

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1095

Assessing The Safety Of REST Apis Used By Cloud Services

1Mrs. G. Haritha Rani, 2Tadepalli Pavan Kumar,

1Assistant Professor, Department of MCA, Rajamahendri Institute of Engineering & Technology.

Bhoopalapatnam, Near Pidimgoyyi,Rajahmundry,E.G.Dist.A.P. 533107.

2Student, Department of MCA, Rajamahendri Institute of Engineering & Technology Bhoopalapatnam, Near

Pidimgoyyi,Rajahmundry,E.G.Dist.A.P. 533107.

Abstract
The REST API is the programming language of

choice for accessing most contemporary online and

cloud applications. This article delves into the topic

of service compromise and how an attacker may take

advantage of security holes in a service's REST API.

In order to capture the desired qualities of REST

APIs and services, we provide four security

principles. Afterwards, we demonstrate how to

include active property checks into a stateful REST

API fuzzer, allowing it to automatically test and

identify rule violations. We go over several efficient

and modular ways to create such checks. We address

the security implications of the new issues discovered

in various Azure and Office 365 cloud services that

have been put to production using these checks.

These issues have been resolved. Polishchuk, Marina

Microsoft Research will extensively test the API's

underlying cloud service in an effort to identify

service failures that will be reported as "500 Internal

Server Errors" by a test client. Its scope is limited to

the identification of unhandled exceptions, but it

appears promising and reports numerous new issues

detected. This article presents four security guidelines

for REST APIs and services, which aim to

encapsulate their best features. • The rule of use after

free. When you remove a resource, it should no

longer be available. Generating tests; Ensuring

security; Using cloud and web services; REST APIs

INTRODUCTION

The popularity of cloud computing is skyrocketing.

Cloud platform providers such as Amazon Web

Services [2] and Microsoft Azure [13] have deployed

thousands of new cloud services in the past few

years. Their customers are "digitally transforming"

their businesses by modernizing their processes and

collecting and analyzing all kinds of new data.

Today, REST APIs are the primary means by which

cloud services are accessible programmatically [9].

REST APIs provide a unified method to create,

monitor, manage, and remove cloud resources. They

are built on top of the ubiquitous HTTP/S protocol.

Using an interface-description language like Swagger

(now called OpenAPI), developers of cloud services

may describe their REST APIs and provide example

client code [25]. Using the REST API, a cloud

service may be accessed according to the details laid

forth in a Swagger specification. This includes the

types of queries that the service can process, the

possible answers, and the format of those responses.

To what extent are all those APIs secure? As of right

now, there is no clear answer to this issue. There is a

lack of mature tools that can automatically verify the

security and reliability of cloud services using their

REST APIs. To detect flaws, certain tools for testing

REST APIs collect live API traffic, then process,

fuzz, and replay it [4], [21], [6], [26], [3]. In order to

evaluate services that are deployed behind REST

APIs more thoroughly, stateful REST API fuzzing [5]

was recently suggested. This method, when used to a

REST API specified using Swagger, produces series

of requests rather than individual ones. Microsoft

Research Resource-leak rule was the primary location

of this author's work. If a resource creation fails, it

shouldn't be available and shouldn't "leak" into the

backend service state in any way. Rule based on

resource hierarchy. No other parent resource should

be able to access a child resource's parent resource.

The regulation pertaining to user-namespaces. You

can't have resources from one user namespace

available to resources from another. As we'll see in

the section below, cloud resources can be

compromised in an elevation-of-privilege attack,

information can be stolen from other users in an

information disclosure attack, or the backend service

can be rendered inoperable due to a denial-of-service

attack if these rules are violated. We demonstrate the

extension of a stateful REST API fuzzer to test and

identify such rule violations. We establish an active

property checker for every rule that (a) finds rule

breaches and (b) creates new API calls to test them.

Basically, each checker is designed to actively try

breaking its own rule, in addition to actively checking

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1096

for any rule violation. We go over some modular

implementation details for these checks to make sure

they don't conflict with one another. We also go over

how to quickly build each checker by removing

likely-redundant tests wherever feasible, because

each checker adds additional tests to an already-large

state space exploration. Beyond the "500 Internal

Server Errors" that baseline stateful REST API

fuzzing may discover, these checks are designed to

uncover security rule violations. We discovered

additional issues in many production Azure and

Office 365 cloud services by using these checks. By

identifying additional kinds of errors at a little extra

testing cost, security checkers boost the usefulness of

REST API fuzzing. Here are some important points

that this study brings up:

We provide guidelines that characterize REST API

security features. • In order to test and identify rule

infractions, we create and deploy active checkers. •

We provide comprehensive experimental findings

that assess the efficacy and performance of these

active checkers on three live cloud services. We

examine the security implications of the new issues

that were detected in various operational Azure and

Office 365 cloud services using these checkers. How

the remainder of the article is structured is as follows.

We review the history of stateful REST API fuzzing

in Section II. We provide active checkers to test and

identify breaches of the criteria that we establish in

Section III, which encapsulate desired aspects of

secure REST APIs. Section IV details the outcomes

of our experiments with active checkers running on

real-world cloud services. We address the security

implications of newly discovered flaws by these

checkers in Section V. We wrap up the paper in

Section VII after discussing relevant work in Section

VI. II. Fusing Stateful Rest APIs Before providing

security property checks that may be applied as

extensions of this basic method, we review the notion

of stateful REST API fuzzing [5] in this section.

Section III follows. We think that REST APIs make

cloud services accessible. Requests are messages sent

by a client software to a service, while replies are

messages received back. Protocols like HTTP/S are

used to transmit such messages. A unique HTTP

status code, ranging from 2xx to 5xx, is assigned to

each response. One example of a specification

language for REST APIs is Swagger [25], which is

also called OpenAPI. What kinds of queries can a

service process, what kinds of answers may be

expected, and what formats those responses should

take are all detailed in a Swagger specification, which

is part of the REST API documentation. For the

purposes of this article, a REST API is defined as a

relatively small collection of queries. The request

body, resource path, authentication token, and request

type are the four components that make up each

request tuple. These five values—PUT (create or

update), POST (create or update), GET (read, list or

query), DELETE (delete), and PATCH (update)—are

the RESTful request types that may be used. A cloud

resource and its parent hierarchy may be identified by

its resource path, which is a string. The regular

expression (/resourceType/resourceName/)+ is

usually used to match non-empty sequences of cloud

resources, where resourceType is the kind of resource

and resourceName is the particular name of that type.

The request usually attempts to create, access, or

delete the particular resource mentioned in the path

that is last. Additional parameters and their values,

whether mandatory or optional, may be included in

the request body b to ensure the proper execution of

the request. As an example, the following is a multi-

line request to acquire the attributes of a single Azure

DNS zone [14]: access token for user authentication

GET

The request is a GET request with an empty body at

the end, and it needs three resource names—a

subscriptionID, a resourceGroupName, and a

zoneName—in its path. The PUT and POST methods

of the REST API are used to create new resources,

while the DELETE method is used to delete existing

ones. To generate a new resource of type T, a

producer must be a request whose execution does just

that. An identifier, or "id," is a representation of a

freshly formed resource. One may hear the term

"dynamic object" used to describe resources because

of the way they are produced on the fly. A consumer

for the resource type T is a request that includes a

resource name of type T in either its route or content.

The resource name of type T, commonly called the

dynamic object type, will be used sometimes. This

GET request uses three resources—subscriptions,

resourceGroups, and dnsZones—in the Azure DNS

zone example but doesn't create any new resources.

Within the request bodies or resource routes of

individual requests, users have the option to define a

tiny limited range of values that should be randomly

selected; these are termed fuzzable values. In the

body of a request, a user may, for example, indicate

that a particular integer number may be either 0, 10,

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1097

1000000, or -10. The term for this collection of

values is a fuzzing dictionary. A rendering of a

request that contains fuzzable values indicates that

each fuzzable value has been mapped to a single

concrete value chosen from its fuzzing dictionary.

Therefore, there are nk alternative renderings for a

request with n fuzzable values, each of which may

take k possible values. If the matching request, when

executed, delivers a proper response (specified in the

following paragraph), then the rendering is

considered legitimate. The onus for determining

which values to fuzz and which fuzzing dictionaries

to use is on the user. A directed graph is used to

describe the state space of a service, where nodes

stand for service states and edges connect them. The

execution of a single request r from a given state s of

the service results in a successor state s, represented

as s r → s. Any answer other than a 2xx indicates that

the request r is invalid, a 3xx or 4xx indicates that the

request is legitimate, and a 5xx response indicates

that the request is bugged. It is possible to explore the

service's state space from a starting point when no

resources are available by sending a series of queries.

When this kind of investigation seeks to uncover

service states, it called being stateful.

It must be queried repeatedly in order to be reached:

In order to execute more requests and attain deeper

service states, resources may be utilized in later

requests in the same sequence that were produced by

earlier requests in the series. Several search

techniques, such as a systematic breadth-first search

or a random search, may be used to explore state

spaces [5]. Given the unbounded nature of request

sequence length, the potentially unlimited sets of

renderings, and the blackbox nature of the service

under test, state spaces may be enormous—if not

infinite. Luckily, intriguing problems may be

discovered by only partially exploring the state space.

For the sake of this discussion, an error is considered

to have occurred when a request sequence results in

an HTTP status code of 500. Instead of taking the

chance of a live event with unknown effects, it is

advisable to correct these issues that cause "500

Internal Server Errors" and other unhandled

exceptions. These exceptions are caused by unusual

input request sequences. We will sometimes talk

about test cases, which are executions of request

sequences, and tests, which are executions of

individual requests, in the following. Additionally,

we will refer to the generic state-space exploration

algorithm discussed in this part as the primary

mechanism that drives stateful REST API

verification. Section III: Rest API Security Checks

Here we outline and create active security rule

checkers for REST APIs. To begin, four guidelines

for the security of REST APIs are introduced in

Section III-A. To test and identify security rule

breaches, we detail how to create active checkers in

Section III-B. There is a singular emphasis on a

certain kind of security rule violation by each active

checker. In Section III-C, we go over the several

ways in which each checker may be integrated with

the others and with the primary driver of stateful

REST API fuzzing in a modular fashion. We provide

a novel search technique for scalable property

checker test creation in Section III-D. To prevent the

user from receiving several reports of the same

problem, we detail how to bundle together checker

violations in Section III-E. Rule No. A. – Security In

order to capture the desired qualities of REST APIs

and services, we provide four security principles. We

provide an example for each rule and talk about the

security implications of it. All four guidelines are

based on actual issues with previously released cloud

services that were discovered via manual penetration

testing or by analyzing the causes of events that were

apparent to customers. Later in Section V, we will

provide examples of new, previously undiscovered

problems that we discovered as rule violations in

production Azure and Office 365 services that were

already deployed. The law of use following free

consumption. When you remove a resource, it should

no longer be available. This means that all further

operations (such as reads, updates, or deletes) on the

same resource must fail after a successful DELETE

action.

For instance, after deleting the account associated

with identifier user-id1 via a DELETE request to URI

/users/user-id1, all further attempts to utilize user-id1

must fail and produce a "404 Not Found" HTTP

status code. When an API may still access a removed

resource, it is a use-after-free violation. Never again

shall this occur. This is an obvious flaw that might

compromise the service's backend and allow users to

evade their resource limitations. A regulation about

the loss of resources. If a resource creation failed, it

shouldn't be available and shouldn't "leak" any

related resources in the backend service state. What

this means is that each subsequent action on a

resource must likewise fail with a 4xx response if the

execution of a PUT or POST request to create that

resource fails (for whatever reason). Additionally, the

user should not see any noticeable side effects in the

backend service state as a result of successfully

creating that resource type. To illustrate, a resource

that was unable to be established cannot be used to

meet the user's service quotas, and the user must be

allowed to reuse the name of the resource. For

instance, in order to generate the URI /users/user-id1

with a faulty PUT request, it is necessary to get a 4xx

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1098

answer. This URI must also be inaccessible for any

future requests to read, edit, or delete. When an

uncreated resource "leaks" some influence on the

backend service state, even if it wasn't properly

generated, a resource-leak violation has occurred. For

example, a remove request cannot remove the

resource even if it is listed in a later GET request, or

efforts to recreate the resource result in "409

Conflict" answers. The capacity of that resource type

(e.g., if resource quota limitations are reached and no

new resources can be added) and the performance of

the service (e.g., owing to unnecessary huge database

tables) might be negatively affected by such

breaches, hence they must never happen. Resource-

hierarchy rule. No other parent resource should be

able to access a child resource's parent resource.

What this means is that when a new parent resource

is used in place of an existing one, the child resource

must not be accessible in any way—read, update, or

delete—even though it was successfully created from

the parent resource and identified as such in the

service resource paths. Using the resource-hierarchy

rule as an example, if you create users user-id1 and

user-id2 and assign report report-id1 to user user-id1,

then add report report-id1 to user user-id2, and then

issue POST requests to URIs /users/user-

id1/reports/report-id1 to create users user-id1 and

user-id2, respectively, and then add report report-id1

to user user-id1, then subsequent requests to URI

/users/user-id2/reports/report-id1 must fail. To violate

the resource-hierarchy, one must ensure that no sub-

resource that was formed from one parent resource

may be accessed from another parent resource

without a parent-child relationship. In cases where

such infractions are feasible, an adversary may be

able to provide an illicit parent object identity.

for example, user-id3, and then take control of an

illegal child object, such report-id1, by reading or

writing to it. There should never be any instances of

resource hierarchy violations since they are obvious

defects that might cause harm. Policy regarding user-

namespaces. You can't have resources from one user

namespace available to resources from another. With

respect to REST APIs, we take into account user

namespaces that are established by the user token that

is used to engage with the API (for instance, OAUTH

token-based authentication [18]). To illustrate the

point, after creating the URI /users/user-id1 with the

token token-of-user-id1, it is imperative that the

resource user-id1 cannot be accessed with the token

token-of-user-id2 of any other user. When a resource

that was generated in one user's namespace may be

accessed from another user's namespace, it is called a

user namespace violation. An attacker might

potentially get unauthorized access to another user's

resources by executing REST API calls with an

unauthorized authentication token. This could happen

if such a violation were to occur. Part B: Active

Verifiers For the regulations outlined in Section III-

A, we have active checkers in place. In stateful REST

API fuzzing, an active checker keeps an eye on the

primary driver's exploration of state space and

proposes additional tests to make sure certain rules

aren't broken. As a result, a proactive checker

expands the search area by running additional tests

that aim to break certain rules. A passive checker, on

the other hand, does not run any additional checks but

instead watches the search that the primary driver is

doing. Using a modular design grounded on two

ideas, we develop dynamic checkers: 1) The state

space exploration of a stateful REST API is

unaffected by checkers, which are separate from the

core driver of the fuzzing process. Second, each

checker works independently of the others; they

create tests by looking at the primary driver's

requests, but not the ones that other checks have run.

Every time the main driver finishes running a new

test case, we run all the checkers to enforce the first

principle. To ensure that the checkers do not interfere

with one another while working on separate test

cases, we prioritize their application order according

to their semantics, thereby enforcing the second

principle (more on this later in this section).

Following this, we outline the specifics of each

checker's implementation and provide improvements

to curb the growth of state spaces. Utilization

verification tool. In Figure 1, the use-after free rule

checker's implementation is presented using syntax

similar to Python. Following the execution of a

DELETE request by the main driver (refer to Figure

4), the algorithm is invoked and receives three inputs:

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1099

a sequence of requests, or seq of requests,

representing the most recent test case executed by the

main driver; the global cache of dynamic objects, or

global_cache, for all available API requests; and the

most recent object types and ids for all dynamic

objects, or reqCollection, for all dynamic objects. To

begin, on line 5, we acquire a list of all the kinds of

dynamic objects that were used by the previous

request. Then, we create a temporary variable called

target_obj_id to keep the id of the last object type.

We choose the final type in req_object_types as the

actual type of the deleted object, even if the last

request may be consuming several object types. (A

remove request on the URI

/users/userId1/reports/reportId1 would remove just

reports, even though it would combine two object

types—users and reports.) Following this basic setup,

starting on line 12, the for-loop iteratively processes

all requests in reqCollection, excluding those that do

not consume the target object type (line 14). The

method EXECUTE (line 19) uses the recovered

target object id from the global cache of dynamic

objects (line 17) to execute request req once it finds a

request, req, that consumes the target object type.

Because the EXECUTE method utilizes object ids

accessible in global cache to execute requests, the

target object id is restored in the global cache many

times. In the event that any of these requests are

granted, a use-after-free violation will be triggered on

line 20 (see to Section III-A).

Contribution beyond stateful REST API fuzzing. The

checkers enhance the primary driver of baseline

stateful REST API fuzzing in two ways: first, by

running more tests, they increase the size of the state

space; and second, by looking for replies other than

5xx and potentially flagging unusual 2xx responses

as faults that violate the rules. So, it's evident that

they improve the main driver's bug-finding skills;

using them together, the main driver can discover

flaws that it couldn't uncover on its own. Active

property checking vs passive monitoring. In our

previous discussion, we established that the checkers

would augment the primary driver's search area with

extra test cases designed to trigger and identify

certain rule violations. It is very unlikely that rule

breaches could be detected by passive runtime

monitoring of these rules in conjunction with the

primary driver, meaning that those additional tests

would not be executed. Specifically, passive

monitoring alone is unlikely to discover use-after-free

and resource-leak rule violations. This is because the

primary driver's default state space exploration

probably won't try to re-use deleted resources or

resources after a failure, respectively. Because the

basic main driver doesn't try to replace object IDs or

authentication tokens, passive monitoring would also

miss resource hierarchy and user-namespace rule

breaches. That is to say, in comparison to non-

checker tests, the extra test cases produced by the

checkers are not superfluous; rather, they are

essential for discovering rule violations. The checkers

work in tandem with one another. Our four defined

checkers are mutually supportive; that is, by

definition, no two checks may provide identical new

tests due to the fact that their preconditions are

mutually incompatible. To begin, request sequences

that conclude with a DELETE request activate just

one checker: the use-after free checker. Additionally,

in the event that the most recent request has returned

an incorrect HTTP status code, the resource-leak

checker is the only checker that is enabled. Last but

not least, request sequences that do not conclude with

a DELETE request have the resource-ownership

checker enabled as the sole other checker. Fourthly,

the user-namespace checker obviously adds another

orthogonal dimension to the state space as it

conducted tests using an attacker token that was

distinct from the authentication token used by the

main driver and all other checks. D. Checkers Search

Methods When fuzzing stateful REST APIs, the

breadth-first search (BFS) is the primary search

approach used to generate tests. The search space is

defined by all conceivable request sequences. When

it comes to grammar, this search technique covers all

the bases. It covers every potential request rendering

and every possible request sequence up to a certain

length. The search, however, does not scale well with

increasing sequence length as BFS usually explores a

huge search space. Hence, BFS-Fast was

implemented as an optimization. Unlike BFS, BFS-

Fast only adds each request to a single request

sequence of length n, rather than to all of them,

whenever the search depth grows to a new number

n+1 [5]. While BFS Fast does cover all potential

ways a request might be rendered, it does not

investigate all request sequences of a certain duration.

While BFS-Fast outperforms BFS in terms of

scalability, it does this by investigating a fraction of

all potential request sequences.

The amount of infractions that the security checkers

are able to actively verify is, however, limited by this.

Our new search approach, BFS-Cheap, aims to

overcome this constraint. Following the opposite

trade-off of BFS-Fast, BFS-Cheap investigates all

potential request sequences for a given sequence

length, but does not cover all possible renderings. For

example, here's how BFS-Cheap works with an n-

sequence set (seqSet) and a collection of requests

(reqCollection): To process each sequence in seqSet,

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1100

add each element in reqCollection to the end of seq,

run the new sequence taking into account all potential

renderings of req, and add no more than one valid

and one incorrect sequence rendering to seqSet. The

use-after-free, resource-hierarchy, and user-

namespace checks adhere to valid renderings, but the

resource-leak checker adheres to faulty renderings.

For an experimental evaluation, see Section IV-B;

BFS-Cheap is therefore a compromise between BFS

and BFS-Fast. In order to prevent a huge seqSet, it

thoroughly investigates all potential request

sequences up to a certain length (similar to BFS) and

adds no more than two additional renderings to each

sequence (similar to BFS-Fast). As the length of a

sequence rises, seqSet may still include a manageable

number of sequences thanks to two additional

renderings for each sequence that is being actively

checked against all the security requirements outlined

in Section III-A. Keep in mind that the "cheap" suffix

is derived from the fact that BFS-Cheap is a less

expensive variant of BFS that adds no more than one

valid rendering to the BFS "frontier" setSeq for every

new sequence. As a result, less resources are

generated compared to when all possible

interpretations of each request sequence are

investigated, as in BFS. Think of a request

specification that uses an enum type to describe 10

distinct versions of the same resource type. Once

BFS-Cheap has successfully developed a resource of

a single flavor, it will cease to manufacture any more

of that flavor. On the other hand, BFS and BFS-Fast

will generate 10 identical resources but with ten

distinct flavors. D. Bug Collecting To set the stage

for talking about actual infractions discovered by

active checkers, we first explain the bucketization

technique that is used to classify comparable

infractions. "Bugs" are rule infractions while

discussing active checkers. The request sequence that

caused each issue to occur is linked with it. In light of

this characteristic, we construct per-checker bug

buckets according to this procedure: Compute all

non-empty request sequence suffixes that trigger if a

new bug is detected.

(Tests), the proportion of tests created by the main

driver (Main), all four checkers combined

(Checkers), and each search method after one hour of

searching in isolation. Beginning with the lowest one,

the total number of requests in each API is shown in

the second column. Insert the news sequence into an

existing bug bucket if it has a suffix. Create a

separate bug bucket for the news series if necessary.

There is no need to keep the two systems apart when

dealing with bug buckets; they are identical to the

one used in stateful RESTAPI fuzzing[5]. This is due

to the fact that failing conditions are specified

independently for each rule. Due to checker

complementarity, only one checker for a given

sequence length will ever trigger a problem;

nonetheless, the main driver and checkers are both

capable of triggering the "500 Internal Server Error"

issue. Only the bug bucket of the primary driver or

error checker that caused it will have the news

sequence added once for 500 bugs.

EXPERIMENTALEVALUATION

Results of studies with three production cloud

services are reported in this section. Our experimental

setup and the services we provide are detailed in

Section IV-A. Following that, in Section IV-B, we

evaluate and contrast the three research methods

outlined in Section III-D. Section IV-C details the

findings, which indicate the amount of rule violations

recorded by each checker on the three cloud services

and the effect of different optimizations. Section A.

Experimental Setup We provide the findings of an

experiment that was carried out using three cloud

services: Azure and Azure Bare Two, which provide

management services, and O-365, which is an Office

365 messaging service. The names of these services

have been anonymised so that they cannot be

targeted. For these three services, the amount of

requests in the RESTAPI might vary between thirteen

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1101

and nineteen. The three services we chose are typical

of the cloud services we looked at in terms of size

and complexity. Section V summarizes our overall

experience with various additional services, and we

have conducted comparable studies with around a

dozen of them. There is a publicly published Swagger

standard for every service we are considering [15].

Following previous work, we assemble the

specification of each service to generate a test-

generation language [5]. There is executable Python

code for every grammar rule. All of the tests

mentioned here utilized the same syntax and fuzzy

dictionary for the provided service and API. The

results are consistently accurate. Using an internet-

connected PC and a single-threaded fuzzer, we

conducted our fuzzing tests. the proper subscription

to each service that grants access to its API. We

didn't need any more service expertise or unique test

setup. As mentioned in [5], our fuzzy logic contains a

garbage collector that removes dynamic objects and

other resources that are no longer required to prevent

service quota limitations from being exceeded. No

one can see what goes on in the background of the

services we test, even though our fuzz production

services are up and available to everyone with a

subscription. When it gets a response, our fuzzy logic

system just looks at the HTTP status code. The client

sends all queries to the target services across the

internet, and the services parse the answers. The

experiments presented in this section are not totally

controlled since we do not control the distribution of

these services. Having said that, we ran these tests

many times and found no significant differences. B.

Analyzing Search Approaches With the use of

security checkers, we have compared our new search

technique, BFS-Cheap, against BFS and BFS-Fast in

order to fuzz genuine services. The findings of our

trials with Azure A, Azure B, and Office 365 C are

shown here. Each service was tested independently

with three different search tactics over the course of

an hour, as shown in Table I. We reported the total

number of API requests (Total Req.), the maximum

sequence length (MaxLen.), the number of tests, the

percentage of requests sent by the main driver

(Main.) and the active checkers (Checkers.) We also

reported the individual contribution of each checker

for each experiment. Table I clearly demonstrates

that, across all services, BFS achieves the lowest

depth, BFS-Fast the highest, and BFS-Cheap, which

is closer to BFS than BFS-Fast, offers a compromise

between these two extremes. The overall number of

tests created varies among services, influenced by

how quickly each service responds. The overall

number of tests grows dramatically for BFS FAST

with Azure Band O-365C, but otherwise this amount

stays nearly the same for any given service. With O-

365C, this boost seems to

EXAMPLESOFRESTAPISECURITY

VULNERABILITIES

Nearly a dozen production Azure and Office 365

cloud services, comparable in size and complexity to

the three services mentioned above, have been fuzzy-

zed as of this writing. Every one of these services has

a couple of new problems discovered by our fuzz

testing. Roughly two-thirds of these issues are "500

Internal Server Errors," and our new security

checkers have identified rule breaches in one-third.

All of these issues have been resolved once we

notified the service owners. We stress that reliability

of the rules 394 is enhanced even when security

checks do not detect any defects. This license is only

valid for usage at Middlesex University. This

document was downloaded from IEEE Xplore on

August 31, 2020, at 16:21:28 UTC. Limitations are in

place. They make sure the service is reliable and

secure by checking that it cannot be breached. To

illustrate the security implications of these issues, this

section provides instances of actual defects

discovered in Azure and Office 365 services that

have been deployed. So that we don't single out any

one service, we mask the names and other identifying

information of those services. Use-after-free violation

in Azure. This use-after-free violation was discovered

in Microsoft Azure service. Initiate the creation of

resource R by submitting a PUT request. 2) Use a

DELETE request to remove resource R. Step three:

Make a new PUT request to create a specific-type

child resource of the removed resource R. A "500

Internal Server Error" is the outcome of these request

sequences. Because (1) it tries to re-use the deleted

resource in Step 3 and (2) the result of Step 3 differs

from the anticipated "404 Not Found" response, the

Use-after-free checker finds this. Resource-hierarchy

violation in Office365. The following issue was

found by the resource-hierarchy checker in an Office

365 messaging service that allows users to compose,

respond, and modify messages. First, create a new

message called msg-1 by sending a POST request to

/api/posts/msg-1. 2) Make a second message called

msg-2 and send it using the POST method to:

/api/posts/msg-2. (3) Make a reply-1 to the first

message (using the POST request to /api/posts/msg-

1/replies/reply-1). 4) Make changes to the reply-1 by

submitting a PUT request to /api/posts/msg-

2/replies/reply-1, using msg-2 as the message

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1102

identifier. Despite expecting a "404 Not Found" error,

the last request in Step 4 unexpectedly gets a "200

Allowed" answer.

This infraction of the rule shows that the reply-

posting API implementation does not examine the

whole hierarchy when verifying the reply's rights. An

attacker might potentially exploit security flaws in a

system if validation checks for the hierarchy are

missing. This would allow them to circumvent the

parent hierarchy and access child items. Azure

resource leak occurred. The same issue occurred in

another Azure service due to the resource-leak

checker. 1) Use a PUT request to generate a new CM

resource with the given name and a specified

deformity in its body. As it stands, this produces the

bugged "500 Internal Server Error" message. 2) If

you want a list of all CM resources, you'll get an

empty list. Third, using a PUT request, create a new

CM resource with the same name X as in Step 1, but

in a different area (e.g., US-West instead of US-

Central). The resource should have a well-formed

body. Surprisingly, rather than the anticipated "200

Created," the last request in Step 3 yields a 4009

Conflict. The service has entered an inconsistent state

due to this behavior, which was caused by the

undesired side effects of the unsuccessful request in

Step 1. The user is accurate; the CM resource X that

was tried to be created in Step 1 has not been

generated, as shown by the GET request in Step 2.

Step 3's second PUT request, however, demonstrates

that the service retains memory of the previous PUT

request's unsuccessful attempt to create the CM

resource X. An attacker may possibly harm the

system by creating an infinite number of these

"zombie" resources by repeating Step 1 with new

names. This would allow them to surpass their

official limit, since unsuccessful resource creations

are (correctly) not tallied against the user's quota.

Still, the backend service obviously remembers them

(incorrectly). Eager Resource-Accounting Denial of

Service Attack is another example. During our five

hours of fuzzing another Azure service, we

unintentionally caused a significant decline in its

health. The results about its origin are summed up

here. To avoid going over our cloud resource limits,

our fuzzing program employs a trash collector. For

example, if resource type Y has a default quota of

100, then no more than 100 of that type may be

generated at any one time. To prevent the number of

live resources from exceeding limits, our garbage

collector deletes (via a DELETE request) resources

that are no longer in use. Our fuzzing tool usually

reaches quota restrictions in minutes and can't

continue exploring state space without trash

collection. The backend processes for this Azure

service might take minutes to finish, yet the response

time is lightning fast for every PUT request to create

a resource of a certain type—let's call it IM—.

Similarly, deleting an IM resource causes a deletion

job that takes minutes to finish but also returns fast.

Nevertheless, these PUT and DELETE requests for

IM resources update counts towards quotas hastily,

without waiting the many minutes really required to

perform the jobs in their entirety. Therefore, a

malicious actor might easily flood the backend

service by creating and deleting a large number of IM

resources rapidly without going over their limit. We

unintentionally set off a Denial-of-Service attack

using our fuzzing tool. Until all remove backend

operations are finished, which might take a few

minutes for IM resources, the consumption counts for

remove requests should not be updated towards

quotas. This would address the problem. This ensures

that the official quota for backend tasks is still

linearly limited, as requests to create new IM

resources (PUT) will not be allowed until all requests

to delete resources (DELETE) have been processed.

RELATED WORK

Our work extends stateful REST API fuzzing [5].

Given a Swagger specification of a REST API, this a

fuzzing language is constructed from the

specification and used to automatically produce

request sequences that meet the standard. Unlike

conventional grammar-based fuzzing, in which the

user manually develops a grammar, stateful REST

API fuzzing automates the generation of a fuzzing

grammar [20], [22], [24]. In model-based testing, test

generation algorithms serve as an inspiration for the

BFS and BFS-Fast search techniques [27].

using methods described in [12], [28] to create

minimum test suites that include a full finite-state

machine model of the investigated system. In order to

improve upon stateful REST API fuzzing, this paper

does two things: first, it introduces a set of security

rules for REST APIs and matching checkers to

efficiently test and detect violations of these rules;

and second, it introduces BFS-Cheap, a new search

strategy that offers a compromise between BFS and

BFS-Fast when using active checkers. Requests and

answers to REST APIs go across the HTTP protocol,

making them amenable to HTTP-fuzzers. Fuzzers can

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1103

capture and replay HTTP traffic, parse the contents of

HTTP requests and responses (such as embedded

JSON data), and then fuzz them using either pre-

defined heuristics or user-defined rules. Examples of

such fuzzers are Burp [7], Sulley [23], BooFuzz [6],

the commercial AppSpider [4], and Qualys's WAS

[21]. Recent extensions to tools that record, parse,

fuzz, and replay HTTP traffic have made use of

Swagger standards to guide the fuzzing of HTTP

requests via REST APIs and to parse them [4, 21, 26,

3]. Their fuzzing is stateless, meaning it can only

fuzze the parameter values of individual requests;

nevertheless, these tools can't construct new request

sequences since they don't do any global analysis of

Swagger specifications. Consequently, stateless

fuzzers become troublesome when active checks are

added to them. To the contrary, we have developed

active checks that target particular REST API rule

breaches, expanding the scope of stateful REST API

fuzzing. Since the majority of HTTP-fuzzers are

actually extensions of more conventional web-page

crawlers and scanners, they typically have a long list

of properties that are specific to HTTP that they can

check. For example, they can verify that responses

use HTTP correctly and even look for cross-site

scripting attacks or SQL injections if completely

rendered web pages with HTML and Javascript code

are returned. Unfortunately, the majority of REST

APIs do not offer web-pages in their answers,

rendering most of the previously listed testing

capabilities useless. New security criteria tailored to

RESTAPI use are introduced in our study,

distinguishing it from HTTP-fuzzers and web

scanners. A security risk exists when an attacker

might potentially utilize a rule's violation to

compromise a service's integrity or gain unauthorized

access to sensitive data or resources. Unlike other

non-"exploitable" REST API use guidelines, we do

not include how to verify request idempotence in this

work [9]. This means that sending the same request,

such as GET or PATCH, twice would not change the

result. It is surprising that there is so little information

available on how to utilize REST APIs securely,

considering how popular they are. The majority of

the security recommendations in books on REST

APIs [1] or micro-services [17] or from organizations

like OWASP [19] (Open Web Application Security

Project) focus on how to handle authentication tokens

and API keys. The documentation for the REST API

is lacking in specifics when it comes to managing

resources and validating user input. The four security

rules presented in this work are novel, as far as we

are aware. Our checkers create new tests to trigger

rule violations, in addition to monitoring API request

and response sequences as in conventional runtime

verification [8], [11]. We utilized the term "active

checker" from [10] to describe this in Section III. We

use a number of separate security checks all at once,

much as in [10]. However, in contrast to [10], we do

not produce additional tests via symbolic execution,

constraint formation, or solution. Our fuzzing tool

and its checkers can only view requests and answers

from REST APIs; they have no idea how the services

we test really function. Cloud services are often

dispersed, complicated systems with components

written in various languages. Therefore, broad

symbolic-execution-based approaches may not be the

best choice. However, this is something that might be

addressed in future research. Penetration testing,

sometimes known as pen testing, is the current gold

standard for protecting cloud services. This method

involves having security professionals examine the

cloud service's code, design, and architecture from a

security standpoint. Since pen testing requires a lot of

manual effort, it is not only costly but also has

limited coverage and depth. Fuzzing tools and

security checkers, such as those covered in this

article, may supplement pen testing by partially

automating the detection of certain types of security

flaws.

CONCLUSION

To capture the best features of REST APIs and

services, we laid down four security criteria. We

proceeded to demonstrate how active property

checkers may be integrated into a stateful REST API

fuzzer to automatically test and identify rule

violations. Using the fuzzer and checkers outlined in

this work, we have successfully fuzzed about a dozen

production Azure and Office-365 cloud services.

Nearly every one of these services has a couple of

new problems discovered by our fuzzing. The

majority of these issues are "500 Internal Server

Errors," but our new security checkers have identified

rule violations as accounting for around one third of

the flaws. All of these issues have been resolved once

we notified the service owners. It is rather evident

that security vulnerabilities might arise from

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1104

disobeying the four security principles presented in

this study. Our current bug "fixed/found" ratio is

approximately 100%, indicating that all of the issues

we detected have been thoroughly addressed by the

service owners. Fixing these issues is preferable than

risking a live event, which might be purposefully or

accidentally caused by an attacker and could have

unforeseen effects. Lastly, the fact that our fuzzing

method does not disclose any false alarms and that

these problems can be readily reproduced is helpful.

On what scale do these findings apply? In order to

discover the answer, we must inspect further

characteristics and fuzz more services via their REST

APIs in order to identify various types of

vulnerabilities and problems. Surprisingly, there is a

lack of security-related guidelines about the use of

REST APIs, despite the recent expansion of these

APIs for use in cloud and online services. In this

regard, our study contributes four rules whose

infractions are security-relevant and which are not

easy to verify and fulfill.

REFERENCES

[1]. S. Allamaraju. RESTful Web Services

Cookbook. O’Reilly, 2010.

[2]. Amazon. AWS. https://aws.amazon.com/.

[3]. APIFuzzer.

https://github.com/KissPeter/APIFuzzer.

[4]. AppSpider.

https://www.rapid7.com/products/appspider.

[5]. V. Atlidakis, P. Godefroid, and M. Polishchuk.

RESTler: Stateful REST API Fuzzing. In 41st

ACM/IEEE International Conference on

Software Engineering (ICSE’2019), May 2019.

[6]. BooFuzz. https://github.com/jtpereyda/boofuzz.

[7]. Burp Suite. https://portswigger.net/burp.

[8]. D. Drusinsky. The Temporal Rover and the

ATG Rover. In Proceedings of the 2000 SPIN

Workshop, volume 1885 of Lecture Notes in

Computer Science, pages 323–330. Springer-

Verlag, 2000.

[9]. R. T. Fielding. Architectural Styles and the

Design of Network-based Software

Architectures. PhD Thesis, UC Irvine, 2000.

[10]. P. Godefroid, M. Levin, and D. Molnar.

Active Property Checking. In Proceedings of

EMSOFT’2008 (8th Annual ACM & IEEE

Conference on Embedded Software), pages 207–

216, Atlanta, October 2008. ACM Press.

[11]. K. Havelund and G. Rosu. Monitoring

Java Programs with Java PathExplorer. In

Proceedings of RV’2001 (First Workshop on

Runtime Verification), volume 55 of Electronic

Notes in Theoretical Computer Science, Paris,

July 2001.

[12]. R. L¨ ammel and W. Schulte.

Controllable Combinatorial Coverage in

Grammar-Based Testing. In Proceedings of

TestCom’2006, 2006.

[13]. Microsoft. Azure.

https://azure.microsoft.com/en-us/.

[14]. Microsoft. Azure DNS Zone REST API.

https://docs.microsoft.com/en

us/rest/api/dns/zones/get. [15] Microsoft.

Microsoft Azure Swagger Specifications.

https://github.com/ Azure/azure-rest-api-specs.

[16] Microsoft. Office. https://www.office.com/.

[15]. S. Newman. Building Microservices.

O’Reilly, 2015. [18] OAuth. OAuth 2.0.

https://oauth.net/.

[16]. OWASP (Open Web Application

Security Project). https://www.owasp. org.

[17]. Peach Fuzzer.

http://www.peachfuzzer.com/.

[18]. Qualys Web Application Scanning

(WAS). https://www.qualys.com/ apps/web-app-

scanning/.

[19]. SPIKE Fuzzer.

http://resources.infosecinstitute.com/fuzzer-

automation with-spike/.

[20]. Sulley.

https://github.com/OpenRCE/sulley.

[21]. M. Sutton, A. Greene, and P. Amini.

Fuzzing: Brute Force Vulnerability Discovery.

Addison-Wesley, 2007. [25] Swagger.

https://swagger.io/.

[22]. TnT-Fuzzer.

https://github.com/Teebytes/TnT-Fuzzer.

[23]. M. Utting, A. Pretschner, and B.

Legeard. A Taxonomy of Model-Based Testing

Approaches. Intl. Journal on Software Testing,

Verification and Reliability, 22(5), 2012.

[24]. M. Yannakakis and D. Lee. Testing

Finite-State Machines. In Proceed ings of the

23rd Annual ACM Symposium on the Theory of

Computing, pages 476–485, 1991.

http://www.ijasem.org/
https://aws.amazon.com/
https://github.com/KissPeter/APIFuzzer
https://www.rapid7.com/products/appspider
https://github.com/jtpereyda/boofuzz
https://portswigger.net/burp
https://azure.microsoft.com/en-us/
https://www.office.com/
https://oauth.net/
http://www.peachfuzzer.com/
http://resources.infosecinstitute.com/fuzzer-automation%20with-spike/
http://resources.infosecinstitute.com/fuzzer-automation%20with-spike/
https://github.com/OpenRCE/sulley
https://swagger.io/
https://github.com/Teebytes/TnT-Fuzzer

