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ABSTRACT 

Automatic Modulation Classification (AMC) is vital for cognitive radio and spectrum monitoring, but standard deep learning models 

often fail at low Signal-to-Noise Ratios (SNR < 0 dB). This paper introduces D-MoE, a novel Mixture-of-Experts architecture 

designed for enhanced robustness across diverse SNR conditions. D-MoE employs a pre-trained Denoising Autoencoder (DAE) 

to extract noise-resilient features, feeding them to a specialized low-SNR expert (DendriticGRU), while a separate high-SNR 

expert (ResNet-SE) processes raw I/Q data. An SNR-based gate routes signals appropriately. Trained on the RadioML 2016.10a 

dataset, D-MoE achieves a strong overall test accuracy of 62.54%. Significantly, it demonstrates improved low-SNR performance, 

reaching approximately 50% accuracy at -6 dB and 73% at -2 dB, while maintaining excellent accuracy (>93%) at high SNRs 

(+10 dB and above). This performance surpasses baseline CNN (34%) and non-denoising MoE (57%) models, validating the D-

MoE approach of combining feature denoising with expert specialization for robust wide-range AMC. 

 

Keywords: Automatic Modulation Classification, Deep Learning, Mixture-of-Experts, Denoising Autoencoder, Low SNR, 

RadioML, Cognitive Radio, Robust Signal Processing. 

 

1. INTRODUCTION 

 
The escalating demand for wireless connectivity across di- 

verse applications, from mobile broadband and Internet of 

Things (IoT) to satellite communications and radar systems, 

exerts immense pressure on the finite radio frequency (RF) 

spectrum. Efficient and intelligent utilization of this resource 

is paramount. Automatic Modulation Classification (AMC), 

the task of identifying the modulation scheme (e.g., BPSK, 

QAM, FM) of an unknown intercepted signal without prior 

knowledge of its parameters, serves as a fundamental enabling 

technology for enhancing spectral awareness and adaptability 

[1]. By determining how information is encoded onto a carrier 

wave, AMC enables enhanced spectrum situational awareness. 

This awareness is fundamental for advanced wireless appli- 

cations, including cognitive radio (where radios intelligently 

adapt to their environment), dynamic spectrum access (DSA), 

spectrum monitoring and enforcement (identifying signals and 

detecting interference or unauthorized use), electronic warfare 

(EW) signal intelligence (SIGINT), and ensuring compatibility 

in heterogeneous wireless networks [2, 3, 4]. 

Historically, AMC methodologies were rooted in classical 

signal processing and statistical decision theory. These ap- 

proaches involved meticulous extraction of features designed 

to capture specific characteristics of different modulation types. 

Examples include analyzing higher-order statistics like cumu- 

lants and moments, or exploiting cyclostationary properties 

inherent in modulated signals due to underlying periodicities 

(e.g., symbol rate, carrier frequency) [5]. These features, while 

theoretically grounded, often require substantial domain ex- 

pertise for feature design and selection, can be sensitive to 

inaccuracies in parameter estimation (like carrier frequency or 

symbol timing offsets), and critically, their performance typi- 

cally degrades substantially in the presence of noise, fading, 

and interference – conditions ubiquitous in real-world wireless 

channels, especially at low Signal-to-Noise Ratios (SNRs). 

The application of deep learning (DL) marked a paradigm 

shift in AMC research. Inspired by successes in computer 

vision and other domains, researchers began applying deep 

neural network architectures, particularly Convolutional Neu- 

ral Networks (CNNs), directly to the raw complex baseband 

(In-phase and Quadrature, I/Q) representation of radio signals 

[2, 6]. This end-to-end learning approach demonstrated the 

powerful ability of DL models to automatically learn relevant 

hierarchical features from the data, often outperforming classi- 

cal feature-based methods, especially when sufficient signal 

power (moderate-to-high SNR) is available. The release of 

benchmark datasets like RadioML [2] further spurred devel- 

opment in this area. However, despite rapid progress in DL 

architectures for AMC [7, 8], a persistent and significant chal- 

lenge remains: the vulnerability of these models to noise. Most 

standard deep learning models exhibit a sharp decline in clas- 

sification accuracy as the SNR drops below approximately 0 

dB [1], severely limiting their utility in many practical scenar- 

ios involving weak signals, long distances, or noisy/interfered 

channels. 

Addressing this crucial low-SNR performance gap is the 

primary motivation for this work. We propose a novel hybrid 
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deep learning architecture, the Dendritic Mixture-of-Experts 

(D-MoE), specifically conceived to enhance AMC robustness 

across a broad SNR spectrum (–20 dB to +18 dB), with a 

particular emphasis on the challenging sub-0 dB regime. D- 

MoE employs a multi-faceted strategy inspired by principles 

of noise reduction and specialized processing. It incorporates: 

1) An explicit denoising stage using a pre-trained Denoising 

Autoencoder (DAE) [9] to learn noise-invariant feature repre- 

sentations. 2) A Mixture-of-Experts framework where distinct 

neural network "experts" are specialized for different SNR 

conditions. 3) A deterministic gating mechanism based on the 

input SNR to route signals to the most appropriate expert. 

Expert A utilizes a ResNet-SE architecture [10, 11] for high- 

SNR signals, while Expert B employs a unique DendriticGRU 

structure fed by DAE features for low-SNR signals [12]. This 

strategic fusion of denoising and expert specialization aims to 

provide resilient classification accuracy where standard ap- 

proaches fail. 

 

2. RELATED WORK 

The pursuit of accurate and robust AMC has led to diverse re- 

search directions, from classical signal processing to advanced 

deep learning paradigms. 

1) Classical Feature-Based Methods: Initial AMC research 

focused on identifying features robust to noise and channel 

variations. Techniques included statistical analysis of instanta- 

neous amplitude, phase, and frequency; utilization of higher- 

order statistics like cumulants and moments which possess the- 

oretical invariance to Gaussian noise [5]; and methods based 

on cyclostationarity, exploiting the inherent periodicities in 

communication signals. These features were typically classi- 

fied using traditional machine learning algorithms like SVMs 

or decision trees. While foundational, these methods often 

require precise parameter estimation and struggle significantly 

at low SNRs where feature extraction becomes unreliable. 

2) Foundational Deep Learning Approaches: The success 

of deep learning prompted its application to AMC, treating 

I/Q sequences as time-series data. O’Shea et al. [2, 6] demon- 

strated the power of end-to-end learning using relatively shal- 

low CNNs applied directly to raw I/Q samples from their 

RadioML datasets. This approach eliminated the need for man- 

ual feature engineering and achieved superior performance at 

moderate-to-high SNRs. Subsequent studies explored deeper 

CNN architectures [13], investigated methods for faster in- 

ference [14], and developed complex-valued CNNs [7] that 

naturally handle complex I/Q inputs and achieved very high 

accuracy, primarily driven by high-SNR performance. How- 

ever, the performance gap at low SNRs persisted across most 

of these architectures [1]. 

3) Hybrid CNN-RNN Architectures: To better model the 

temporal nature of modulated signals, hybrid architectures 

combining CNNs for spatial/local feature extraction with Re- 

current Neural Networks (RNNs) for sequential modeling were 

proposed. CLDNNs, integrating CNNs, LSTMs, and DNNs 

[15, 8], and models using GRUs [12, 16], showed promise in 

capturing temporal dependencies, potentially improving 

performance for certain modulation types. 

4) Attention Mechanisms and Transformers: Leveraging 

breakthroughs in natural language processing, attention mech- 

anisms and Transformer architectures were explored for AMC. 

Attention allows models to dynamically focus on the most 

salient parts of the input sequence [17]. Transformers, based 

entirely on self-attention mechanisms, can capture long-range 

dependencies effectively. Various adaptations, including com- 

binations with CNNs and Graph Neural Networks (GNNs) like 

CTGNet [18], have been proposed. Multi-modal approaches 

like IQFormer [19], which fuse information from raw I/Q, 

spectrograms, and constellations via Transformers, currently 

represent the state-of-the-art in terms of peak accuracy on 

benchmarks, though often at the cost of significant computa- 

tional complexity. 

5) Mixture-of-Experts and Dendritic Models: Recognizing 

that a single monolithic network might struggle across diverse 

conditions, modular approaches have been explored. The 

MoE concept, using specialized experts, was introduced to 

AMC by Gao et al. [20], who gated between Transformer and 

ResNet experts based on estimated SNR. Biologically inspired 

dendritic structures, mimicking neural signal integration, were 

incorporated into hybrid models by Yin et al. [21], showing 

performance benefits. Our D-MoE architecture builds upon 

the MoE principle but differs significantly by incorporating an 

explicit DAE denoising stage specifically to provide noise- 

robust features to the low-SNR expert (DendriticGRU). 

6) Alternative Input Representations: A distinct line of re- 

search avoids direct I/Q processing by first transforming the 

signal into a 2D representation. Spectrograms (time-frequency 

images) processed by standard or adapted computer vision 

models (CNNs [22], Vision Transformers [23]) have proven 

effective. Similarly, constellation diagrams visualized as im- 

ages have been used with image classification techniques [24]. 

While successful, these methods rely on the quality of the 

transformation and differ fundamentally from approaches pro- 

cessing the 1D time-domain signal. 

7) Advanced Training Strategies and Architectures: Other 

research directions include improving performance through 

advanced training techniques or novel architectures. Data aug- 

mentation specific to RF signals, particularly using generative 

models like GANs [25] or recent diffusion models [26, 27], 

aims to improve model generalization. Self-supervised learn- 

ing methods offer ways to pre-train models on unlabeled data. 

Adversarial training seeks to improve robustness against in- 

tentional interference [28, 32]. Other novel architectures like 

Capsule Networks and Graph Convolutional Networks con- 

tinue to be explored for AMC tasks. 

8) Surveys and Context: Several recent survey papers [3, 1, 

4] provide essential context, benchmark various approaches, 

and consistently highlight robust low-SNR performance as 

a key remaining challenge, motivating the development of 

architectures like the proposed D-MoE focused specifically 

on this problem. Additionally, work on spectrum sensing 

techniques [29, 30, 31] provides broader context on related 

cognitive radio functionalities. 

 

3. DATASET AND PREPROCESSING 

3.1 RadioML 2016.10a Dataset 

This study utilizes the widely adopted RadioML 2016.10a 

dataset [2]. This dataset serves as a standard benchmark, fa- 
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cilitating comparisons across different studies. It comprises 

220,000 synthetically generated signal examples. Each exam- 

ple represents a short segment of a radio signal captured as 

128 complex time samples (I/Q data), resulting in an input 

shape of (2, 128) per example. The dataset features 11 distinct 

modulation formats: analog modulations AM-DSB, AM-SSB, 

WBFM; and digital modulations BPSK, QPSK, 8PSK, PAM4, 

GFSK, CPFSK, QAM16, QAM64. A key attribute is its cov- 

erage of a broad range of signal quality conditions simulated 

through varying Signal-to-Noise Ratios (SNRs). Samples are 

provided at 20 discrete SNR levels, ranging from -20 dB to 

+18 dB in uniform 2 dB increments. The dataset is balanced, 

containing 1000 distinct examples for each modulation type at 

each SNR level. 

 

3.2 Data Partitioning Strategy 

To ensure rigorous model training and unbiased evaluation, 

the dataset was partitioned into three distinct subsets: training, 

validation, and testing. A stratified splitting approach based 

on the modulation type label was employed during splitting to 

maintain the proportional representation of each class across 

all three subsets. The specific split ratios used were 70% 

for the training set (resulting in 154,000 samples), 15% for the 

validation set (33,000 samples), and 15% for the test set 

(33,000 samples). 

 

3.3 Preprocessing Steps 

Standard preprocessing techniques were applied to the raw 

I/Q data before feeding it into the neural networks. Firstly, 

each I/Q sequence (2x128) was standardized channel-wise 

using statistics derived solely from the training set. Secondly, 

categorical modulation labels were converted into integer rep- 

resentations [0-10]. Finally, during training only, dynamic 

data augmentations were applied to batches, including AWGN 

addition (20 dB SNR, p=0.5) and random Time Shifts (±10 

samples, p=0.5). 

 

4.  PROPOSED D-MOE ARCHITECTURE 

The D-MoE architecture is predicated on the hypothesis that 

optimal AMC performance across a wide SNR range neces- 

sitates both noise mitigation and specialized processing. To 

this end, it integrates a Denoising Autoencoder (DAE) front- 

end with a Mixture-of-Experts (MoE) framework containing 

distinct high-SNR and low-SNR processing pathways, coordi- 

nated by an SNR-based gate. The overall structure is visualized 

in Figure 1. 

 

4.1 Denoising Autoencoder (DAE) 

The DAE forms the foundation of the low-SNR processing 

path, tasked with learning noise-resilient signal representa- 

tions through unsupervised pre-training. Its primary function 

extends beyond simple data compression; it is specifically 

pre-trained to learn a transformation that maps noisy input sig- 

nals to a latent representation emphasizing robust, underlying 

signal characteristics while suppressing noise artifacts [9]. 

 

 
Fig 1: Block diagram of the proposed D-MoE architecture, 

illustrating data flow through the DAE, SNR Gate, Expert A 

(ResNetSE), Expert B (DendriticGRU), and Classification Head. 

 

 

4.1.1 Rationale 

Operating directly on heavily noise-corrupted signals (low 

SNR) presents significant challenges for classifiers. Noise can 

obscure discriminative features and lead to poor generaliza- 

tion. By pre-training a DAE on a denoising task (reconstruct- 

ing clean signals from noisy versions), we force the encoder 

component to learn features that are inherently less sensitive 

to noise variations. This effectively provides a "cleaned" or 

"denoised" feature set for subsequent processing steps, specifi- 

cally for the low-SNR expert pathway. 

4.1.2 Encoder Architecture Details 

The encoder maps the input (Batch x 2 x 128) to a latent fea- 

ture map (Batch x 128 x 32). This is achieved through three 

sequential convolutional blocks. The first block uses a 1D 

convolution (in=2, out=32, kernel=7, padding=3), followed by 

Batch Normalization, ReLU activation, and Max Pooling 

(kernel=2), reducing sequence length to 64. The larger kernel 

size captures broader initial patterns. The second block applies 

a similar sequence (Conv1D in=32, out=64, k=5, p=2; BN; 

ReLU; MaxPool k=2), reducing length to 32 and refining fea- 

tures with a medium kernel size. The final block performs fea- 

ture extraction with a smaller kernel (Conv1D in=64, out=128, 

k=3, p=1; BN; ReLU), resulting in an output feature map of 

128 channels and length 32. Batch Normalization stabilizes 

training, ReLU provides non-linearity, and Max Pooling re- 

duces dimensionality and offers minor translation invariance. 

4.1.3 Decoder Architecture Details 

The decoder symmetrically reconstructs the input shape using 

transposed convolutions and upsampling. The first decoder 

block applies a transposed convolution (in=128, out=64, k=3, 

p=1), followed by Batch Normalization, ReLU, and Upsam- 

pling (factor=2), increasing length to 64. The second block 
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continues this pattern (ConvTranspose1d in=64, out=32, k=5, 

p=2; BN; ReLU; Upsample factor=2), increasing length back 

to 128. The final layer uses a transposed convolution (in=32, 

out=2, k=7, p=3) to output the reconstructed 2x128 signal. 

4.1.4 Pre-training and Freezing 

The DAE is pre-trained for 15 epochs minimizing the MSE 

loss between the reconstructed output and the original (cleaner) 

input signal, using the Adam optimizer with a learning rate 

schedule (1e-3 reduced to 1e-4). After this phase, the trained 

encoder weights are frozen. This crucial step preserves the 

learned denoising capability, ensures the low-SNR expert re- 

ceives consistent features, improves computational efficiency 

during classifier training, and acts as a regularizer. The frozen 

encoder’s output (128x32 feature map) becomes the input for 

Expert B. 

 

4.2 Expert A (High-SNR ResNetSE) 

Expert A is tailored for classifying signals with relatively high 

quality (SNR ≥ 0 dB), operating directly on raw I/Q data. It 

employs a robust ResNet-style architecture [10] with 

integrated Squeeze-and-Excitation (SE) blocks [11]. 

4.2.1 Rationale 

For relatively clean signals, a powerful feature extractor ca- 

pable of learning complex hierarchies is beneficial. ResNets 

enable training very deep networks via skip connections, pre- 

venting vanishing gradients. SE blocks add channel atten- 

tion, allowing the network to adaptively focus on the most 

informative feature channels for the specific input, potentially 

improving discrimination between similar modulation types. 

4.2.2 Architecture Details 

Expert A follows a 1D ResNet pattern, taking the standardized 

raw I/Q (Batch x 2 x 128) as input. An initial block (Conv1D 

k=7, s=2, out=64; BN; ReLU; MaxPool1D k=3, s=2) rapidly 

reduces sequence length (128→64→32) and increases chan- 

nel depth. This is followed by three sequential residual stages 

using ResidualBlock1D_SE modules, with 2 blocks per 

stage. Channels progress from 64 to 64 (Stage 1, length 32), 

then 64 to 128 (Stage 2, length 16, with downsampling via 

stride=2 at the start), and finally 128 to 128 (Stage 3, length 

16). Each ResidualBlock1D_SE module implements the 

standard Conv-BN-ReLU-Conv-BN structure (using kernel 

size 3), followed by an SE module (Global Avg Pool → FC- 

ReLU → FC-Sigmoid → Rescale), before adding the skip 

connection and applying the final ReLU. Finally, Global Av- 

erage Pooling (AdaptiveAvgPool1d(1)) aggregates the 

final stage’s feature maps into a 128-dimensional vector. 

4.2.3 Output 

The 128-dimensional feature vector from Global Average Pool- 

ing serves as the high-SNR signal representation for the gating 

mechanism. 

 

4.3 Expert B (Low-SNR DendriticGRU) 

Expert B specializes in low-SNR (SNR < 0 dB) classification, 

utilizing features from the frozen DAE encoder. Its architecture 

uniquely combines multi-scale CNN processing with GRU- 

based temporal modeling. 

4.3.1 Rationale 

Operating on denoised features allows Expert B to focus on 

residual discriminative patterns. The "dendritic" parallel CNN 

paths with different kernel sizes (k=3, k=5) allow the network 

to simultaneously analyze features at different temporal scales, 

potentially capturing noise-obscured information. The subse- 

quent GRU [12] models temporal dependencies within this 

enhanced feature sequence. 

4.3.2 Architecture Details 

The input to Expert B is the frozen DAE encoder output (Batch 

x 128 Channels x 32 Length). The Dendritic CNN compo- 

nent consists of two parallel paths: Path 1 applies a 1D con- 

volution (128→32, k=3, p=1) followed by BN and ReLU, 

while Path 2 uses a larger kernel (Conv1D 128→32, k=5, p=2) 

followed by BN and ReLU. The outputs of these paths are 

concatenated along the channel dimension (resulting in 64 

channels) and passed through an integration layer (Conv1D 

64→64, k=3, p=1; BN; ReLU), producing a feature map of 

shape (Batch x 64 x 32). For the GRU layer, this feature map 

is permuted to (Batch x 32 Length x 64 Features) to match the 

batch_first=True expectation. A single GRU layer 

with an input size of 64 and a hidden size of 128 processes this 

sequence. 

4.3.3 Output 

The final output of Expert B is the 128-dimensional final hid- 

den state (h_n) of the GRU layer. 

 

4.4 Gating and Classification Head 

This component selects the appropriate expert features and 

makes the final prediction. 

4.4.1 Gate 

A deterministic hard gate is used, based on the input signal’s 

SNR label. It selects features from Expert A if the SNR is 

greater than or equal to 0 dB, otherwise it selects features from 

Expert B. 

4.4.2 Head 

The classification head consists of a single Linear layer that 

maps the selected 128-dimensional expert features to 11 output 

classes, followed by a Softmax activation function to produce 

probabilities. 

 

5. IMPLEMENTATION DETAILS 

5.1 Platform and Software 

The D-MoE model was implemented using PyTorch (v1.8+). 

All training and evaluation were performed within the Google 

Colaboratory environment, utilizing NVIDIA Tesla T4 GPUs 

provided by the platform. Standard Python libraries includ- 

ing NumPy, Scikit-learn, and Matplotlib were used for data 

manipulation, evaluation metrics, and visualization. 
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5.2 Data Handling 

Custom PyTorch ‘Dataset‘ classes were created for the train- 

ing, validation, and test splits. ‘DataLoader‘ instances were 

configured with a ‘batch_size‘ of 96. Due to potential resource 

limitations and stability issues observed with multi-processing 

data loading in the Colab environment, ‘num_workers‘ was 

set to 0 (disabling parallel loading) and ‘pin_memory‘ was set 

to ‘False‘. While ensuring stability, this configuration limits 

data loading throughput compared to optimal settings. Data 

standardization statistics (mean, std dev) were computed only 

on the training set and applied consistently. Augmentations 

(AWGN, Time Shift) were applied randomly during training 

only. 

 

5.3 Training Procedures 

The training strategy involved two distinct phases. First, the 

DAE was pre-trained (Phase 1) solely for signal reconstruc- 

tion over 15 epochs using MSE loss. The Adam optimizer (β1 

= 0.9, β2 = 0.999) was used with an initial learning rate of 

1e-3. The ‘ReduceLROnPlateau‘ scheduler monitored the 

validation MSE loss with a patience of 3 epochs and a reduc- 

tion factor of 0.1, decreasing the LR towards the end of pre- 

training. Second, the classifier was trained (Phase 2). The DAE 

encoder weights were frozen, and the parameters of Expert A, 

Expert B, and the Classification Head were trained jointly for 

50 epochs. The objective function was Cross-Entropy loss with 

label smoothing (ϵ = 0.1). The Adam optimizer was used again 

with an initial learning rate of 1e-4 and weight decay (L2 

penalty) of 1e-5. The ‘ReduceLROnPlateau‘ scheduler 

monitored validation accuracy, reducing the learning rate (fac- 

tor=0.1, patience=5, min_lr=1e-6) when improvement stalled. 

The model checkpoint achieving the highest validation accu- 

racy (Epoch 42, 62.28%) was saved as the final model for 

evaluation. 

 

6. EVALUATION PROTOCOL 

Performance was evaluated using a comprehensive suite of 

metrics on the unseen test set. This included overall accuracy 

(the fraction of correctly classified samples across all classes 

and SNRs), per-SNR accuracy (calculated individually for 

each SNR level from -20 dB to +18 dB to assess robustness), 

and per-class metrics (Precision, Recall/Sensitivity, F1-Score, 

Specificity calculated for each modulation type over the entire 

test set, along with Macro and Weighted averages). Addition- 

ally, an overall confusion matrix was generated to visualize 

misclassification patterns between modulation types across all 

SNRs. Finally, DAE feature visualization using t-SNE and 

PCA was performed on the frozen DAE encoder’s output fea- 

tures (for a subset of test data), colored by class and SNR, to 

qualitatively assess the learned representation’s structure and 

noise robustness. 

 

7. RESULTS AND ANALYSIS 

7.1 Overall and Per-SNR Performance 

Evaluation of the best D-MoE model on the held-out test set 

yielded an overall classification accuracy of 62.54%. This rep- 

resents a strong performance level on this challenging bench- 

mark dataset. The detailed per-SNR accuracy is presented in 

Table 1 and visualized in Figure 2. The plot highlights the 

model’s effectiveness across the SNR range. Accuracy 

degrades gracefully below 0 dB, achieving 50% at -6 dB and 

73% at -2 dB, significantly better than the rapid collapse often 

seen in standard models. Above the 0 dB gating threshold, 

performance rapidly increases, surpassing 92% accuracy for 

SNRs ≥ +4 dB, confirming that the high-SNR expert path 

functions effectively. This demonstrates the success of the 

MoE strategy in combining robustness at low SNRs with high 

performance at high SNRs. 

 

 
Table 1: PER-SNR TEST ACCURACY (%) ON RADIOML 

2016.10A 
 
 

SNR (dB) Acc. (%) SNR (dB) Acc. (%) SNR (dB) Acc. (%) 
 

-20 10.66 -6 50.28 8 92.85 

-18 9.47 -4 70.50 10 93.61 

-16 11.14 -2 72.84 12 93.62 

-14 15.96 0 88.72 14 92.90 

-12 17.17 2 91.95 16 93.56 

-10 27.05 4 92.35 18 92.59 

  6 92.39   

 

 

Fig 2: Test Accuracy vs. SNR for the D-MoE model. 

 

 

 

7.2 Baseline Comparisons 

 
The efficacy of the D-MoE design choices is highlighted by 

comparisons against baseline models (Table 2). D-MoE’s 

62.54% accuracy represents a substantial improvement over a 

standard CNN baseline (34%) implemented under similar 

conditions. More significantly, it outperforms an ablated ver- 

sion of the architecture lacking the DAE component (MoE 

w/o DAE: 57%) by over 5 absolute percentage points, directly 

quantifying the benefit derived from the explicit denoising 

feature extraction for the low-SNR expert branch. Compared 

to published results, D-MoE surpasses the overall accuracy 

reported for the foundational VT-CNN2 model [2] and offers a 

more balanced performance profile across SNRs compared to 

models like OPResNet-18 [1], which prioritize peak high-SNR 

accuracy at the cost of severe low-SNR degradation. 
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Fig 4: Per-class test metrics (Precision, Recall, F1-Score, 

Specificity). 

 

7.3 DAE Effectiveness 

 
The quantitative improvement shown in Table 2 underscores 

the DAE’s importance. Qualitatively, the t-SNE and PCA visu- 

alizations of the DAE encoder’s latent features (Fig. 3) provide 

further evidence of its utility. The visualizations demonstrate 

that the encoder learns a structured representation that cap- 

tures both modulation-specific information (evident from par- 

tial class clustering in t-SNE) and SNR-related characteristics 

(evident from the clear gradient in PCA). This confirms that 

the DAE transforms the noisy input into a feature space that is 

more amenable to classification, particularly for the low-SNR 

expert. 

 

 

 

Fig 3: t-SNE (left, colored by class) and PCA (right, colored by 

SNR) visualizations of DAE latent features. 

 

7.4 Per-Class Analysis 

 
A detailed breakdown of performance for each modulation 

type is provided in Table 3 and Fig. 4. D-MoE achieves high 

F1-scores (above 0.65) for several digital modulations, includ- 

ing PAM4, GFSK, CPFSK, BPSK, QAM16, and QAM64, 

indicating effective classification for these types. Analog 

modulations, particularly AM-SSB (F1=0.490) and WBFM 

(F1=0.413), present greater difficulty, a common finding in 

AMC literature. The overall confusion matrix (Fig. 5) visually 

details these classification tendencies, highlighting significant 

confusion between WBFM and AM signals, and also between 

QAM16 and QAM64, especially at lower SNRs where their 

constellation differences become less distinct. 

Table 3: PER-CLASS PERFORMANCE METRICS (TEST SET) 
 

Class Precision Recall F1-Score Specificity 

8PSK 0.746 0.540 0.627 0.982 

AM-DSB 0.543 0.679 0.603 0.943 

AM-SSB 0.347 0.832 0.490 0.844 

BPSK 0.640 0.665 0.653 0.963 

CPFSK 0.695 0.662 0.678 0.971 

GFSK 0.755 0.678 0.714 0.978 

PAM4 0.845 0.710 0.772 0.987 

QAM16 0.767 0.568 0.653 0.983 

QAM64 0.774 0.655 0.710 0.981 

QPSK 0.697 0.585 0.636 0.975 

WBFM 0.641 0.305 0.413 0.983 

Accuracy 0.6254 

Macro Avg 0.677 0.625 0.632 N/A 

Weighted Avg 0.677 0.625 0.632 N/A 

 

 

 

Fig 5: Overall normalized confusion matrix on the test set. 

 

8. DISCUSSION 

The comprehensive evaluation confirms the effectiveness of 

the D-MoE architecture and its underlying design principles. 

The core achievement is the demonstrably improved robust- 

ness to noise compared to baseline approaches. The significant 

accuracy gain over the MoE variant without the DAE (+5.5% 

absolute accuracy) provides strong quantitative evidence for 

the value of explicit noise-robust feature extraction via the 

pre-trained DAE before low-SNR classification. This allows 

Table 2: COMPARISON WITH BASELINE MODELS 
 

Model Overall Acc (%) Notes 

Simple CNN (Baseline) 

MoE w/o DAE (Baseline) 

VT-CNN2 [2] 

OPResNet-18 [1] 

 

D-MoE (Proposed) 

34% 

57% 

 

94% (High SNR) 

5-18% (< -10dB) 

62.54% 

Our implementation 

Our implementation 

Literature value 

Literature value 

This work 
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Expert B (DendriticGRU) to operate on a cleaner representa- 

tion, focusing its capacity on discerning modulation patterns 

rather than combating noise simultaneously. The Dendritic- 

GRU structure within Expert B, combining multi-scale convo- 

lutional analysis with GRU-based temporal modeling, appears 

well-suited for this task. 

Simultaneously, the ResNetSE architecture of Expert A 

ensures that performance is not compromised at high SNRs; 

operating directly on raw I/Q, it achieves accuracy levels (>92- 

93%) consistent with strong deep learning models in favorable 

conditions. The smooth transition and sustained high perfor- 

mance seen in the per-SNR accuracy curve (Fig. 2) validate 

the overall MoE strategy facilitated by the deterministic SNR 

gate. The overall accuracy of 62.54% positions D-MoE favor- 

ably against foundational models like VT-CNN2 and offers a 

more balanced performance profile across SNRs than models 

heavily optimized only for high-SNR regimes. 

However, the analysis also reveals limitations and areas for 

future investigation. While significantly improved, perfor- 

mance in the very low SNR range (below -10 dB) remains 

modest, suggesting that extreme noise levels still pose a con- 

siderable challenge even with the DAE preprocessing. The 

overall accuracy, while respectable, does not match the high- 

est reported figures achieved by significantly more complex 

Transformer-based architectures or multi-modal fusion mod- 

els [19], representing a potential trade-off between the D- 

MoE’s architectural complexity and maximum achievable per- 

formance. The deterministic hard gate at 0 dB, while simple 

and effective here, represents a point of fragility; its perfor- 

mance relies on accurate SNR knowledge (available in the 

dataset but needing estimation in practice) and may induce 

abrupt transitions for signals near the threshold. A learned soft 

gate could potentially offer more graceful adaptation and 

robustness to SNR estimation errors. Furthermore, the per- 

sistent difficulty in distinguishing specific modulation groups 

(WBFM/AM, QAM16/QAM64) suggests that the feature rep- 

resentations, even after denoising and expert processing, may 

not fully capture the most subtle discriminating characteristics 

under all conditions. Addressing these specific confusions 

might require future architectural refinements or feature en- 

gineering more tailored to these difficult classes. Finally, the 

practical limitation imposed by the num_workers=0 config- 

uration highlights challenges in optimizing training efficiency, 

particularly in resource-constrained environments like Google 

Colab. 

 

9. CONCLUSION 

This paper presented D-MoE, a novel Dendritic Mixture-of- 

Experts architecture designed to enhance the robustness of 

Automatic Modulation Classification, particularly against the 

deleterious effects of low Signal-to-Noise Ratios. By strate- 

gically integrating a pre-trained Denoising Autoencoder for 

noise-resilient feature extraction with specialized, SNR-gated 

expert networks—a ResNetSE for high SNRs and a Dendrit- 

icGRU for low SNRs—the proposed architecture achieves a 

strong balance between low-SNR robustness and high-SNR 

accuracy. Evaluated rigorously on the standard RadioML 

2016.10a benchmark dataset, D-MoE achieved a competitive 

overall test accuracy of 62.54%. It significantly outperformed 

relevant baseline models, including a comparable MoE struc- 

ture without the DAE component, quantitatively validating 

the benefit of the integrated denoising strategy. The per-SNR 

analysis confirmed substantially improved resilience in the 

challenging sub-0 dB regime compared to typical models, 

while high-SNR performance remained excellent. This work 

validates the hypothesis that combining explicit denoising with 

expert network specialization is a highly effective strategy for 

building more reliable and practical AMC systems capable of 

operating effectively across diverse and noisy wireless en- 

vironments. The D-MoE architecture represents a valuable 

contribution towards robust signal classification for cognitive 

radio and related applications. 
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