primarily. It generates 

appropriate intrusion alerts, called the security events, and 

reports the generating alerts to another system, such as 

SIEM. The security information and event management 

(SIEM) has been focusing on collecting and managing the 

alerts of IPSs. The SIEM is the most common and 

dependable solution among various security operations 

solutions to analyze the collected security events and logs 

[5]. Moreover, security analysts make an effort to investigate 

suspicious alerts by policies and threshold, and to discover 

malicious behavior by analyzing correlations among events, 

using knowledge related to attacks. 

Nevertheless, it is still difficult to recognize and detect 

intrusions against intelligent network attacks owing to their 

high false alerts and the huge amount of security data [6], [7]. 

Hence, the most recent studies in the field of intrusion 

detection have given increased focus to machine learning and 

artificial intelligence techniques for detecting attacks. 

Advancement in AI fields can facilitate the investigation of 

 1 

network intrusions by security analysts in a timely and 

automated manner. These learning-based approaches require 

to learn the attack model from historical threat data and use 

the trained models to detect intrusions for unknown cyber 

threats [8], [9]. 

A learning-based method geared toward determining whether 

an attack occurred in a large amount of data can be useful to 

analysts who need to instantly analyze numerous events. 

According to [10], information security solutions generally fall 

into two categories: analyst-driven and machine learning-driven 
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solutions. Analyst-driven solutions rely on rules determined 

by security experts called analysts. Meanwhile, machine 

learning-driven solutions used to detect rare or anomalous 

patterns can improve detection of new cyber threats [10]. 

Nevertheless, while learning-based approaches are useful in 

detecting cyber attacks in systems and networks, we 

observed that existing learning-based approaches have four 

main limitations. 

First, learning-based detection methods require labeled 

data, which enable the training of the model and evaluation of 

generated learning models. Furthermore, it is not 

straightforward to obtain such labeled data at a scale that allow 

accurate training of a model. Despite the need for labeled data, 

many commercial SIEM solutions do not maintain labeled 

data that can be applied to supervised learning models [10]. 

Second, most of the learning features that are theoretically 

used in each study are not generalized features in the real 

world, because they are not contained in common network 

security systems [3]. Hence, it makes difficult to utilize to 

practical cases. Recent efforts on intrusion detection research 

have considered an automation approach with deep learning 

technologies, and performance has been evaluated using well- 

known datasets like NSLKDD [11], CICIDS2017 [12], and 

Kyoto-Honeypot [13]. However, many previous studies used 

benchmark dataset, which, though accurate, are not 

generalizable to the real world because of the insufficient 

features. To overcome these limitations, an employed learning 

model requires to evaluate with datasets that are collected in 

the real world. 

Third, using an anomaly-based method to detect network 

intrusion can help detect unknown cyber threats; whereas it 

can also cause a high false alert rate [6]. Triggering many false 

positive alerts is extremely costly and requires a substantially 

large amount of effort from personnel to investigate them. 

Fourth, some hackers can deliberately cover their malicious 

activities by slowly changing their behavior patterns [10], 

[14]. Even when appropriate learning-based models are 

possible, attackers constantly change their behaviors, making 

the detection models unsuitable. Moreover, almost all security 

systems have been focused on analyzing short-term network 

security events. To defend consistently evolving attacks, we 

assume that over long-term periods, analyzing the security 

event history associated with the generation of events can be 

one way of detecting the malicious behavior of cyber attacks. 

 
These challenges form the primary motivation for this 

work. To address these challenges, we present an AI-SIEM 

system which is able to discriminate between true alerts and 

false alerts based on deep learning techniques. Our proposed 

system can help security analysts rapidly to respond cyber 

threats, dispersed across a large amount of security events. 

For this, the proposed the AI-SIEM system particularly 

includes an event pattern extraction method by aggregating 

together events with a concurrency feature and correlating 

between event sets in collected data. Our event profiles have 

the potential to provide concise input data for various deep 

neural networks. Moreover, it enables the analyst to handle all 

the data promptly and efficiently by comparison with long- 

term history data. 

The main contributions of our work can be summarized as 

follows: 

• Our proposed system aims at converting a large amount of 

security events to individual event profiles for processing 

very large scale data. We developed a generalizable 

security event analysis method by learning normal and 

threat patterns from a large amount of collected data, 

considering the frequency of their occur- rence. In this 

study, we specially propose the method to characterize the 

data sets using the basepoints in data preprocessing step. 

This method can significantly reduce the dimensionality 

space, which is often the main challenge associated with 

traditional data mining techniques in log analysis. 

• Our event profiling method for applying artificial 

intelligence techniques, unlike typical sequence-based 

pattern approaches, provides featured input data to 

employ various deep-learning techniques. Hence, because 

our technique is able to facilitate improved classification 

for true alerts when compared with conventional 

machine-learning methods, it can remark- ably reduce the 

number of alerts practically provided to the analysts. 

• For the applicability, we evaluate our system with real 

IPS security events from a real security operations center 

(SOC) and validate its effectiveness through performance 

metrics, such as the accuracy, true positive rate (TPR), 

false positive rate (FPR) and the F-measure. Moreover, to 

evaluate the performance comparison with existing 

methods, we conducted experiments using the five 

conventional machine-learning methods (SVM, k- NN, 

RF, NB and DT). And we also perform an evaluation by 

applying our method to two benchmark datasets (i.e., 

NSLKDD, CICIDS2017), which are most commonly used 

in the field of network intrusion detection research. 

In this study, to decompose a large amount of collecting 

events into individual event occurrence profiles, we apply the 

TF-IDF mechanism. We also generate the event profiles by 

computing the similarity value among each TF-IDF event sets 

and appointed basepoints. The generated event profiles are fed 
 

 

2  

http://www.ijasem.org/


           ISSN 2454-9940 

         www.ijasem.org 

        Vol 19, Issue 1, 2025 

 
 

 

 

 

 

1270  

 

into the input-layer of the FCNN, CNN, and LSTM models, 

which are executed in AI-SIEM. Consequently, using two 

well-known benchmark datasets and two real datasets 

collected from operating IPS, we aim to show the applicability 

of our system for defending IT systems against the cyber 

threats. 

For evaluation, we are aware of the limitation of NSLKDD 

and CICIDS2017 datasets, but they remain widely used 

benchmarks for comparing machine-learning methodologies. 

Hence, we also conduct a performance comparison with 

existing methods using the real datasets and additional two 

benchmark datasets. Above all, machine-learning approaches 

obtained a good performance using benchmark datasets, also 

need to achieve satisfactory performance for the real data. 

The remainder of this paper is structured as follows. In 

Section II, we introduce the background information for the 

proposed system. Section III provides existing works on 

learning-based intrusion or attack detection. In Section IV, we 

describe the overview for our proposed system and data 

labeling. In section V, we specify the methodology used in this 

study in more detail. Section VI provides the implementation 

of the FCNN, CNN, and LSTM models for this study. Section 

VII introduces datasets for experiments. Section VIII presents 

the detailed evaluation results of experiments and comparison 

with other methods. Finally, the conclusion and future work 

discussed in Section IX 

 
II. PRELIMINARIES 

In this section, we shortly discuss the background information 

for our study. We start by describing the overview of the 

IDS/IPS and the SIEM, and introduce the deep learning 

techniques. Finally, we describe our big data platform for the 

proposed AI-SIEM system. 

 
A. IDS / IPS and SIEM 

1) IDS / IPS 

An intrusion detection system (IDS) monitors the network 

activity and reports on observation of any security violations 

[6]. Unlike the IDS, an intrusion prevention system (IPS) can 

block a detected network connection by closing port or 

dropping the packets. An IPS has become an indispensable 

system for most types of organizations or industries owing to 

the wide growing nature of data and the internet. Nevertheless, 

intelligent network attacks still persist in today’s network, and 
there are limitations to detect and respond network intrusions 

by an IPS system [15]. This is because they mainly use less- 

capable signature-based detection, as opposed to anomaly 

detection methods. Meanwhile, speedy attacks are occurring 

more frequently with new intrusion methods [6], [16]. Most of 

all, the majority of IPS solutions have a high false positive rate 

and are limited in detecting any unknown or new attacks. In 

addition, in [14], the authors presented six limitations for an 

IPS such as the challenges of volume, accuracy, diversity, 

dynamics, low-frequency attacks, and adaptability. These 

limitations lead to seriously restrict precise decision by an 

SOC security analyst. 

 
2) SIEM 

A SIEM has been considered an important component of 

enterprise networks and security infrastructures, with a focus 

on enterprise information technology (IT) security, which 

provides an overall view of the security management. In 

general, SIEM collects relevant data produced in an 

organization from various sources, making it possible to detect 

cyber threats by matching patterns [17], [18], [19]. The SIEM 

system allows the consolidation and comprehensive 

evaluation of security alerts and logs collected from network 

security systems (e.g., firewall and IDS / IPS). Particularly 

with analyzing IDS/IPS alerts (security events) in SIEM, the 

analyst make an effort to find cyber attacks using pre-defined 

security policies and threshold. Moreover, to discover 

consolidated malicious behavior, they carry out analyzing 

correlations between security events and relevant situations 

based on already known patterns of cyber threats. 

Security events are continually generated from many types 

of network security systems (e.g., IPS and FW); thus, they are 

heterogeneous with an extremely diverse distribution. This 

brings challenges to discriminate true positive alerts from false 

ones in a traditional policy-based threat detection system. 

Moreover, practice shows that this method of analyzing is 

extremely complex, high costly and only operable with large 

personnel effort [18]. 

For cyber-threat detection, the SIEM analysts spend an 

immense amount of effort and time to differentiate between 

true security alerts and false security alerts in collected events. 

Hence, in recent years, to address this challenge, one of the 

main focuses within the development of SIEM has been the 

application of machine-learning and artificial-intelligence 

(AI)-learning techniques, which is referred to here as AI-based 

SIEM. Although the application of these techniques has 

offered improvement in reducing human labor, there are still 

several challenges for an AI-based SIEM. As mentioned 

above, there are major limitations such as (1) the 

comparatively high level of analyst interaction required, (2) 

lack of labeled data, and (3) constantly evolving attacks [10], 

[14]. 

 
B. DEEP LEARNING TECHNIQUES 

In recent years, the deep learning technique has been greatly 

advanced in many areas, and it is ongoing in many industries 

beyond an area of machine learning that applies neurons as 

mathematical structures similar to human neural network. The 

most widely used deep neural network are convolutional 

model and recurrent model. 

CNNs are generally effective to learn the spatial features of 

data such as image processing, and RNNs are the more 

suitable method that can learn using time-continuously 

differentiable features of data. CNNs are architectures 

especially designed to deal with spatial data. Because of the 
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awareness of the partially specific feature of the input, specific 

local characteristic, and shared parameter schemes, CNNs are 

employed in many fields [20], [21], [22]. CNNs have already 

yielded remarkable outcomes in many fields such as image 

classification [23], biomedical text analysis [24], and malware 

classification [3], [25], [26], [27], [28], [29]. For network 

intrusion detection, many studies showed the feasibility of 

CNN for the identification of malicious events, network flow 

and connection in the network [30], [31]. 

Recurrent structures are capable of learning the sequence 

information in the data. The well-known recurrent structures 

are RNN and LSTM [32], [33]. LSTM has a special recurrent 

architecture designed to advance the storage ability, compared 

to RNNs. This is mainly because RNN is able to store past 

input information for short time, that degrades its ability to 

model a long-term structure for the input sequence [34]. 

Hence, LSTM networks have an additional component called 

the forget gate. Because LSTM can effectively perform to 

learn long sequence data, it also has enabled successfully 

empirical results in areas such as speech recognition and 

machine translation [3], [10]. 

 
C. BIG DATA PLATFORM 

Typically, a big data platform is used to collect data on 

security events from IPS and maintain security logs over long- 

term periods. The big data platform can also be specialized in 

analyzing data and quickly recognizing cyber threats [35], 

[36]. This is because historical data collected over long-term 

periods in the platform can help investigate and respond to 

cyber threats. For this, we have developed the scalable big data 

platform based on distributed computing technologies, 

particularly for collecting, processing, storing, correlating, and 

analyzing the security event logs. 

Figure 1 shows the system architecture of our big data 

platform. The platform mainly consists of a data collection 

system, data processing system, data analysis and data storage 

 
system to analyze cyber-threat information using long-term 

security data. Using the techniques for large-scaled data 

processing, this platform is capable of continually collecting 

the numerous streamed security events and processing the data 

in real-time [37]. Based on the big data platform, our proposed 

methods can be coupled with AI-based SIEM. In this work, by 

adopting AI technique to the platform, true alerts can be better 

differentiated from false alerts in the real world. 

 
III. RELATED WORKS 

In this section, we discuss previous studies for deep learning- 

based intrusion detection and real security event analysis 

research. In recent years, many studies in cybersecurity focus 

on AI-based intrusion detection, and different AI and machine 

learning-based techniques have been proposed to improve the 

ability of cyber threat detection [1], [2], [3], [15], [38], [39]. 

Although these studies have achieved significant result using 

AI and machine learning-based techniques, they are still 

limited to specific test datasets such as NSLKDD. Other 

research studies however, have used security events and logs 

collected from the real world [8], [10], [40], [41], [42]. These 

studies are closer to our study for addressing the above- 

mentioned challenges. Especially, Liao et al. [39], Du et al. 

[40], and K. Zhang et al. [42] have used the TF-IDF mecha- 

nism like our method. 

 
A. DEEP LEARNING-BASED INTRUSION DETECTION 

Naseer et al. [1] proposed, implemented and trained 

intrusion detection models using different deep neural network 

architectures including CNNs, Autoencoders, and RNNs. 

These models were trained on the NSLKDD training dataset 

and evaluated on both test datasets provided by NSLKDD. 

DCNN and LSTM models showed a performance of 85% and 

89% accuracy, respectively, on test dataset. 

 

 

FIGURE 1. The architecture of our big data platform for AI-based SIEM 
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B. Zhang et al. [2] divided methods for network intrusion 

detection into two types: direct methods using single 

algorithm and combination method by combination of several 

methods. The author proposed a new detection model based 

on a directed acyclic graph (DAG) and a belief rule base 

(BRB). The results showed that compared with conventional 

detection models, the DAG‐BRB combination model had a 

higher detection rate using KDD 99 dataset. 

Wang et al. [3] proposed a hierarchical spatial and temporal 

features-based intrusion detection system (HAST-IDS) that 

automatically learns network traffic features. The main idea is 

that the spatial features of network traffic are first learned 

using deep CNNs and then learns the temporal features are 

learned LSTM networks. The experiments were conducted by 

DARPA and ISCX datasets. 

Vinayakumar et al. [15] developed a hybrid intrusion 

detection system which has the capability to analyze the 

network and host-level activities. It employed distributed deep 

learning model with DNN for processing and analyzing very 

large scale data in real-time. The DNN model was selected by 

comprehensively evaluating their performance in comparison 

to classical machine learning classifiers on various benchmark 

IDS datasets such as NSLKDD and UNSW-NB15. 

Khan et al. [38] propose a novel two-stage deep learning 

model, based on a stacked auto-encoder with a soft-max 

classifier, for efficient network intrusion detection. The 

authors conducted several experiments on two public datasets: 

the benchmark KDD99 and UNSW-NB15 datasets. This study 

achieved results, up to 99.9% for the KDD99 dataset and 

89.1% for the UNSW-NB15 dataset. 

Liao et al. [39] proposed a new algorithm based on the k- 

NN classifier method using TF-IDF for modeling program 

behavior in intrusion detection regarding system calls. In [29], 

with the k-NN classifier, the frequencies of system calls are 

used to describe the program behavior. For this, text 

categorization techniques, such as TF-IDF, are adopted to 

transform each system call data to a vector and measure the 

similarity between two program system call activities. Authors 

report that the TF-IDF-based k-NN classifier appears to be 

well applicable to the domain of intrusion detection in the field 

of malware detection. 

 
B. REAL SECURITY EVENT ANALYSIS 

Shen et al. [8] developed the system for predicting security 

events through deep learning, which is called Tiresias. 

Authors presented a system that leverages RNNs to predict 

future events on a machine, based on previous observations. It 

tested on a dataset of 3.4 billion security events collected from 

a commercial IPS, and showed that its approach is effective in 

predicting the next event that will occur on a machine with a 

precision of up to 0.93. In addition, the system also 

accomplished a high precision for a complex situation and 

maintained stable results. 

Veeramachaneni et al. [10] developed end-to-end machine 

learning techniques that predict cyber attacks significantly 

better than existing systems by continuously incorporating 

input from human experts. The analyst directly labeled data 

with a ranked metric over several months, and these labeled 

data were provided to the supervised learning module to 

predict whether an attack would occur. This study showed that 

the technique, using six anomaly detection methods, can 

detect 85 percent attacks, which is roughly three times better 

than previous benchmarks, while also reducing the number of 

false positives by a factor of 5. The system was tested on 3.6 

billion pieces of data known as “log lines,” which were 

generated by millions of users over a period of three months. 

Specially, the hybrid approaches of auto-encoders have been 

recently proposed for anomaly detection. 

Du et al. [40] proposed DeepLog, a deep neural network 

model employing LSTM to train a system’s log patterns (e.g., 

log key patterns and corresponding parameter value patterns) 

from normal execution. This work uses the term frequency 

inverse document frequency (TF-IDF) vector to the log key 

and parameter value anomaly detection models for identifying 

abnormal log entries. The author showed that DeepLog 

outperformed existing log-based anomaly detection methods, 

achieving an F-measure of 96% in HDFS data and an F- 

measure of 98% in OpenStack data. 

Oprea et al. [41] used belief propagation to detect early- 

stage enterprise infection from DNS logs. They proposed a 

new framework based on belief propagation inspired from 

graph theory. They demonstrated that the techniques perform 

well on two large datasets. The authors achieved high 

accuracy on two months of DNS logs. Moreover, they apply 

the algorithms to 38TB of web proxy logs collected at the 

border of a large enterprise. This framework used "hints" data 

that was manually provided by the SOC security analysts. 

K. Zhang et al. [42] proposed a novel system that 

automatic-ally parses streamed console logs and detects early 

warning signals for IT system failure prediction. The system 

used an automation approach with text mining techniques, 

such as term frequency - inverse document frequency (TF- 

IDF) and it employed LSTM for deal with specific labeled 

data in the training process. The paper compared proposed 

technology with state-of-the-art machine learning approaches 

and showed the advantage and potentials of the system in 

prediction of complex IT failures. 

The closest study to this paper is Tiresias [8]. Tiresias 

focused on anomaly detection for prediction of event in a noisy 

environment with a wide variety of events. However, in order 

to improve the accuracy for event prediction, Tiresias used the 

sequence-based approach with RNN for occurred security 

events. Whereas we adopt the concurrency-based approach 

with deep-learning to address the limitation of sequence-based 

method, which is detailed in the next Section. 
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FIGURE 2. The workflow and architecture for the developed AI-based SIEM system 

 

 
IV. SYSTEM OVERVIEW 

This section describes the architecture of the proposed AI- 

SIEM system for artificial intelligence-based threat detection. 

The AI-SIEM system employs not only deep learning 

techniques but also data preprocessing mechanism that 

enables the handling of very large-scale network events. 

Specially, the main goal of the AI-SIEM is to automatically 

analyze network security events related to true alerts for 

detecting cyber-threats and execute multiple analysis engines. 

It also utilizes the processing capability of the several 

graphical processing unit (GPU) cores for faster and parallel 

analysis. 

Figure 2 presents the workflow and architecture for the 

developed artificial intelligent (AI)-based SIEM system. The 

AI-SIEM system comprises three main phases: The data 

preprocessing, artificial neural networks-based learning 

engine, and real-time threat detection phase. 

The first preprocessing phase in the system, termed event 

profiling, aims at providing concise inputs for various deep 

neural networks by transforming raw data. In the data 

preprocessing phase, data aggregation with parsing, data 

normalization stage using TF-IDF mechanism, and event 

profiling stage are consecutively performed in the AI-SIEM 

system. Each stage generates event data sets, event vectors, 

and event profiles, respectively, and the output is utilized in 

next each stage, as shown in Figure 2. This phase not only 

precedes the data learning stage but also precedes the 

conversion of raw security events to the deep-learning 

engine’s input data when the system operates on detecting 

network intrusions in real time. The second AI-based learning 

engine employs three artificial neural networks for modeling. 

For the data learning stage, the preprocessed data are fed into 

the three artificial neural networks, and each ANN performs 

learning to find the most accurate model. Finally, in real-time 

threat detection, each ANN model mechanically classifies 

each security raw event using the trained model, and the 

dashboard shows the only recognized true alerts to security 

analysts for reducing false ones. 

Each stage for data preprocessing is detailed in Section V, 

and second ANNs for data learning phase are described in 

Section VI. 

 
A. DATA LABELING FOR LEARNING 

In this subsection, we discuss the data labeling of security 

events for supervised learning. As mentioned above, to 

employ the supervised learning method, a labeled data is 

essential. For this, analysts should be able to label several 

months of data heuristically. In other words, analysts need to 

label the raw events as “Normal” or as “Threat,” based on 

whether it belongs to a type of attack by analyzing correlations 

among raw security events. However, owing to a rapidly 
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growing number of security events and unknown cyber 

threats, the labeling of numerous data is time-consuming and 

costly. In addition, it is difficult to acquire the labeled security 

event dataset based on the action of SOC security experts in 

the real world. 

By investigating occurred cyber attacks, most of detected 

attacks can be categorized as system hacking, denial of 

service, network attacks, scanning attacks, and suspicious 

authenti-cation activities. These attack types are determined 

by the SOC security analysts based on correlation among 

attack duration time, the number of attacker's IP, and 

importance of victim system. 

In our study, to provide an available dataset for supervised 

learning, we had to carry out dataset labeling according to 

utilizing recorded information in the threat detection report list 

(e.g., attack start time, attack end time, and attacker’s ip 

address information). The threat detection reports are made by 

the SOC analysts during raw data collecting periods. The 

labeling operation is automatically performed by the data 

labeling module in our system. First, the system extracts 

timestamps and network information from the threat detection 

one event set using the sliding window by predefined interval, 

which can belong to overlapping sets by configuration. In 

other words, the sliding window allows overlapping of one log 

over multiple profiles. In this, we apply a concurrency-based 

pattern instead of a sequence-based pattern [8], and the 

number of concurrency event name types in each event set is 

regarded as deterministic features for true-positive events. 

This is primarily because the ordering of events can change 

slightly based on unknown situations. For example, if there are 

two event sequences, a = 4→5→6→4→5→6, and sequence b 

= 4→5→6→5→4→6, the ordering of the two sequences is 
clearly different; however, the event occurrences of the two 

sequences are the same. However, in the real world, the 

sequence may be changed in IPS by system processes, 

resources, and network,; therefore we adopt the concurrency- 

based method that depends on co-occurrence information, 

which is not as tight as the sequence, but allows the calibration 

of the gap of changeable sequence. 

Whenever the window slides at an interval of the pre-defined 

time_interval, each raw event data in the window is 

aggregated into several event sets 𝐸𝑆𝑇=𝑡 by source address Si 

report, for each recorded threat detection result. Next, the data 

labeling tool in the system, investigates correlation of extract- 

ed threat information on raw security event, with each threat 

using the big data platform. The security events that are 

correlated with IP address and time of each threat are labeled 

as “THREAT (Attack name),” and others are labeled as 

“NORMAL.” The labeled result of our collected datasets is 

explained in Section VII. 

 
V. METHODOLOGY 

In this section, we describe an event profiling method for 

preprocessing. The method is composed of data aggregation 

and decomposition, TF-IDF normalization, and generating 

event profile. we first present an event set extraction method 

for the data preprocessing. Then, the event vectorization using 

TF-IDF for event profiles is described in detail. Finally, we 

present the event profiling method for inputs into three deep 

learning models. The proposed method was basically 

motivated by the observation that raw event data can be 

profiled by concurrent event sets. By combining each 

proposed method sequentially, the preprocessing for AI 

engine is operated as shown in Figure 2: 

 
A. DATA AGGRERATION AND DECOMPOSITION 

Finding a profiling method to represent a pattern in a large 

amount of data can help to summarize much information from 

the event data and utilize the inputs for deep learning. 

To deal with a large amount of streaming event data in the 

real world, we needed a method to find one representative data 

set that identifies several events; thus, we generate the 

statistical event sets. The basic idea of our method is to extract 

the occurrence information regarding other events 

simultaneously generated with it. Once the raw events are 

collected in the big data platform, each event is mapped into 

and destination address Dj. 
 

 

FIGURE 3. Data aggregation and data decomposition by source and 
destination address using sliding window. 

 

Consequently, a number of event data sets are produced for 

one window time in our system. Figure 3 shows data 

aggregation and data decomposition by source and destination 

address using sliding window. For example, in case of first 

window 𝑇𝑖 , occurred event set { 𝑒5 = 2 , 𝑒13 = 6 , 𝑒17 = 1, 
𝑒25 = 2 , 𝑒48 = 2 , ∙∙∙ } is decomposed to S1ES = { 𝑒17 = 
1, 𝑒13 = 1, 𝑒25 = 1 …}, S2ES ={ 𝑒5 = 2, 𝑒13 = 3, 𝑒25 = 1 
…}, and S3ES={𝑒13 = 3, 𝑒65 = 2, 𝑒48 = 1 …} by connection 
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𝑛=1 

j 

unit. This operation is continuously performed on learning 

data. 

 
B. TF-IDF DATA NORMALIZATION 

In this subsection, event sets, which contain the frequency of 

unique event name such as event set 𝐸𝑆𝑖, are transformed into 

a representation suitable for the learning algorithm and 

classifiers. For this, we use the vector space model which is 

the most commonly used document representation in the field 

of information retrieval. 

We seek to adopt this technique to make an intrusion 

detection model. The occurrences of IPS events can be used to 

characterize the IPS pattern and transform each event set into 

a vector. Moreover, it is assumed that event sets belonging to 

the same concurrency will be nearby in vector space. Hence, 

as shown in Table 1, we substitute a different factor in threat 

detection for the concept of each factor in text categorization 

to apply the vector space model. 

In the applied model, each event set is represented by a 

vector of occurred events. Note that m indicates the number of 

rows in the learning dataset, and n indicates the number of 

event name types. An m-by-n matrix E denotes the collection 

of event sets belonging to the learning dataset, where each 

entry represents the occurrence of an event in an event set, i.e., 

E = (𝑒𝑖j ), where 𝑒𝑖j is the weight of event j in event set i. 

Let 𝑎𝑖j denote the j th column TF-IDF value in the i th row 

of the dataset. To convert input data for deep learning with the 

above pre-processed dataset to corresponding event profile, 

our goal is to create mapping 𝐹: 𝐸 → 𝐸𝑃, where EP represents 

the event profile dataset corresponding to 𝐸 and 𝐸 = 
{𝐸𝑛}𝑚 , the entity of which is 𝐸𝑖 = {𝑒1, 𝑒2, 𝑒3, … 𝑒𝑛}. Hence, 

the number 𝑚 indicates the number of rows in the dataset, and 

the number 𝑛 is the number of event categories 𝑒𝑖 . The 

dimension of the TF-IDF event set vector equals the size of n 

columns in the collection, which has a dependency on what 

kind of event occurred. Hence, whereas there could be 

thousands of different types, it is necessary that overfitting 

caused by a high dimension is reduced. 

TABLE 1. Various symbols and notations used 

There are several ways of determining weight 𝑒𝑖j. 
Let 𝑡𝑓𝑖j be the frequency of j th event in event set i, 𝑚 the 

number  of  event  sets  in  the  entire  dataset  A, 

𝑛 is the number of unique event names in the entire dataset A, 

and 𝑛j is the total number of times event j occurs in the entire 

collection. 

Although there is simple Boolean weighting and frequency 

weighting, i.e., 𝑒𝑖j= 𝑡𝑓𝑖j, the particular weighting approach is 

the so-called term frequency - inverse document frequency 

(TF-IDF) weighting as follows : 

 
𝑚 

𝑒𝑖j = 𝑡𝑓𝑖j × 𝑙𝑜𝑔 (
𝑛 

) (1) 

 

TF-IDF is a statistical technique to index the term according 

to their importance, as it is based on vectors that represent the 

term frequency as well as term presence [43]. In this manner, 

the numerical value of a repeatedly occurring event exhibits a 

low weight, while the value of a very rarely occurring event 

will receive a high weight. 

As a result of TF-IDF, matrix A is constructed, of which the 

columns length corresponds to the number of events M in the 

data collection, and the number of rows correspond to the 

number of event sets. Matrix A is composed of event vectors. 

As mentioned in section III, Liao et al. [39] employed the 

TF-IDF for learning program behavior in malicious activities 

detection based on the frequencies of system calls invoked 

during a program execution time. Table 1 presents the 

substitution concept of TF-TDF for our AI-SIEM system. 

 

 

 

 

 

For dimensionality reduction, the well-known principal 

component analysis (PCA) and singular value decomposition 

(SVD) methods are used in many deep-learning fields. 

However, we developed a new method based on basepoints as 

presented in next subsection. The primary reason is we assume 

that network intrusion data is broadly located in high- 

dimensional space. In addition, we also assume that malicious 

security events had high deviations among their value and they 

are mixed together with normal data. Particularly, we perform 

experiment for comparison with SVD, and the result is 

presented in Section VIII. 

 
C. TRANSFORM EVENT PROFILE 

In this subsection, for transforming event vectors to event 

profile data, we first calculate the similarity of the entire 

event set with each basepoint set. The basic idea of our data 

preprocessing to reduce the high dimensionality is to calculate 

the cosine similarity between each data in the collections 

(training data) and the data of 𝑘 basepoints and the measured 

cosine similarities are used to characterize event patterns. 

For this, in this step, our method first appoints 𝑘 basepoints, 

the number of which is given within 0.20–0.30 percent of n, in 

the training data set. 
 

 

 

 
Terms 

TF-IDF For 

Common Text 

Categorization 

TF-IDF for 

Malware 
Detection in 

Liao et al. [39] 

Substitution of 

TF-IDF for our 

System 

𝑚 
total number of 

documents 
total number of 

processes 
total number of 

event sets 

𝑛 
total number of 
distinct words 

total number of 
distinct system 

calls 

total number of 
unique event 

names 

 

𝑛𝑖 
number of times i 

th word occurs 

number of times 
i th system call 

was issued 

number of times 
i th event was 

issued 

𝑡𝑓𝑖j 
frequency of 𝑖 th 
word in the j th 

document 

frequency of i th 
system call in 

process j 

frequency of 𝑖 th 

event in 
event set j 

𝐷j 
j th training 
document 

j th training 
process 

j th training 
event set 

X test document test process test event set 
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𝑖=1 
j=1 

𝑖=1 

I j=1 

𝑖=1 

, 

) ⎦ 

To appoint k basepoints, we need to find the particular event 

vectors that have rarely occurred over the dataset. This is 

mainly because the similarity value may be diverse when 

comparing a rarely occurring event set with other events, while 

the similarity value among repeatedly occurring event sets 

resemble. The latter case is not effective for deep learning. 

Hence, for appointing k basepoints, first, the 10–20 most rare 

event list is prepared, the event set that contains events in the 

rare list, is only selected for the basepoint. Next, to reduce 

redundancy among basepoints, if there is a redundant 

basepoint after calculating similarities among k basepoints, it 

is substituted by another event vector. By iteratively perform- 

ing this procedure, sets of k basepoints are constructed. 

Next, we define a set BV, which consists of 𝑘 unique 

basepoints with different attributes, as the reference points for 

measuring similarity, and calculate the cosine similarities 

𝑠𝑖𝑚 (𝐸, 𝐵𝑉) between each training data 𝐸 and each data in 

the basepoint set BV. The 𝑠𝑖𝑚(A, B) function is measured by 

the cosine similarity value between two event-set vectors. The 

cosine similarity is defined as follows: 

 

𝑎1,1 
𝖥 𝑎2,1 

𝖩 

𝑎1,2 𝑎1,3 

𝑎2,2 𝑎2,3 

 

⋯ 

𝑎1,𝑛 

𝑎2,𝑛 
⎤ 

 

= 𝑠𝑖𝑚𝑀 I 
𝑎3,1 

I 

𝗁⎣𝑎𝑚,1 

𝑎3,2 𝑎3,3 

⋮ 
𝑎𝑚,2 𝑎𝑚,3 

𝑏1,1 𝑏2,1 
𝖥 
I𝑏1,2 𝑏2,2 

I ⋮ 
⎣𝑏1,𝑛 𝑏2,𝑛 

= 

⋱ 
⋯ 

⋯ 

⋱ 
⋯ 

𝑎3,𝑛 , 
⋮  I 

𝑎𝑚,𝑛⎦ 
𝑏k,1 ⎤ 
𝑏k,2 I ) 

⋮ I 
𝑏k,𝑛⎦ 

 

 

(5) 

𝑠(𝐸1 , 𝑏𝑣1)  𝑠(𝐸1 , 𝑏𝑣2) 
𝖥 

𝑠(𝐸2 , 𝑏𝑣1)  𝑠(𝐸2 , 𝑏𝑣2) 
I 

𝑠(𝐸1 , 𝑏𝑣3) 
𝑠(𝐸2 , 𝑏𝑣3) 

 

⋯ 

𝑠(𝐸1 , 𝑏𝑣k) 
⎤ 

𝑠(𝐸2 , 𝑏𝑣k) 
I 

 

I 𝑠(𝐸3 , 𝑏𝑣1)  𝑠(𝐸3 , 𝑏𝑣2) 
I ⋮ 

⎣𝑠(𝐸𝑚, 𝑏𝑣1)  𝑠(𝐸𝑚, 𝑏𝑣2) 

𝑠(𝐸3 , 𝑏𝑣3) 

𝑠(𝐸𝑚 , 𝑏𝑣3) 
⋱ 
⋯ 

𝑠(𝐸3 , 𝑏𝑣k) I 
⋮ I 

𝑠(𝐸𝑚 , 𝑏𝑣k)⎦ 

(6) 

(* s denotes cosine similarity. ) 

Result matrix (6) of the similarities between each event set 

and k basepoints is provided to FCNN, CNN, and LSTM in 

the next section as an important part of the input data. In 

practice, the matrix data are formatted as a csv file. Each data 

row in one csv file becomes one input data that is fed into the 
𝑑 ∙ 𝑞 ∑𝑁 𝑑𝑖𝑞𝑖 first layer of artificial neural networks. 

𝑠𝑖𝑚(𝑑, 𝑞) =  
 

‖𝑑‖‖𝑞‖ = 
 𝑖=1  

√∑𝑁  𝑑2 √∑𝑁  𝑞2 (2) Moreover,  owing  to  resource  exhaust  problem  by 
𝑖=1  𝑖 𝑖=1  𝑖 

insufficient memory of most systems, dealing with a matrix or 

Given 𝑘 basepoints in the form of BV = [ 𝑏𝑣1, 𝑏𝑣2, 𝑏𝑣3, 
⋯ , 𝑏𝑣k], where 𝑏𝑣𝑖 = {e1, e2, e3, … en} and 𝑏𝑣𝑖 ∈ E, BV < E, 

and the converted dataset is the similarity matrix EP = 
[𝑒𝑝1 , 𝑒𝑝2, 𝑒𝑝3, ⋯ , 𝑒𝑝𝑚 ] , where it is an ordered set of 𝑒𝑝𝑖 = 

{ sim ( Ei , 𝑏𝑣1 ),  sim(Ei, 𝑏𝑣2), sim(Ei, 𝑏𝑣3) ,…, sim ( Ei , 
𝑏𝑣𝑚) } and 𝑖 is from 1 to 𝑚. The final transformed dataset 

EP is produced as follows: 

collection with numerous data requires particular matrix 

operation mechanisms such as data dividing. 

VI. DEEP LEARNING MODELS 

In this section, we present the artificial neural networks 

(ANNs) that compose the AI-SIEM system. As mentioned 

above, our deep-learning engine consists of a multi-learning 

engine such as FCNN, CNN, and LSTM which are 

 

𝐸 = 

𝑎1,1 𝑎1,2 𝑎1,3 
𝖥 𝑎2,1 𝑎2,2 𝑎2,3 

𝑎3,1 𝑎3,2 𝑎3,3 

𝑎1,𝑛 

⋯ 𝑎2,𝑛 
⎤ 

𝑎3,𝑛 

collectively named EP-ANN. 

 
A. FCNN Model 

I ⋮ ⋱ ⋮  I 
⎣𝑎𝑚,1 𝑎𝑚,2 𝑎𝑚,3 ⋯  𝑎𝑚,𝑛⎦  

(3) 

The FCNN is the most common deep learning network, in 

which each node in fully connected layers is connected to 

every node of next layer. In an FCNN, each node is connected 

 
𝐵𝑉 = 

𝖥
𝑏1,1 𝑏1,2 

I𝑏2,1 𝑏2,2 
⋯ 

𝑏1,𝑛 ⎤ 
𝑏2,𝑛 I 

to all the nodes in the previous layer, and each connection has 

respectively different and specific weight, which is not shared 
I ⋮ ⋱ ⋮ I 
⎣𝑏k,1 𝑏k,2 ⋯ 𝑏k,𝑛⎦ 

 

𝑠𝑖𝑚𝑀( 𝐸 , 𝐵𝑉𝑇) 

by each node. In past, while the FCNN is simpler than 

common CNNs and RNNs, it had been known that the 

degrading of performance for accuracy was caused by the 

problem of vanishing gradient during backward propagation. 

( 𝐸1,𝑖 )𝑛 
𝖥 ⎤ 

𝖩 I ( 𝐸2,𝑖 )𝑛 I  𝖥 
( 𝑏𝑣1,j )𝑛 

⎤ 
( 𝑏𝑣2,j )𝑛 ⎞ 

However, the back-propagation problem, which had restricted 

the development of an artificial neural network, was resolved 
by the emergence of the rectified linear unit (ReLU) activation 

I ( 𝐸3,𝑖 )𝑛  I (4) 
= 𝑠𝑖𝑚𝑀 

𝑖=1 I ( 𝐸4,𝑖 )𝑛 I ( 𝑏𝑣3,j )𝑛 I function. 
I I 𝑖=1 I 

I ⋮ I 
𝗁 ⎣ ( 𝐸𝑚,𝑖 )𝑛 ⎦ 

I ⋮ 
⎣ ( 𝑏𝑣k,j 

I 
I 

𝑛 
j=1 𝘭 

Consequently, to avoid the vanishing gradient problem by 

Sigmoid function, most deep-learning methods generally use 

the ReLU activation function. We also adopted the leaky 

rectified linear unit (leaky ReLU) scheme as the activation 

function, similar to RELU. The softmax function with a cross 

entropy cost function at the last layer, generate the final result 

 9 

j=1 

𝑇 
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for each input data. The common formulas for sigmoid, ReLU 

and Leaky ReLU, softmax activation function are as follows: 

To train our FCNN, the preprocessed data were fed to the 

FCNN, and training was performed by tuning the parameter 

configuration to over 1000 epochs with a learning rate of 0.001. 
1 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 = 
1 + 𝑒−𝑥 

𝑅𝑒𝐿𝑈 = { 
0 𝑓𝑜𝑟 𝑥 < 0 
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 = { 
0 .01𝑥 𝑓𝑜𝑟 𝑥 < 0 

𝑥 𝑓𝑜𝑟 𝑥 ≥ 0 

𝑒𝑥𝑖 

(7) 

 

(8) 

 

(9) 

The implemented FCNN diagram is shown in Figure 4. 

 
b. CNN Model 

CNNs are neural network architectures especially designed 

to deal with spatial data. For CNN, the data of input layer 

consists of 2D or 3D array such as the pixel value of the image 

information. The core layers of CNN are convolutional layers 

(Conv) and max pooling layers. A Conv layer receives input 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) = 𝑛 
j=1 

𝑒𝑥j (10) as a unit and convolves it using filters to produce an ongoing 

data to transfer into next layers. 

In FCNN, three-layer multi-layer perceptron (MLP) with a 

softmax function in the final layer is same as a multi-class 

logistic regression model. In general, an MLP with n hidden 

layers can be mathematically formulated as follows [15]: 

In a Conv layer, the filters read overall inputted data by the 

slicing and extract the key features. In addition, convolution is 

performed by calculating the scalar product between the input 

chunk and each filter. The features that are extracted by each 

𝐻(𝑥) = 𝐻𝑛(𝐻𝑛−1 (𝐻𝑛−2 (⋯ ( 𝐻1(𝑥) )))))) (11) filter are aggregated to a new feature set, which is called the 

feature map. Because the convolutional layer consists of a 

In this study, we designed and implemented the FCNN for 

AI-SIEM platform. Parameters for building neural networks 

such as the number of hidden layers, output class, and 

activation function types for each layer can be dynamically 

configured in the platform. 
 

FIGURE 4. The architecture of implemented fully connected neural 
network (FCNN) 

 

After performing repetitive testing, we adopted a multi- 

layer perceptron (MLP) model with eleven layers comprising 

one input layer, nine hidden layers, and an output layer. In 

particular, we built a suitable architecture that has one input 

layer and, nine hidden layers that had 1650, 1850, 2048, 1792, 

1536, 1280, 1024, 768, and 512 nodes, respectively. We 

composed the activation functions using the leaky rectified 

linear unit (leaky ReLU) scheme as the activation function, 

instead of Sigmoid. The softmax function with a cross entropy 

cost function at the output layer, produces the final outputs, as 

shown in Figure 4. The softmax layer, which is composed of 

a cross-entropy cost function at the output layer, produces the 

final multiple outputs. 

group of filters, it produces a feature map for each filter, and 

the data of feature maps are aggregated together to generate 

data for output [8], [22]. 

The designed and implemented CNN was comprised an 

input layer, four convolutional layers, three max pooling 

layers, and an output layer with one fully connected layer. 

Each of the front three convolutional layers in CNN was 

followed by max pooling layers for subsampling. We placed 

the dropout layer at the front of each convolutional layer 

except for the last. 

The input layer in the implemented CNN is dynamically 

shaped. Because the CNN is generally specialized for 2D or 

3D pixel data of the processing image, we need to transform 

each pre-processed event profile row into a 2D array. Hence, 

we transform each element of the input data vector into an N 

× N 2D array form, where empty positions in the 2D array are 

replaced with zero. Each input layer can then be variously 

shaped by the size of defined features for learning based on 

CNN. The implemented architecture for CNN is described in 

Figure 5, and the depicted CNN can be used to learn the data 

where the features ranging from number of features is 169- 

196. 

 
C. LSTM Model 

An LSTM has a special recurrent architecture designed to 

advance the storage ability. 

Figure 5 presents the constructed architecture of the 
recurrent neural network in our deep learning model. An 

input layer’s vector sequence x = {𝑥𝑡−𝐿+1, 𝑥𝑡−𝐿, … 𝑥𝑡−1, 𝑥𝑡} 
with length L is passed with weighted connections to a layer 
of multiple recurrently connected hidden layers to compute 
first the hidden layer’s vector sequences h = { 
ℎ𝑡−𝐿+1, ℎ𝑡−𝐿, … ℎ𝑡−1, ℎ𝑡}, and then the output vector 

sequence y = {𝑦𝑡−𝐿+1, 𝑦𝑡−𝐿, … 𝑦𝑡−1, 𝑦𝑡}. In common LSTM, 

each output vector yt is used to parameterize the probability 
distribution Pr(xt+1|yt) of the next inputs xt+1 [42], [44]. 

∑ 
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FIGURE 5. The architecture of implemented convolutional neural network (CNN). 

 

Given the temporal dependencies between the event 
profiles, in this work, we employ LSTM to model the temporal 
correlations of event profiles. An RNN is a connectivity 
pattern that computes on a sequence of vectors 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , 

using a recurrence formula of the form ℎ𝑡 = 𝑓𝛩 (ℎ𝑡−1 , 𝑥𝑡 ), 

where 𝑓, an activation function and 𝜃, a parameter, are used 
at each timestamp to process. To avoid the vanishing 
gradient problems with RNNs, gradient clipping and gating 
concepts are introduced [33]. 

An LSTM is an upgraded network of RNN. Unlike classical 

RNNs, LSTM tries to address the problem of long-term 

dependencies by introducing a purpose-built memory cell to 

store information of previous time steps [42]. 

Within this model, instead of propagating the state without 

multiplicative updates at each step, it is stored in memory cell 

𝐶𝑡 , which receives additive updates, merged with a method 

for removing irrelevant inputs from the memory cell of 

previous time steps [45]. Following the notation in Zaremba 

et al. [45], [46] the computation of LSTM unit at time step t is 

formally represented as follows: 

Here, ⊙ represents element-wise multiplication. where 𝑥𝑡 

denotes an input vector, ℎ𝑡 denotes hidden state vector, 𝐶𝑡 

denotes cell state vector, 𝑜𝑡 denotes output vector, 𝑖𝑡 denotes 

input vector, and 𝑓𝑡 denotes forget state vector, while terms 

W and 𝑏 denote weights and biases, respectively. 

Gates of memory cells consist of “input,” “output,” and 

“forget” gates. In principle, these gates enable the gradient to 

propagate when the model propagates through multiple steps 

for a long time. This is because the LSTM removes irrelevant 

information through the input gate 𝑖𝑡, memorizes information 

only until necessary using the forget gate 𝑓𝑡, and outputs only 

relevant information using the output gate 𝑜𝑡. 

 

𝑓𝑡 = σ(W𝑓 ∙ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(Wg ∙ [ℎ𝑡−1; 𝑥𝑡] + 𝑏g) 

𝑖𝑡 = σ(W𝑖 ∙ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 

𝑜𝑡 = σ(W𝑜 ∙ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

 
 
 

 
(12) 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. The architecture of implemented long short-term memory. 
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In our study, we constructed LSTM with 1–8 multi-layers 

and N hidden layers; an example of the architecture is shown 

in Figure 6. It must be noted that if there is one multi-layer, the 

neural network is an RNN. The RNN cell and LSTM cell can 

be easily substituted for each other because they both support 

in TensorFlow. To construct a suitable LSTM network with 

the optimal number of multi-layers and hidden layer, we used 

several dynamic configurations until the best performance was 

obtained. Consequently, we observed that the optimal number 

of multi-layers is 2–4 and optimal the number of hidden layers 

is 256–512. Although the multi-layers are deeper, this 

accuracy is not considerably advanced. However, a longer 

training period is required. Moreover, because our proposed 

AI-SIEM system can model the LSTM through dynamic 

configuration, the optimal LSTM network related to each 

learning data can be constructed by our system. 

 

VII. DATASETS 

This section describes the datasets. The four datasets used for 

testing, are NSLKDD, CICIDS 2017, and the two real datasets 

collected in the SOC. 

 
A. NSLKDD 

The NSLKDD dataset is the new revised version of the 

KDDCUP99. Tavallaee et al. [47] had discovered a number of 

duplicated records in the original KDDCUP99 dataset, which 

had an impact on the performance of model training and 

evaluation on the dataset. NSLKDD is a refined version of the 

dataset to address discovered statistical problems. 

Some advantages over KDDCUP99 are that the complexity 

can be reduced and bias toward frequent records by machine 

learning algorithms can be prevented. However, this new 

version of the dataset still suffers from some of the problems 

discussed by McHugh in [48] and may not be a perfect 

representation of existing real networks. Because recent NIDS 

research still uses this dataset for performance evaluations, we 

believe it is regarded as an effective benchmark to help us 

compare different methods. 

The training is performed on KDDTrain data which contain 

22 attack types and testing is performed on KDDTest data 

which contains 17 additional attack types. These attacks can 

be categorized into four different types with some common 

properties for training and testing. The four categories of 

attacks are: Denial of Service (DoS), Probe, Remote to Local 

(R2L) and User to Root (U2R). 

 
B. CICIDS 2017 

In 2017, the Canadian Institute for Cybersecurity (CIC) 

published an intrusion detection dataset named CICIDS2017 

[54]. This dataset provides the labeled data for the field of 

network intrusion detection research and contains benign 

activities and attacks, which was collected for five days log 

(from Monday to Friday). While the first day log contains 

normal activity and only includes the benign data, the other 

days contain the data points for various attacks together with 

 

benign data. The number of data points is approximately 2.8 

million with 85 features including the label information. 

The implemented attacks include Brute Force FTP, Brute 

Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet 

and DDoS. The dataset has used the B-Profile system 

(Sharafaldin, et al. [49]) to profile the abstract behavior of 

human interactions and generate naturalistic benign 

background traffic. 

 
C. REAL DATASETS 

Our dataset has been collected from two large enterprise 

systems, named ESX-1 and ESX-2. The security raw events 

were collected over 5 months for ESX-1, over 30 days for 

ESX-2, respectively, in which the detecting threat information 

was separately recorded by the SOC security analysts 

whenever a network intrusion occurred. The list of threat 

detection information contains threat occurrence time, related 

attacks, category of attack, respond contents, attack IP address, 

and victim network information. 

In our datasets, we investigated 798 detecting cyber threats 

in ESX-1, which are dispersed across the entire collection 

period. Looking at the type of occurred attacks in recorded 

cyber threats, there are 240 scanning, 547 system hacking, and 

11 worm attacks. Similarly, in ESX-2 there are 941 scanning, 

3,077 system hacking, and 51 worm attacks. This categorizing 

of attack type was manually performed by SOC analysts. By 

category, the system hacking attack includes a cross site script, 

DDoS, brute force attack, and injection attack. A trojan and 

backdoor attack belongs to scanning attack. Overall the 

number of attacks were found 4,079 cyber-threats. 

TABLE 2. Distribution of Security Events in ESX-1 Dataset 

 

ID Prefix of Event name count percentage 

e2 UDP Packet Flooding 1,048,926 21.9 

e4 UDP Source-IP Flooding 718,788 15.2 

e40 SIP Vulnerability Scanner 644,683 13.5 

e7 TCP Connect DOS 553,362 11.6 

e16 TCP Invalid port 291,985 6.1 

: : : : 

: : : : 

e15 
Psyber Streaming 

Server(4000/tcp) 
156,750 3.3 

e7 HTTPD Overflow 115,477 2.4 

e21 
NTP Amplification DDoS 

Attack BOT.B 
107,617 2.3 

: : : : 

Total 4,782,342 100 

On two datasets, we correlated each occurred attack with 

raw IPS security events using the above-mentioned 

timestamps and network information. It results that the 

correlated 230,026 (4.8 %) raw events are labeled as 

“THREAT,” and the others 4,552,315 are labeled “NORMAL” 

in ESX-1. Moreover, in ESX-2, the correlated 1,122,636 
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(5.9%) raw event data are labeled as “THREAT” and 17.8 

million raw event are labeled as “NORMAL.” 

Table 2 shows statistics of event name which collected in 

the ESX-1 dataset. Looking at the distribution in entire dataset, 

the top three events e2, e4, and e40 comprise nearly 50 percent 

of the collected data. The false positive rate of very frequently 

occurred event is relatively high, which lead to show a large 

amount of data to security analysts, and seriously restrict 

precise decision. 

Table 3 presents the summarized description for NSLKDD, 

CICIDS 2017, ESX-1, and ESX-2 datasets which are used to 

evaluate the performance. Table 3 describes the summary 

which includes raw data collecting periods, the number of raw 

data, a percentage of threat (abnormal) data, and the number 

of attack categories. 

TABLE 3. The summarized description for each dataset used to 
evaluate the performance 

 
CICIDS 

 
Table 4 shows the results of event profiling for the ESX-2 

dataset for various window time intervals and sizes. The 

number of generated event profiles and the processing time 

demonstrates that when the Window Interval is increased, the 

number of generated event profiles and the processing time are 

reduced. This is because a shorter window time interval leads 

to further operation of the event profile processing. By contrast, 

if the Window Size is further increased, the number of 

generated event profiles and the processing time also 

increased. Hence, Window Interval and Window Size need to 

be optimally chosen for modeling. We did not determine the 

window interval and size for performance evaluation only 

based on the results of Table 4. In addition, we conducted the 

test by changing the window Interval and Window Size for 

finding the optimal values in terms of accuracy, TPR, and FPR 

besides the result of Table 4. For effective evaluation, we 

empirically applied a configuration using a Window Interval 

of 60 s and a Window Size of 10 min for the experiments 

conducted in this paper. Our proposed method aims to perform 
NSLKDD 

2017 
ESX-1 ESX-2 modeling by learning all the data, and consequently, we tried 

to perform profiling for all data without any missing portion 

of it. For this, all security events can be included in the event 

profile if and only if the window interval is less than or equal 

to the window size. This configuration can be modified in real 

environments based on the volume of data and system 

performances. 

 
D. DATA VISUALIZATION WITH t-SNE 

Figure 7 and Figure 8 present the distributional characteristic 

of the dataset used in this study. For this, we adopted t- 

Stochastic Nearest Neighbor (t-SNE) mechanism. 
TABLE 4. Result of event profiling of the ESX-2 dataset for different 
window configurations 

The t-SNE is not only commonly utilized for vector data 

visualization but also considered as embedding tools to 

visualize high-dimensional data. The t-SNE is able to visualize 

high-dimensional data into two-dimensional maps by learning 

two-dimensional embedding vectors that preserves neighbor 

structures among high-dimensional data. The N data rows in 

dataset are randomly selected, which are visualized by 

performing analysis in t-SNE [3], [50]. Figure 7 and Figure 8 

represent the maps that are visualized by t-SNE for CICIDS 

2017 and ESX-2, respectively. The t-SNE plots in the figure 

show that the normal and attack data points located nearby in 

the same space, which makes it very hard to classify them into 

either normal or attack. Although the t-SNE plots of normal 

and attack data are clustered, it clearly finds out that those are 

not linearly separated. In general, it is known that deep 

learning is then effective at dealing with high-dimensional 

data with non-linearity [51], which is one of the reasons we 

employ deep learning approaches to detect cyber threats. 

In addition, as shown in Figure 7 and Figure 8, the data 

distribution visually seen by t-SNE regarding our dataset 

means that the dataset is not to be easily categorization in 

comparison with the benchmark datasets. 

 

 

Window 

interval 

(Sampling 
Window Size 

interval) 

 
# of 

generated 

event 

profiles 

(learning 

data) 

         ESX-2  

# of 

Average 

logs in 
Processing 

each event 
Time 

profile 

 1 min 193,158 6.36 440 s 

 2 min 278,157 8.95 443 s 

60 sec 5 min 482,945 13.09 704 s 

 10 min 782,056 16.41 1,323 s 

 20 min 1,305,667 19.12 2,855 s 

 1 min 96,646 6.35 381 s 

 2 min 139,661 9.14 396 s 

120 sec 5 min 241,796 13.10 546 s 

 10 min 391,866 16.67 854 s 

 20 min 646,254 20.06 1,338 s 

 1 min 45,720 6.38 397 s 

 2 min 61,031 8.77 378 s 

300 sec 5 min 96,875 13.06 434 s 

 10 min 156,413 16.65 573 s 

 20 min 258,409 19.88 819 s 

 

Collecting 

Periods 
In 1999 

03/Jul/2017 – 

07/Jul/2017 

01/Jul/2017 – 

31/Dec/2017 

01/Aug/2018 – 

31/Aug/2018 
     

# of raw 148.4 K 698 K 4,552 K 18,955 K 

data (Train ( 125.9 K / (593 K / 105 ( 3,870 K (16, 112 K / 

/ Test) 22.5K) K) / 682 K ) 2,843 K) 

Percentage 

of Threat 
Alerts in 

 
56.9 % 

 
8.3 % 

 
4.8 % 

 
5.9 % 

test Data     

# of Attack 

Categories 
4 7 3 3 
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FIGURE 7. t-SNE visualization of CICIDS2017 dataset. 

 

 

 
FIGURE 8. t-SNE visualization of ESX-2 dataset. 

 

VIII. EXPERIMENTS AND RESULTS 

In this section, we report the experimental results are 

performed with the two benchmark datasets and our two 

collected real datasets. We start by describing test environ- 

ment with testbed. We then present the metric for experiment. 

Continually, we present the SVD and conventional machine- 

learning methods for various comparison of evaluation the 

performance. we discuss the experimental results in sub- 

section E, and finally we present the implemented system by 

our proposed methods. 

destination ip address, port information, protocol, flow 

information, and rule names. When these security events are 

stored in conventional SIEM, they are stored in a standardized 

format with minor additions such as data tagging and data 

enrichment. Because the collected ESX-1, ESX-2 is a set of 

several types of IPS / IDS data stored through this process, it 

can be considered that it is sufficiently applicable to other 

SIEM and SOC. 

For real environments when we conduct the test, we 

implemented a sensor emulator that can substitute for a real 

IPS system. It uses the syslog protocol to send to the AI-SIEM 

system, by reading security event dataset and synthetically 

generating syslog packets. For the two benchmark datasets, 

the sensor emulator also reads the learning data and testing 

data in the local system, and sends them to the AI-SIEM 

system. 

Our proposed EP-ANN in AI-SIEM was implemented 

using TensorFlow [52]. The hardware used to evaluate the 

performance of the EP-ANN methods are clusters of server 

with Intel Xeon with 2.5 GHz (32 CPU cores) and 128GB 

memory. Two Nvidia Tesla P100 GPUs are used as the 

accelerator. 

 
B. METRICS AND EXPERIMENTAL SETUP 

1) FOUR METRICS 

To evaluate the performance, four metrics are adopted: 

accuracy, TPR, FPR, and F-measure, which are all commonly 

used for learning-based methods in the field of intrusion 

detection. TPR is used to evaluate the system’s performance 

with respect to its threat detection. FPR is used to evaluate 

misclassifications of normal data. F-measure is the harmonic 

mean of the precision and FPR(recall), where Precision= TP / 

(TP+FP) is the percentage of true attacks among all attacks 

classified, where TP (True Positive) is the number of attack 

data that is correctly classified as an attack, and FP (False 

Positive) is the number of normal data that is incorrectly 

classified as an attack. TN (True Negative) the number of 

normal data that is correctly classified as normal, and FN 

(False Negative) is the number of attack data that is incorrectly 

classified as normal. The definitions for accuracy, TPR, FPR, 

and F-measure are presented below: 

 

A. TEST EVIRONMENTS 

For testing, we constructed the purpose-built testbed where 

for conducting performance evaluations. This testbed consists 

of the big data platform and the AI-SIEM system. Moreover, 

in the SOC, we also had collected real-world IPS data over 

several months. 

𝑇𝑃 
𝑇𝑃𝑅 = 

𝑇𝑃 + 𝐹𝑁 

𝐹𝑃 
𝐹𝑃𝑅 (𝑅𝑒𝑐𝑎𝑙𝑙) = 

𝑇𝑁 + 𝐹𝑃 

𝑇𝑃 + 𝑇𝑁 

(13) 

 

 

(14) 

After minor data filtering, we constructed the dataset using 

collected data for performance evaluations as described in the 

previous section. In general, the format of security event of 

IPS/IDS is different between devices or vendors, but majority 

of events always contain timestamp, source ip address, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
 

 
𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 

(15) 
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 

 
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙 

(16) 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 
 

 
14  
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2) ROC 

In order to evaluate the quality of detection performance, we 

show a receiver operating characteristic (ROC) curve and 

measure an area under curve (AUC) value as significant 

comparison metrics. 

ROC curve is a plot of FPR against TPR of binary 

classifiers. FPR corresponds to the proportion of normal data 

points incorrectly predicted as attack to all normal data points. 

TPR, also called sensitivity or recall, corresponds to the 

proportion of attack data points that are correctly predicted 

attack to all attack data points. ROC curve shows a trade-off 

between sensitivity and FPR. The closer the ROC curve is to 

the top-left border, the better the quality of predictions by the 

prediction model and vice versa [1]. Additionally, AUC is 

defined as area under the ROC curve, which is a measure of 

how well a binary classifier can perform predictions of labels. 

A perfect binary classifier has an AUC = 1, and a greater value 

of AUC shows better performance. Any AUC value less than 

0.5 means poor performance of the classifier [1]. 

 
C. COMPARISON WITH SVD 

As singular value decomposition (SVD) is the one of the most 

commonly used methods for dimensionality reduction in 

machine learning, we compare the performance of our method 

with SVD. 

SVD is the method to diagonalize a matrix as in eigenvalue 

decomposition. Note that eigenvalue decomposition by 

eigenvalues and eigenvectors is applicable only to square 

matrices, and is also a diagonalization method applicable only 

to some square matrices [53]. Whereas, SVD is useful because 

the technique is applicable to all m × n matrices whether they 

are square matrices or not. SVD for an m × n matrix in real 

space is defined as follows: 

 

𝐴 = 𝑈 × Z × 𝑉𝑇 (17) 

 

where 𝑈 is an m-by-m orthonormal matrix, 𝑉 is an n-by-n 

orthonormal matrix and Z is an m-by-n diagonal matrix. Here, 

an orthogonal matrix is a matrix in which the result of 

multiplication of itself or its transposed matrix or the result 

thereof is an identity matrix. 

A diagonal matrix is a matrix in which the entries outside 

the main diagonal are all zero. The value of the diagonal 

element of the diagonal matrix derived from the SVD is called 

the singular value of matrix 𝐴. For dimensionality reduction, 

a k-by-k submatrix Z′ can be extracted from the m-by-n 

diagonal matrix Z, and m-by-k submatrix 𝑈′ can be extracted 

from m-by-m orthonormal matrix 𝑈. 

According to SVD, the dimensionally reduced matrix m-by- 

k 𝐴′ of m-by-n matrix 𝐴 is defined as 𝐴′ = 𝑈′ × Z′, where k 

is the size of the reduced dimensionality for n. That is, we can 

obtain 𝐴′ where the dimension is reduced from original 

dimension n to dimension k. To evaluate the performance 

comparison with SVD, we conducted accuracy comparison 

regarding the cases which the reduced dimension k of SVD is 

equal to the number of basepoints in our proposed method, as 

shown in Table 11. 

 
D. COMPARISON WITH CONVENTIONAL ML METHODS 

Before the emergence of deep learning technology, many 

conventional machine learning methods were adopted in 

intrusion detection systems for anomaly detection. Recently, 

it is also used in progressing. To evaluate the performance 

comparison with existing methods, we conducted experiments 

using well-known conventional machine-learning methods 

such as support vector machine (SVM) [54], k-nearest 

neighbor (k-NN) [55], random forest (RF) [56], naive Bayes 

(NB) [57], and decision tree (DT) [58]. Each conventional 

method is implemented in the WEKA library and Libsvm 

package [59] and all methods used the default parameters 

provided by the WEKA and Libsvm libraries. 

 
E. EXPERIMENT RESULTS 

In this subsection, we discuss the experimental results which 

is performed for evaluating the performance metrics such as 

accuracy, TPR, FPR, and F-measure. In addition, we present 

that the result with our proposed method achieved better 

performance in comparison with SVD for reducing the 

dimensionality space. 

First, Table 5 shows the experimental result of accuracy for 

NSLKDD, CICIDS, ESX-1, and ESX-2 respectively. Overall, 

the proposed methods achieved superior performance 

comparison with the conventional machine-learning methods. 

For the NSLKDD dataset, EP-FCNN model delivered top 

accuracy of 0.958, EP-CNN remained runner-up in models 

with 0.952, in three EP-ANN model, respectively. For 

CICIDS 2017, in all experimented methods except the naïve 

Bayes, the accuracy of each model was close to 0.98, and we 

could see that the performance of accuracy was similar. 

Next, in Table 5, looking at our collected real ESX-1 and 

ESX-2 datasets, we can see that the proposed EP-ANN modes 

outperform the conventional existing machine-learning 

methods in overall experiment cases on the accuracy. In details, 

the result of EP-FCNN, EP-CNN and EP-LSTM achieved 

0.933, 0.952, and 0.923 for ESX-1 respectively, while the 

experimental results of the conventional machine-learning 

methods remained near 0.90. For EDX-2, where the number 

of data is approximately four times of data in the ESX-1, the 

gap of performance appears a larger difference. Although both 

EP-FCNN and EP-CNN achieved accuracy scores of 0.947 

and 0.936, the other conventional methods results near 0.85. 

On the whole, the overall best accuracy was delivered by the 

proposed EP-ANN models with accuracy score of 0.93-0.99 

in four experiment datasets. 

The detailed results are shown in Table 6 and Table 7. The 

results for benchmark dataset NSLKDD and CICIDS 2017 are 

presented in Table 6, and for real dataset ESX-1, ESX-2 are 

presented in Table 7. The objectives of testing as shown as 

Table 6 aims to compare our methods with conventional 

machine-learning methods using benchmark datasets. In 
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contrast, the testing result as shown as Table 7 aims to report 

whether each method is able to achieve satisfactory 

performance for the real data. 

In Table 6, for NSLKDD, TPR was 0.905 for the k-NN, 

0.891 for the RF, and 0.941 for the proposed EP-FCNN. For 

FPR, the EP-LSTM yielded the best performances with 0.025 

(Although NB was the lowest 0.013, it is meaningless because 

of the lowest accuracy). Whereas 0.819 TPR of SVM is 

relatively low. In particular, EP-FCNN performs better than 

other methods for the F-Measure. For CICIDS 2017 dataset, 

although the performance of all the methods except Naive 

Bayes was almost equal, the scores TPR, FPR, and F-measure 

of the proposed EP-ANNs are better than others as shown in 

Table 6. From these results, we conclude that EP-ANNs are 

more effective methods for the benchmark datasets. 

 

TABLE 5.  Test results of accuracy for various conventional machine-learning methods and our proposed. 

 

Accuracy 
 

 NSLKDD CICIDS2017 ESX-1 ESX-2 

 SVM 0.897 0.968 0.901 0.867 

Conventional 
k-NN 0.909 0.978 0.905 0.858 

Machine Learning 
Random Forest 0.930 0.979 0.900 0.858 

 Naive Bayes 0.698 0.621 0.692 0.616 

 Decision Tree 0.919 0.979 0.900 0.858 

Our Proposed 
EP-FCNN 0.958 0.995 0.933 0.947 

Method 
EP-CNN 0.952 0.988 0.952 0.936 

 EP-LSTM 0.950 0.986 0.923 0.926 

 
TABLE 6. Detailed Test results for various conventional machine-learning methods and our proposed methods using benchmark datasets. 

 

NSLKDD CICIDS2017 
 

 TPR FPR ACC F-Measure TPR FPR ACC F-Measure 

 SVM 0.819 0.035 0.897 0.881 0.925 0.023 0.968 0.912 

Conventional 
k-NN 0.905 0.088 0.909 0.903 0.986 0.023 0.978 0.944 

Machine Learning 
Random Forest 0.891 0.036 0.930 0.923 0.987 0.022 0.979 0.946 

 Naive Bayes 0.301 0.013 0.698 0.457 0.994 0.463 0.621 0.492 

 Decision Tree 0.868 0.036 0.919 0.910 0.987 0.022 0.979 0.946 

Our Proposed 
EP-FCNN 0.941 0.029 0.958 0.952 0.982 0.002 0.995 0.987 

Method 
EP-CNN 0.926 0.028 0.952 0.945 0.985 0.011 0.988 0.971 

 EP-LSTM 0.919 0.025 0.950 0.943 0.978 0.011 0.986 0.967 

 
TABLE 7. Detailed Test results for various conventional machine-learning methods and our proposed methods using real datasets. 

 
 

ESX-1 

( # of raw data : 4,783,342 ) 

ESX-2 

( # of raw data 18,955,737 ) 
 

 TPR FPR ACC F-Measure TPR FPR ACC F-Measure 

 SVM 0.926 0.105 0.901 0.786 0.379 0.030 0.858 0.503 

Conventional 
k-NN 0.928 0.101 0.905 0.791 0.382 0.031 0.858 0.505 

Machine Learning 
Random Forest 0.926 0.106 0.900 0.785 0.382 0.031 0.858 0.505 

 Naive Bayes 0.873 0.352 0.692 0.527 0.489 0.376 0.616 0.141 

 Decision Tree 0.928 0.106 0.900 0.783 0.382 0.030 0.858 0.505 

Our Proposed 
EP-FCNN 0.885 0.059 0.933 0.781 0.899 0.049 0.947 0.688 

Method 
EP-CNN 0.902 0.041 0.952 0.833 0.895 0.061 0.936 0.643 

 EP-LSTM 0.982 0.086 0.923 0.773 0.929 0.073 0.926 0.620 
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In Table 7, we observed that F-measure of all the methods 

degraded more than the results of NSLKDD and CICIDS 2017. 

However, for ESX-2, the TPR of the conventional machine- 

learning methods is close to 0.38. Whereas TPR scores of our 

methods retained near 0.90. Moreover, as shown in Figure 9, 

the result of AUC based on the ROC curve shows excellent 

results. The AUC values of our method were 0.967, 0.970, and 

0.963 by EP-FCNN, EP-CNN, and EP-LSTM, respectively, 

without degradation. The AUC values for the conventional 

machine learning method were 0.777, 0.595, and 0.811 by 

SVN, NB, and DT, respectively; these exhibit remarkably 

degraded the performance for a large amount of data. 

 

 
FIGURE 9. Comparison of ROC curves and AUC of experiment for ESX- 
1 and ESX-2 datasets. 

dataset, are employed in the real world, the performance of 

overall accuracy is not as reliable as those of benchmark 

datasets. Nevertheless, the accuracy performance of our three 

EP-ANN models were not significantly degraded, despite the 

large amount of data and a lack of benchmark dataset features, 

such as seen in the result for ESX-2. By contrast, the accuracy 

of conventional methods had degraded from approximately 

0.90 to 0.85. 

To evaluate classification performance of multi- 

categorization, TPR is measured for each data class of 

NSLKDD and ESX-2, as shown in Table 8 and Table 9, 

respectively. In Table 8 and Table 9, when examining detailed 

classification for each class, the classification accuracy for 

“DoS”, “Normal” in NSLKDD, and “System hacking, 

Scanning” in ESX-2 are fairly superior. Hence, we analyze 

that it can't be performed sufficient data learning regarding 

"R2L" because there are very few, if any, data instances that 

are included as "R2L" type in the learning data. However, the 

proposed AI-SIEM system presents relatively promising 

results in terms of accurate classification performance, when 

compared with conventional machine-learning methods. In 

addition, we need to improve our learning methods to model, 

not only for major attack data, but also for infrequent attack 

data, as shown as Table 9. 

 
TABLE 8. Detailed Multi-classification performance for NSLKDD 

 

Classification of NSLKDD ( TPR ) 
 

 DoS Probe R2L U2R Normal 

SVM 0.933 0.784 0.000 0.230 0.965 

k-NN 0.990 0.856 0.348 0.650 0.912 

Random Forest 0.990 0.915 0.000 0.600 0.964 

Naive Bayes 0.139 1.000 1.000 0.000 0.987 

Decision Tree 0.979 0.851 0.001 0.550 0.964 

EP-FCNN 0.984 0.834 0.210 0.050 0.971 

EP-CNN 0.985 0.774 0.453 0.730 0.972 

EP-LSTM 0.934 0.886 0.737 0.672 0.975 

 
TABLE 9. Detailed Multi-classification performance for ESX-2 dataset 

 

Classification of ESX-2 ( TPR ) 

Based on the results of this experiment, we are able to arrive 

at two meaningful conclusions. First, our mechanisms are 

capable of being employed as learning-based models for 

network intrusion detection. When the performance 

evaluations were conducted using two well-known benchmark 

System  

Scanning Worm Normal 

datasets such as NSLKDD and CICIDS2017, the result proved   

as capable as the conventional machine-learning models. This 

means that our proposed methods, employed in the AI-SIEM 

system, have applicability for learning-based network 

intrusion detection. Second, when the conventional learning- 

based methods, which accomplish a good result by benchmark 

Table 10 shows learning time and response time for the 

ESX-2 dataset. By this result, average response time is near 3 

microseconds, which means that our system is capable of 

analyzing hundreds of event profiles for one second. This 

  

 Hacking  

EP-FCNN 0.892 0.816 0.983 0.951 

EP-CNN 0.897 0.918 0.920 0.939 

EP-LSTM 0.931 0.912 0.000 0.927 
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capacity is considered sufficient performance to operate our 

system for detection in real-time. 

The results obtained by our method are compared with 

those of the SVD, which is known as the conventional 

reducing dimensionality, in Table 11. Note that q indicates the 

number of basepoints in our method, and the reduced 

dimensionality in SVD. For the experiment, the ESX-1 dataset 

was used, and the input data for deep learning were in the same 

format, which consisted of m rows and q columns. From Table 

11, it can be seen that our method outperforms the SVD 

method in each experiment. 

 
TABLE 10. Learning time and response time for each method. 

Figure 10 shows examples of dashboard screen-captures. 

When the AI-SIEM system detects the cyber threat using EP- 

ANN models, the result of the analysis is positioned in the red- 

zone part as shown in Figure 10-(a). Whereas, in the case of 

normal status, the result is depicted in the blue-zone as in 

Figure 10-(b). With this dashboard, the AI-SIEM system can 

provide intuitive monitoring for SOC analysts. Moreover, 

only true positive alerts detected by the AI-SIEM system are 

shown to the SOC security analysts through the dashboard 

GUI. This enables the number of alerts that need investigation 

to be reduced, thus decreasing the cost of false positive alerts. 
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Dataset : ESX-2 

Average Response 

Time in Real-Time 

 

 

 

 
 

 

 

 

 

TABLE 11. The result of accuracy for comparison our method with SVD 

 

Accuracy (dataset = ESX-1) 
 

 Our method SVD 

EP-FCNN ( q =20 ) 0.912 0.726 

EP-FCNN (q = 40 ) 0.933 0.863 

EP-FCNN ( q= 80 ) 0.943 0.856 

EP-CNN ( q =20 ) 0.912 0.751 

EP-CNN (q = 40 ) 0.952 0.922 

EP-CNN ( q= 80 ) 0.923 0.877 

EP-LSTM ( q =20 ) 0.907 0.691 

EP-LSTM (q = 40 ) 0.923 0.826 

EP-LSTM ( q= 80 ) 0.941 0.892 

 

F. SYSTEM DEPLOYMENT 

As explained above, the AI-SIEM system consists of event 

profile and artificial neural networks (EP-ANN). This system 

aims at protecting a number of IT systems and servers in an 

enterprise network, and does not have to be co-located with an 

IPS and the asset systems. 

For system operations in practice, this is typically placed 

either on the access network of an enterprise with an IPS, or in 

the external SOC. The system is either used by a security 

manager of enterprise in the former case or the SOC analysts 

in the latter case. Thus, each module for data learning, model 

deployment, and real-time threat detection needs a dashboard 

GUI, and such a dashboard is depicted in Figure 10. 

(a) (b) 
 

(c) 

FIGURE 10. The dashboard screen-captures of the AI-based SIEM system 
for real-time monitoring. (a)threat detection visualization, (b) normal state 
visualization (c) The view for event profiles and cyber threat lists. 

 

 

IX. CONCLUSION 

In this paper, we have proposed the AI-SIEM system using 

event profiles and artificial neural networks. The novelty of 

our work lies in condensing very large-scale data into event 

profiles and using the deep learning-based detection methods 

for enhanced cyber-threat detection ability. The AI-SIEM 

system enables the security analysts to deal with significant 

security alerts promptly and efficiently by comparing long- 

term security data. By reducing false positive alerts, it can also 

help the security analysts to rapidly respond to cyber threats 

dispersed across a large number of security events. 

For the evaluation of performance, we performed a 

performance comparison using two benchmark datasets 

(NSLKDD, CICIDS2017) and two datasets collected in the 

real world. First, based on the comparison experiment with 

other methods, using widely known benchmark datasets, we 

showed that our mechanisms can be applied as one of the 
 

 

SVM 85 m 32 s 24 ms 

Random Forest 1 m 12 s < 1 ms 

EP-FCNN 28 m 12 s 4.2 ms 

EP-CNN 17 m 20 s 2.3 ms 

EP-LSTM 14 m 23 s 1.3 ms 
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learning-based models for network intrusion detection. 

Second, through the evaluation using two real datasets, we 

presented promising results that our technology also 

outperformed conventional machine learning methods in 

terms of accurate classifications. 

In the future, to address the evolving problem of cyber 

attacks, we will focus on enhancing earlier threat predictions 

through the multiple deep learning approach to discovering the 

long-term patterns in history data. In addition, to improve the 

precision of labeled dataset for supervised-learning and 

construct good learning datasets, many SOC analysts will 

make efforts directly to record labels of raw security events 

one by one over several months. 
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