

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

966

PADDY CROP DISEASE DETECTION USING CNN

Mrs. Gokavaram Prasanna1 , B. Sneha Latha2 , C.Maheswari3 , S.Pujitha4 ,

Y.Sandhya5 , D.Harini6

1Assistant Professor , Dept of CSE, Gouthami Institute Of Technology and

Management for Women, Andhra Pradesh, India

2,3,4,5,6U.G Students, Dept of CSE, Gouthami Institute Of Technology and

Management for Women, Andhra Pradesh, India

ABSTRACT

Early detection of diseases in paddy crops

is vital for preventing yield loss and

ensuring food security. Traditional

methods like visual inspection and lab

testing are time-consuming and prone to

errors. This project proposes an image

processing-based machine learning

approach using Convolutional Neural

Networks (CNNs) to detect and classify

rice diseases, including Rice Blast,

Bacterial Leaf Blight, Sheath Blight, and

healthy leaves. By analyzing a dataset of

3,671 labeled images, the model efficiently

identifies diseases in rice plants captured

via mobile cameras. Leveraging the

TensorFlow Inception V3 model, it

provides timely disease detection, helping

farmers take necessary actions and

improve crop productivity. To address this

critical issue, we developed a model

capable of identifying and arranging

diseases in affected plants using images

captured a mobile camera.

INTRODUCTION

Rice is a crucial global crop, especially in

countries like India, Bangladesh, and

China, providing sustenance and driving

economic growth. As the global

population is projected to reach 9.7 billion

by 2050, rice remains a key food source

for over half of the world's population.

However, increasing demand for rice faces

challenges from climate change, which

impacts soil, air, and food quality, leading

to significant production losses from

paddy diseases, causing up to a 40%

reduction in annual yields. The integration

of advanced technologies like computer

vision and machine learning is

transforming precision agriculture,

enabling early and accurate detection of

diseases, which helps reduce yield losses,

optimise resource use, and minimise

environmental damage, making it a

sustainable solution. These technologies

also offer accessible agronomic advice,

benefiting farmers without advanced

infrastructure or expert access.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

967

LITERATURE SURVEY

Traditional methods of rice disease

diagnosis relied on manual inspection by

experts or agricultural officers, who

visually examined symptoms on leaves,

stems, and grains to identify diseases and

determine their severity. These approaches

were labor-intensive, subjective, and prone

to inaccuracies due to human error and

varying interpretations. To improve

efficiency, early digital image processing

techniques, such as color and texture-based

segmentation, were introduced to isolate

affected plant areas. However, methods

like histogram equalization and edge

detection were still sensitive to

environmental factors, like lighting

changes and background noise, limiting

their effectiveness in real-world

conditions.

As rule-based systems had their

limitations, machine learning techniques

began to gain traction for rice disease

detection. Algorithms like Support Vector

Machines (SVM), K-Nearest Neighbors

(KNN), and Decision Trees were applied,

but these models relied on manually

extracted features, reducing their accuracy

in complex settings. The introduction of

Convolutional Neural Networks (CNNs)

marked a breakthrough, enabling

automatic learning of features directly

from raw images without the need for

manual extraction. Early studies, like

Mohanty et al.'s (2016) work using CNNs

on the PlantVillage dataset, highlighted the

potential of deep learning. This led to more

refined models, such as Lu et al.'s (2017)

deep CNN framework for rice leaf disease

classification, which achieved 95.6%

accuracy, and Zhang et al.'s (2018) hybrid

CNN model, combining image

segmentation and classification for better

detection of subtle disease symptoms.

EXISTING METHODS

To standardize rice disease diagnosis and

overcome the limitations of manual

inspection, image processing techniques

have been introduced in agriculture. These

methods enable digital analysis of rice leaf

images, extracting features such as color,

texture, and shape to differentiate between

healthy and diseased samples. Traditional

image processing pipelines commonly use

techniques like histogram equalization for

contrast enhancement, edge detection (e.g.,

Sobel or Canny operators), and

segmentation methods like thresholding or

region growing to isolate affected areas.

Additionally, texture analysis using the

Gray Level Co-occurrence Matrix

(GLCM) and color feature extraction in

various color spaces (e.g., RGB, HSV,

YCbCr) are employed, with these features

then used in classical machine learning

algorithms for classification.

Classical machine learning techniques,

such as Support Vector Machines (SVM),

k-Nearest Neighbors (k-NN), Decision

Trees, and Random Forests, have been

extensively applied to rice leaf disease

detection. These models rely on

handcrafted features, including GLCM-

based texture features. While SVMs are

effective for detecting diseases like Brown

Spot and Leaf Blast, and k-NN works well

on smaller datasets, they often struggle

with generalizing to new data. Random

Forests offer better accuracy, particularly

in noisy datasets, but require significant

feature engineering and fine-tuning.

Hybrid methods, combining image

processing with machine learning (e.g., K-

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

968

means clustering for segmentation

followed by Naive Bayes or Logistic

Regression classifiers), have emerged to

enhance performance. However, these

methods still face challenges with high

intra-class variance and poor lighting

conditions, limiting their suitability for

real-time or large-scale applications.

PROPOSED METHOD

The proposed method leverages a deep

learning-based system using Convolutional

Neural Networks (CNNs) to detect rice

leaf diseases, offering a scalable, accurate,

and user-friendly solution for identifying

diseases like Brown Spot, Hispa, Leaf

Blast, and Bacterial Leaf Blight. The

system uses the powerful Inception V3

CNN architecture, which excels in learning

complex patterns and distinguishing

disease-specific features. By incorporating

transfer learning, the model adapts

effectively to rice disease datasets, even

with limited labeled images. This approach

also includes a comprehensive data

preprocessing pipeline and a robust

deployment strategy, making it suitable for

real-world use by farmers.

To build the system, a diverse and high-

quality dataset is crucial. Rice leaf images,

both healthy and diseased, are captured

using mobile cameras and drones under

varying environmental conditions to

ensure robustness. Datasets like the Rice

Leaf Disease Dataset and the Plant Village

Dataset are also used, with each image

labeled into categories such as healthy or

diseased. Given that raw field data often

includes lighting issues, background noise,

and resolution inconsistencies, a thorough

preprocessing phase is employed. This

includes resizing images to 299x299

pixels, normalizing pixel values, and

applying techniques like Gaussian blur,

median filtering, and segmentation

methods such as K-means clustering and

Otsu's thresholding to isolate diseased

areas for accurate model training.

SOFTWARE REQUIREMENTS:

• Operating System : Windows 8 and

above

• Coding Language : Python 3.12.0

• Framework : Django

• Platform : Visual Studio Code

(Preferable)

HARDWARE REQUIREMENTS:

• System : MINIMUM i3 and above

• Hard Disk : 40 GB. (min)

• RAM: 4 GB. (min)

SOFTWARE ENVIRONMENT

What is Python:

Below are some facts about Python.

• Python is currently the most widely

used multi-purpose, high-

level programming language.

• Python allows programming in

Object-Oriented and Procedural

paradigms. Python programs generally

are smaller than other programming

languages like Java.

• Programmers have to type

relatively less and indentation requirement

of the language, makes them readable all

the time.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

969

Advantages of Python:

Let’s see how Python dominates over

other languages.

1. Extensive Libraries

Python downloads with an extensive

library and it contain code for various

purposes like regular expressions,

documentation- generation, unit-testing,

web browsers, threading, databases, CGI,

email, image manipulation, and more. So,

we don’t have to write the complete code

for that manually.

2. Extensible

As we have seen earlier, Python can

be extended to other languages. You can

write some of your code in languages like

C++ or C. This comes in handy, especially

in projects.

3. Embeddable

Complimentary to extensibility, Python is

embeddable add scripting capabilities to

our code in the other language. You can

put your Python code in your source code

of a different language, like C++. This

lets us add scripting capabilities to our

code in the other language.

4. Improved Productivity

The language’s simplicity and extensive

libraries render programmers more

productive than languages like Java and

C++ do. Also, the fact that you need to write

less and get more things done.

5. Readable

Because it is not such a verbose language,

reading Python is much like reading

English. This is the reason why it is so easy

to learn, understand, and code. It also does

not need curly braces to define blocks,

and indentation is mandatory. This

further aids the readability of the code.

Disadvantages of Python

So far, we’ve seen why Python is a great

choice for your project. But if you choose

it, you should be aware of its

consequences as well. Let’s now see the

downsides of choosing Python over

another language.

Speed Limitations

We have seen that Python code is

executed line by line. But since Python is

interpreted, it often results in slow

execution. This, however, isn’t a problem

unless speed is a focal point for the

project. In other words, unless high speed

is a requirement, the benefits offered by

Python are enough to distract us from its

speed limitations.

Weak in Mobile Computing and

Browsers

While it serves as an excellent server-side

language, Python is much rarely seen on

http://www.ijasem.org/
https://www.python.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

970

the client-side. Besides that, it is rarely

ever used to implement smartphone-based

applications. One such application is

called Carbonnelle.

The reason it is not so famous despite the

existence of Bryton is that it isn’t that

secure.

Design Restrictions

As you know, Python is dynamically-

typed. This means that you don’t need to

declare the type of variable while writing

the code. It uses duck-typing. But wait,

what’s that? Well, it just means that if it

looks like a duck, it must be a duck. While

this is easy on the programmers during

coding, it can raise run-time errors.

UnderdevelopedDatabase Access Layers

Compared to more widely used

technologies like JDBC (Java database

Connectivity)and ODBC(Open Database

Connectivity it is less often applied in

huge enterprises.

Simple

No, we’re not kidding. Python’s simplicity

can indeed be a problem. Take my

example. I don’t do Java, I’m more of a

Python person. To me, its syntax is so

simple that the verbosity of Java code

seems unnecessary.

This was all about the Advantages and

Disadvantages of Python Programming

Language.

History of Python:

What do the alphabet and the programming

language Python have in common? Right,

both start with ABC. If we are talking about

ABC in the Python context, it's clear that

the programming language ABC is meant.

ABC is a general-purpose programming

language and programming environment,

which had been developed in the

Netherlands, Amsterdam, at the CWI

(Centrum Wiskunde &Informatica). The

greatest achievement of ABC was to

influence the design of Python. Python

was conceptualized in the late 1980s.

Guido van Rossum worked that time in a

project at the CWI, called Amoeba, a

distributed operating system. In an

interview with Bill Venners1, Guido van

Rossum said: "In the early 1980s, I worked

as an implementer on a team building a

language called ABC at Centrum voor

Wiskunde end Informatica (CWI). I don't

know how well people know ABC's

influence on Python. I try to mention

ABC's influence because I'm indebted to

everything I learned during that project

and to the people who worked on it."Later

on in the same Interview, Guido van

Rossum continued: "I remembered all my

experience and some of my frustration

with ABC. I decided to try to design a

simple scripting language that possessed

some of ABC's better properties, but

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

971

without its problems. So I started typing. I

created a simple virtual machine, a simple

parser, and a simple runtime.

What is Flask?

Flask is a lightweight and flexible Python

web framework known for its simplicity

and ease of use. It enables developers to

create robust web applications with

minimal setup and a clean design. Flask

adopts a modular approach and provides

the essential tools needed to build web

apps, leaving the choice of additional

libraries to the developers. This review

explores Flask’s core principles,

functionalities, and advantages, making it

an ideal starting point for developers who

prefer a minimalist framework.

A Glimpse into Flask's Philosophy

Flask was developed by Armin Ronacher as

part of the Pocoo project in 2010. Its

minimalist approach is guided by the

philosophy of being "micro but extensible."

Flask avoids imposing unnecessary

restrictions, giving developers full control

over application design. This flexibility has

made Flask a popular choice for projects

ranging from small prototypes to large-

scale production applications.

Flask operates on the "microframework"

principle, meaning it provides only the core

features necessary for web development,

such as routing, request handling, and

template rendering. For additional

functionalities like database integration or

user authentication, developers can

incorporate third-party extensions, keeping

the application lightweight and

customizable.

One of Flask's most notable features is its

"unopinionated" nature, allowing

developers to structure applications as

they see fit. Unlike frameworks with strict

architectural patterns, Flask offers the

freedom to implement custom

architectures based on project

requirements.

Key Features of Flask

Flask's functionality can be summarized as

follows:

1. Routing and URL Mapping:

Flask simplifies URL routing with the

@app.route decorator. Developers can

map URLs to specific view functions

effortlessly, creating intuitive and

organized endpoints.

2. Request and Response Handling:

Flask provides tools for handling HTTP

methods (GET, POST, PUT, etc.) and

working with request data, cookies, and

headers. The request object allows seamless

interaction with incoming data.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

972

2. Jinja2 Templating: Flask

integrates Jinja2, a powerful templating

engine, for dynamic content rendering. It

supports template inheritance, filters, and

expressions, making it easy to create

reusable and interactive UI components.

3. Blueprints for Modular

Applications: Flask

introduces "Blueprints," a way to

organize applications into smaller, reusable

modules. Blueprints promote

maintainability and scalability in larger

projects.

4. Extensions: Flask’s lightweight

core can be augmented with extensions

like:

Flask-SQL Alchemy for

database interaction

Flask-WTF for form validation

Flask-Login for user authentication

Flask-Migrate for database migrations

5. Built-in Development Server and

Debugger: Flask includes a built-in

development server with debugging tools,

enabling developers to test and debug

applications efficiently

during development.

6. RESTful API Support: Flask’s

flexibility makes it an excellent choice for

building RESTful APIs. Libraries like

Flask-RESTful and Flask-Smorest provide

additional utilities for API development.

Need for Flask :

Simplicity and Flexibility:

Minimalist Design: Flask’s lightweight

nature allows developers to create web

apps quickly and without unnecessary

overhead. Customizable: Developers

have the freedom to choose their preferred

tools and libraries, tailoring the framework

to their project’s needs.

Scalability:

Flask’s modular structure and extensibility

make it scalable for small to medium-sized

applications. Larger applications can use

Blueprints to maintain a clean codebase.

Ideal for Prototyping:

Flask’s simplicity and quick setup make it

perfect for building prototypes and proof-

of-concept applications.

Challenges in Flask

1. Manual Configuration: Flask

requires developers to manually set up

features like user authentication, database

connections, and migrations, which can be

time-consuming for larger projects.

2. Lack of Built-in Features: Unlike

Django, Flask does not include out-of-the-

box solutions for common functionalities,

requiring reliance on third-party

extensions.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

973

SYSTEM TEST :

The purpose of testing is to discover errors.

Testing is the process of trying to discover

every conceivable fault or weakness in a

work product. It provides a way to check

the functionality of components, sub

assemblies, assemblies and/or a finished

product It is the process of exercising

software with the intent of ensuring that the

Software system meets its requirements

and user expectations and does not fail in

an unacceptable manner. There are various

types of test. Each test type addresses a

specific testing requirement.

ARCHITECTURE

The working method for paddy crop

disease detection using Convolutional

Neural Networks (CNN) involves several

key stages. First, a dataset of paddy leaf

images—comprising healthy and diseased

samples—is collected and preprocessed

through techniques like resizing,

normalization, and augmentation to

improve model generalization. Next, the

CNN model is designed or adopted using

architectures such as VGG, ResNet, or

custom lightweight models, and trained on

the labeled dataset to learn distinguishing

features of different diseases directly from

image patterns. During training, the model

automatically extracts hierarchical features

through convolutional, pooling, and fully

connected layers. After sufficient training

and validation, the model is tested on

unseen images to evaluate its accuracy,

precision, recall, and F1-score. Finally, the

trained CNN can be deployed to a user

interface or mobile application to classify

new paddy leaf images in real-time,

enabling early disease detection and timely

intervention for improved crop

management.

RESULTS

Fig: Home page of Paddy crop

disease detection using CNN

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

974

Fig : Explore paddy crop diseases

Fig : Uploading paddy crop image

Fig : Prediction Result of disease

Fig : Prediction result of another

crop disease

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

975

CONCLUSION

The growing demand for food due to

population growth and climate change

highlights the need for innovative

solutions to tackle agricultural challenges,

particularly crop diseases. Rice, a staple

for over half the global population, is

especially vulnerable to disease outbreaks,

which can result in significant yield losses

and affect food security, farmer

livelihoods, and economies. The "Rice

Leaf Disease Detection Using CNN"

project aims to leverage deep learning,

specifically Convolutional Neural

Networks (CNNs) with the Inception V3

architecture and transfer learning, to create

an automated, scalable solution for

identifying common rice leaf diseases like

Brown Spot, Hispa, Leaf Blast, and

Bacterial Leaf Blight. This approach

improves on traditional methods by

automatically extracting features from raw

image data, enhancing classification

accuracy even in varied conditions. By

using advanced preprocessing, data

augmentation, and model evaluation

techniques, the system offers a reliable

tool for early disease detection and timely

intervention, making it particularly

valuable in regions with limited high-

quality annotated datasets.

REFERENCES

1. Krizhevsky, A., Sutskever, I., &

Hinton, G. E. (2012) introduced deep

convolutional neural networks for

ImageNet classification, achieving

significant breakthroughs in image

recognition.

2. Simonyan, K., & Zisserman, A. (2015)

proposed Very Deep Convolutional

Networks for large-scale image

recognition, enhancing the depth and

accuracy of CNN models.

3. He, K., Zhang, X., Ren, S., & Sun, J.

(2016) developed deep residual

learning for image recognition,

introducing residual networks (ResNet)

to improve training deep networks.

4. Mnih, V., Kavukcuoglu, K., Silver, D.,

et al. (2015) demonstrated human-level

control through deep reinforcement

learning, advancing AI decision-

making capabilities.

5. Zhang, Y., & Chen, K. (2021)

provided a comprehensive survey on

convolutional neural networks for

agricultural crop disease detection,

highlighting advancements in crop

disease identification.

6. Mohanty, S. P., Hughes, D. P., &

Salathé, M. (2016) applied deep

learning for image-based plant disease

detection, setting the foundation for

automated agricultural diagnostics.

http://www.ijasem.org/

