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Abstract 
The REST API is the programming language of 

choice for accessing most contemporary online and 

cloud applications. This article delves into the topic 

of service compromise and how an attacker may take 

advantage of security holes in a service's REST API. 

In order to capture the desired qualities of REST 

APIs and services, we provide four security 

principles. Afterwards, we demonstrate how to 

include active property checks into a stateful REST 

API fuzzer, allowing it to automatically test and 

identify rule violations. We go over several efficient 

and modular ways to create such checks. We address 

the security implications of the new issues discovered 

in various Azure and Office 365 cloud services that 

have been put to production using these checks. 

These issues have been resolved. Polishchuk, Marina 

Microsoft Research will extensively test the API's 

underlying cloud service in an effort to identify 

service failures that will be reported as "500 Internal 

Server Errors" by a test client. Its scope is limited to 

the identification of unhandled exceptions, but it 

appears promising and reports numerous new issues 

detected. This article presents four security guidelines 

for REST APIs and services, which aim to 

encapsulate their best features. • The rule of use after 

free. When you remove a resource, it should no 

longer be available. Generating tests; Ensuring 

security; Using cloud and web services; REST APIs  

 

INTRODUCTION  

The popularity of cloud computing is skyrocketing. 

Cloud platform providers such as Amazon Web 

Services [2] and Microsoft Azure [13] have deployed 

thousands of new cloud services in the past few 

years. Their customers are "digitally transforming" 

their businesses by modernizing their processes and 

collecting and analyzing all kinds of new data. 

Today, REST APIs are the primary means by which 

cloud services are accessible programmatically [9]. 

REST APIs provide a unified method to create, 

monitor, manage, and remove cloud resources. They 

are built on top of the ubiquitous HTTP/S protocol. 

Using an interface-description language like Swagger 

(now called OpenAPI), developers of cloud services 

may describe their REST APIs and provide example 

client code [25]. Using the REST API, a cloud 

service may be accessed according to the details laid 

forth in a Swagger specification. This includes the 

types of queries that the service can process, the 

possible answers, and the format of those responses. 

To what extent are all those APIs secure? As of right 

now, there is no clear answer to this issue. There is a 

lack of mature tools that can automatically verify the 

security and reliability of cloud services using their 

REST APIs. To detect flaws, certain tools for testing 

REST APIs collect live API traffic, then process, 

fuzz, and replay it [4], [21], [6], [26], [3]. In order to 

evaluate services that are deployed behind REST 

APIs more thoroughly, stateful REST API fuzzing [5] 

was recently suggested. This method, when used to a 

REST API specified using Swagger, produces series 

of requests rather than individual ones. Microsoft 

Research Resource-leak rule was the primary location 

of this author's work. If a resource creation fails, it 

shouldn't be available and shouldn't "leak" into the 

backend service state in any way. Rule based on 

resource hierarchy. No other parent resource should 

be able to access a child resource's parent resource. 

The regulation pertaining to user-namespaces. You 

can't have resources from one user namespace 

available to resources from another. As we'll see in 

the section below, cloud resources can be 

compromised in an elevation-of-privilege attack, 

information can be stolen from other users in an 

information disclosure attack, or the backend service 

can be rendered inoperable due to a denial-of-service 

attack if these rules are violated. We demonstrate the 

extension of a stateful REST API fuzzer to test and 

identify such rule violations. We establish an active 

property checker for every rule that (a) finds rule 

breaches and (b) creates new API calls to test them. 

Basically, each checker is designed to actively try 

breaking its own rule, in addition to actively checking 
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for any rule violation. We go over some modular 

implementation details for these checks to make sure 

they don't conflict with one another. We also go over 

how to quickly build each checker by removing 

likely-redundant tests wherever feasible, because 

each checker adds additional tests to an already-large 

state space exploration. Beyond the "500 Internal 

Server Errors" that baseline stateful REST API 

fuzzing may discover, these checks are designed to 

uncover security rule violations. We discovered 

additional issues in many production Azure and 

Office 365 cloud services by using these checks. By 

identifying additional kinds of errors at a little extra 

testing cost, security checkers boost the usefulness of 

REST API fuzzing. Here are some important points 

that this study brings up:  

 

We provide guidelines that characterize REST API 

security features. • In order to test and identify rule 

infractions, we create and deploy active checkers. • 

We provide comprehensive experimental findings 

that assess the efficacy and performance of these 

active checkers on three live cloud services. We 

examine the security implications of the new issues 

that were detected in various operational Azure and 

Office 365 cloud services using these checkers. How 

the remainder of the article is structured is as follows. 

We review the history of stateful REST API fuzzing 

in Section II. We provide active checkers to test and 

identify breaches of the criteria that we establish in 

Section III, which encapsulate desired aspects of 

secure REST APIs. Section IV details the outcomes 

of our experiments with active checkers running on 

real-world cloud services. We address the security 

implications of newly discovered flaws by these 

checkers in Section V. We wrap up the paper in 

Section VII after discussing relevant work in Section 

VI. II. Fusing Stateful Rest APIs Before providing 

security property checks that may be applied as 

extensions of this basic method, we review the notion 

of stateful REST API fuzzing [5] in this section. 

Section III follows. We think that REST APIs make 

cloud services accessible. Requests are messages sent 

by a client software to a service, while replies are 

messages received back. Protocols like HTTP/S are 

used to transmit such messages. A unique HTTP 

status code, ranging from 2xx to 5xx, is assigned to 

each response. One example of a specification 

language for REST APIs is Swagger [25], which is 

also called OpenAPI. What kinds of queries can a 

service process, what kinds of answers may be 

expected, and what formats those responses should 

take are all detailed in a Swagger specification, which 

is part of the REST API documentation. For the 

purposes of this article, a REST API is defined as a 

relatively small collection of queries. The request 

body, resource path, authentication token, and request 

type are the four components that make up each 

request tuple. These five values—PUT (create or 

update), POST (create or update), GET (read, list or 

query), DELETE (delete), and PATCH (update)—are 

the RESTful request types that may be used. A cloud 

resource and its parent hierarchy may be identified by 

its resource path, which is a string. The regular 

expression (/resourceType/resourceName/)+ is 

usually used to match non-empty sequences of cloud 

resources, where resourceType is the kind of resource 

and resourceName is the particular name of that type. 

The request usually attempts to create, access, or 

delete the particular resource mentioned in the path 

that is last. Additional parameters and their values, 

whether mandatory or optional, may be included in 

the request body b to ensure the proper execution of 

the request. As an example, the following is a multi-

line request to acquire the attributes of a single Azure 

DNS zone [14]: access token for user authentication 

GET 

 

 

 
 
The request is a GET request with an empty body at 

the end, and it needs three resource names—a 

subscriptionID, a resourceGroupName, and a 

zoneName—in its path. The PUT and POST methods 

of the REST API are used to create new resources, 

while the DELETE method is used to delete existing 

ones. To generate a new resource of type T, a 

producer must be a request whose execution does just 

that. An identifier, or "id," is a representation of a 

freshly formed resource. One may hear the term 

"dynamic object" used to describe resources because 

of the way they are produced on the fly. A consumer 

for the resource type T is a request that includes a 

resource name of type T in either its route or content. 

The resource name of type T, commonly called the 

dynamic object type, will be used sometimes. This 

GET request uses three resources—subscriptions, 

resourceGroups, and dnsZones—in the Azure DNS 

zone example but doesn't create any new resources. 

Within the request bodies or resource routes of 

individual requests, users have the option to define a 

tiny limited range of values that should be randomly 

selected; these are termed fuzzable values. In the 

body of a request, a user may, for example, indicate 

that a particular integer number may be either 0, 10, 
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1000000, or -10. The term for this collection of 

values is a fuzzing dictionary. A rendering of a 

request that contains fuzzable values indicates that 

each fuzzable value has been mapped to a single 

concrete value chosen from its fuzzing dictionary. 

Therefore, there are nk alternative renderings for a 

request with n fuzzable values, each of which may 

take k possible values. If the matching request, when 

executed, delivers a proper response (specified in the 

following paragraph), then the rendering is 

considered legitimate. The onus for determining 

which values to fuzz and which fuzzing dictionaries 

to use is on the user. A directed graph is used to 

describe the state space of a service, where nodes 

stand for service states and edges connect them. The 

execution of a single request r from a given state s of 

the service results in a successor state s, represented 

as s r → s. Any answer other than a 2xx indicates that 

the request r is invalid, a 3xx or 4xx indicates that the 

request is legitimate, and a 5xx response indicates 

that the request is bugged. It is possible to explore the 

service's state space from a starting point when no 

resources are available by sending a series of queries. 

When this kind of investigation seeks to uncover 

service states, it called being stateful.  

 

It must be queried repeatedly in order to be reached: 

In order to execute more requests and attain deeper 

service states, resources may be utilized in later 

requests in the same sequence that were produced by 

earlier requests in the series. Several search 

techniques, such as a systematic breadth-first search 

or a random search, may be used to explore state 

spaces [5]. Given the unbounded nature of request 

sequence length, the potentially unlimited sets of 

renderings, and the blackbox nature of the service 

under test, state spaces may be enormous—if not 

infinite. Luckily, intriguing problems may be 

discovered by only partially exploring the state space. 

For the sake of this discussion, an error is considered 

to have occurred when a request sequence results in 

an HTTP status code of 500. Instead of taking the 

chance of a live event with unknown effects, it is 

advisable to correct these issues that cause "500 

Internal Server Errors" and other unhandled 

exceptions. These exceptions are caused by unusual 

input request sequences. We will sometimes talk 

about test cases, which are executions of request 

sequences, and tests, which are executions of 

individual requests, in the following. Additionally, 

we will refer to the generic state-space exploration 

algorithm discussed in this part as the primary 

mechanism that drives stateful REST API 

verification. Section III: Rest API Security Checks 

Here we outline and create active security rule 

checkers for REST APIs. To begin, four guidelines 

for the security of REST APIs are introduced in 

Section III-A. To test and identify security rule 

breaches, we detail how to create active checkers in 

Section III-B. There is a singular emphasis on a 

certain kind of security rule violation by each active 

checker. In Section III-C, we go over the several 

ways in which each checker may be integrated with 

the others and with the primary driver of stateful 

REST API fuzzing in a modular fashion. We provide 

a novel search technique for scalable property 

checker test creation in Section III-D. To prevent the 

user from receiving several reports of the same 

problem, we detail how to bundle together checker 

violations in Section III-E. Rule No. A. – Security In 

order to capture the desired qualities of REST APIs 

and services, we provide four security principles. We 

provide an example for each rule and talk about the 

security implications of it. All four guidelines are 

based on actual issues with previously released cloud 

services that were discovered via manual penetration 

testing or by analyzing the causes of events that were 

apparent to customers. Later in Section V, we will 

provide examples of new, previously undiscovered 

problems that we discovered as rule violations in 

production Azure and Office 365 services that were 

already deployed. The law of use following free 

consumption. When you remove a resource, it should 

no longer be available. This means that all further 

operations (such as reads, updates, or deletes) on the 

same resource must fail after a successful DELETE 

action.  

For instance, after deleting the account associated 

with identifier user-id1 via a DELETE request to URI 

/users/user-id1, all further attempts to utilize user-id1 

must fail and produce a "404 Not Found" HTTP 

status code. When an API may still access a removed 

resource, it is a use-after-free violation. Never again 

shall this occur. This is an obvious flaw that might 

compromise the service's backend and allow users to 

evade their resource limitations. A regulation about 

the loss of resources. If a resource creation failed, it 

shouldn't be available and shouldn't "leak" any 

related resources in the backend service state. What 

this means is that each subsequent action on a 

resource must likewise fail with a 4xx response if the 

execution of a PUT or POST request to create that 

resource fails (for whatever reason). Additionally, the 

user should not see any noticeable side effects in the 

backend service state as a result of successfully 

creating that resource type. To illustrate, a resource 

that was unable to be established cannot be used to 

meet the user's service quotas, and the user must be 

allowed to reuse the name of the resource. For 

instance, in order to generate the URI /users/user-id1 

with a faulty PUT request, it is necessary to get a 4xx 
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answer. This URI must also be inaccessible for any 

future requests to read, edit, or delete. When an 

uncreated resource "leaks" some influence on the 

backend service state, even if it wasn't properly 

generated, a resource-leak violation has occurred. For 

example, a remove request cannot remove the 

resource even if it is listed in a later GET request, or 

efforts to recreate the resource result in "409 

Conflict" answers. The capacity of that resource type 

(e.g., if resource quota limitations are reached and no 

new resources can be added) and the performance of 

the service (e.g., owing to unnecessary huge database 

tables) might be negatively affected by such 

breaches, hence they must never happen. Resource-

hierarchy rule. No other parent resource should be 

able to access a child resource's parent resource. 

What this means is that when a new parent resource 

is used in place of an existing one, the child resource 

must not be accessible in any way—read, update, or 

delete—even though it was successfully created from 

the parent resource and identified as such in the 

service resource paths. Using the resource-hierarchy 

rule as an example, if you create users user-id1 and 

user-id2 and assign report report-id1 to user user-id1, 

then add report report-id1 to user user-id2, and then 

issue POST requests to URIs /users/user-

id1/reports/report-id1 to create users user-id1 and 

user-id2, respectively, and then add report report-id1 

to user user-id1, then subsequent requests to URI 

/users/user-id2/reports/report-id1 must fail. To violate 

the resource-hierarchy, one must ensure that no sub-

resource that was formed from one parent resource 

may be accessed from another parent resource 

without a parent-child relationship. In cases where 

such infractions are feasible, an adversary may be 

able to provide an illicit parent object identity. 
 

 

for example, user-id3, and then take control of an 

illegal child object, such report-id1, by reading or 

writing to it. There should never be any instances of 

resource hierarchy violations since they are obvious 

defects that might cause harm. Policy regarding user-

namespaces. You can't have resources from one user 

namespace available to resources from another. With 

respect to REST APIs, we take into account user 

namespaces that are established by the user token that 

is used to engage with the API (for instance, OAUTH 

token-based authentication [18]). To illustrate the 

point, after creating the URI /users/user-id1 with the 

token token-of-user-id1, it is imperative that the 

resource user-id1 cannot be accessed with the token 

token-of-user-id2 of any other user. When a resource 

that was generated in one user's namespace may be 

accessed from another user's namespace, it is called a 

user namespace violation. An attacker might 

potentially get unauthorized access to another user's 

resources by executing REST API calls with an 

unauthorized authentication token. This could happen 

if such a violation were to occur. Part B: Active 

Verifiers For the regulations outlined in Section III-

A, we have active checkers in place. In stateful REST 

API fuzzing, an active checker keeps an eye on the 

primary driver's exploration of state space and 

proposes additional tests to make sure certain rules 

aren't broken. As a result, a proactive checker 

expands the search area by running additional tests 

that aim to break certain rules. A passive checker, on 

the other hand, does not run any additional checks but 

instead watches the search that the primary driver is 

doing. Using a modular design grounded on two 

ideas, we develop dynamic checkers: 1) The state 

space exploration of a stateful REST API is 

unaffected by checkers, which are separate from the 

core driver of the fuzzing process. Second, each 

checker works independently of the others; they 

create tests by looking at the primary driver's 

requests, but not the ones that other checks have run.  

 

Every time the main driver finishes running a new 

test case, we run all the checkers to enforce the first 

principle. To ensure that the checkers do not interfere 

with one another while working on separate test 

cases, we prioritize their application order according 

to their semantics, thereby enforcing the second 

principle (more on this later in this section). 

Following this, we outline the specifics of each 

checker's implementation and provide improvements 

to curb the growth of state spaces. Utilization 

verification tool. In Figure 1, the use-after free rule 

checker's implementation is presented using syntax 

similar to Python. Following the execution of a 

DELETE request by the main driver (refer to Figure 

4), the algorithm is invoked and receives three inputs: 
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a sequence of requests, or seq of requests, 

representing the most recent test case executed by the 

main driver; the global cache of dynamic objects, or 

global_cache, for all available API requests; and the 

most recent object types and ids for all dynamic 

objects, or reqCollection, for all dynamic objects. To 

begin, on line 5, we acquire a list of all the kinds of 

dynamic objects that were used by the previous 

request. Then, we create a temporary variable called 

target_obj_id to keep the id of the last object type. 

We choose the final type in req_object_types as the 

actual type of the deleted object, even if the last 

request may be consuming several object types. (A 

remove request on the URI 

/users/userId1/reports/reportId1 would remove just 

reports, even though it would combine two object 

types—users and reports.) Following this basic setup, 

starting on line 12, the for-loop iteratively processes 

all requests in reqCollection, excluding those that do 

not consume the target object type (line 14). The 

method EXECUTE (line 19) uses the recovered 

target object id from the global cache of dynamic 

objects (line 17) to execute request req once it finds a 

request, req, that consumes the target object type. 

Because the EXECUTE method utilizes object ids 

accessible in global cache to execute requests, the 

target object id is restored in the global cache many 

times. In the event that any of these requests are 

granted, a use-after-free violation will be triggered on 

line 20 (see to Section III-A). 

 

 

Contribution beyond stateful REST API fuzzing. The 

checkers enhance the primary driver of baseline 

stateful REST API fuzzing in two ways: first, by 

running more tests, they increase the size of the state 

space; and second, by looking for replies other than 

5xx and potentially flagging unusual 2xx responses 

as faults that violate the rules. So, it's evident that 

they improve the main driver's bug-finding skills; 

using them together, the main driver can discover 

flaws that it couldn't uncover on its own. Active 

property checking vs passive monitoring. In our 

previous discussion, we established that the checkers 

would augment the primary driver's search area with 

extra test cases designed to trigger and identify 

certain rule violations. It is very unlikely that rule 

breaches could be detected by passive runtime 

monitoring of these rules in conjunction with the 

primary driver, meaning that those additional tests 

would not be executed. Specifically, passive 

monitoring alone is unlikely to discover use-after-free 

and resource-leak rule violations. This is because the 

primary driver's default state space exploration 

probably won't try to re-use deleted resources or 

resources after a failure, respectively. Because the 

basic main driver doesn't try to replace object IDs or 

authentication tokens, passive monitoring would also 

miss resource hierarchy and user-namespace rule 

breaches. That is to say, in comparison to non-

checker tests, the extra test cases produced by the 

checkers are not superfluous; rather, they are 

essential for discovering rule violations. The checkers 

work in tandem with one another. Our four defined 

checkers are mutually supportive; that is, by 

definition, no two checks may provide identical new 

tests due to the fact that their preconditions are 

mutually incompatible. To begin, request sequences 

that conclude with a DELETE request activate just 

one checker: the use-after free checker. Additionally, 

in the event that the most recent request has returned 

an incorrect HTTP status code, the resource-leak 

checker is the only checker that is enabled. Last but 

not least, request sequences that do not conclude with 

a DELETE request have the resource-ownership 

checker enabled as the sole other checker. Fourthly, 

the user-namespace checker obviously adds another 

orthogonal dimension to the state space as it 

conducted tests using an attacker token that was 

distinct from the authentication token used by the 

main driver and all other checks. D. Checkers Search 

Methods When fuzzing stateful REST APIs, the 

breadth-first search (BFS) is the primary search 

approach used to generate tests. The search space is 

defined by all conceivable request sequences. When 

it comes to grammar, this search technique covers all 

the bases. It covers every potential request rendering 

and every possible request sequence up to a certain 

length. The search, however, does not scale well with 

increasing sequence length as BFS usually explores a 

huge search space. Hence, BFS-Fast was 

implemented as an optimization. Unlike BFS, BFS-

Fast only adds each request to a single request 

sequence of length n, rather than to all of them, 

whenever the search depth grows to a new number 

n+1 [5]. While BFS Fast does cover all potential 

ways a request might be rendered, it does not 

investigate all request sequences of a certain duration. 

While BFS-Fast outperforms BFS in terms of 

scalability, it does this by investigating a fraction of 

all potential request sequences.  

The amount of infractions that the security checkers 

are able to actively verify is, however, limited by this. 

Our new search approach, BFS-Cheap, aims to 

overcome this constraint. Following the opposite 

trade-off of BFS-Fast, BFS-Cheap investigates all 

potential request sequences for a given sequence 

length, but does not cover all possible renderings. For 

example, here's how BFS-Cheap works with an n-

sequence set (seqSet) and a collection of requests 

(reqCollection): To process each sequence in seqSet, 
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add each element in reqCollection to the end of seq, 

run the new sequence taking into account all potential 

renderings of req, and add no more than one valid 

and one incorrect sequence rendering to seqSet. The 

use-after-free, resource-hierarchy, and user-

namespace checks adhere to valid renderings, but the 

resource-leak checker adheres to faulty renderings. 

For an experimental evaluation, see Section IV-B; 

BFS-Cheap is therefore a compromise between BFS 

and BFS-Fast. In order to prevent a huge seqSet, it 

thoroughly investigates all potential request 

sequences up to a certain length (similar to BFS) and 

adds no more than two additional renderings to each 

sequence (similar to BFS-Fast). As the length of a 

sequence rises, seqSet may still include a manageable 

number of sequences thanks to two additional 

renderings for each sequence that is being actively 

checked against all the security requirements outlined 

in Section III-A. Keep in mind that the "cheap" suffix 

is derived from the fact that BFS-Cheap is a less 

expensive variant of BFS that adds no more than one 

valid rendering to the BFS "frontier" setSeq for every 

new sequence. As a result, less resources are 

generated compared to when all possible 

interpretations of each request sequence are 

investigated, as in BFS. Think of a request 

specification that uses an enum type to describe 10 

distinct versions of the same resource type. Once 

BFS-Cheap has successfully developed a resource of 

a single flavor, it will cease to manufacture any more 

of that flavor. On the other hand, BFS and BFS-Fast 

will generate 10 identical resources but with ten 

distinct flavors. D. Bug Collecting To set the stage 

for talking about actual infractions discovered by 

active checkers, we first explain the bucketization 

technique that is used to classify comparable 

infractions. "Bugs" are rule infractions while 

discussing active checkers. The request sequence that 

caused each issue to occur is linked with it. In light of 

this characteristic, we construct per-checker bug 

buckets according to this procedure: Compute all 

non-empty request sequence suffixes that trigger if a 

new bug is detected.  

 

 
(Tests), the proportion of tests created by the main 

driver (Main), all four checkers combined 

(Checkers), and each search method after one hour of 

searching in isolation. Beginning with the lowest one, 

the total number of requests in each API is shown in 

the second column. Insert the news sequence into an 

existing bug bucket if it has a suffix. Create a 

separate bug bucket for the news series if necessary. 

There is no need to keep the two systems apart when 

dealing with bug buckets; they are identical to the 

one used in stateful RESTAPI fuzzing[5]. This is due 

to the fact that failing conditions are specified 

independently for each rule. Due to checker 

complementarity, only one checker for a given 

sequence length will ever trigger a problem; 

nonetheless, the main driver and checkers are both 

capable of triggering the "500 Internal Server Error" 

issue. Only the bug bucket of the primary driver or 

error checker that caused it will have the news 

sequence added once for 500 bugs.  

 

EXPERIMENTALEVALUATION  
 

Results of studies with three production cloud 

services are reported in this section. Our experimental 

setup and the services we provide are detailed in 

Section IV-A. Following that, in Section IV-B, we 

evaluate and contrast the three research methods 

outlined in Section III-D. Section IV-C details the 

findings, which indicate the amount of rule violations 

recorded by each checker on the three cloud services 

and the effect of different optimizations. Section A. 

Experimental Setup We provide the findings of an 

experiment that was carried out using three cloud 

services: Azure and Azure Bare Two, which provide 

management services, and O-365, which is an Office 

365 messaging service. The names of these services 

have been anonymised so that they cannot be 

targeted. For these three services, the amount of 

requests in the RESTAPI might vary between thirteen 
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and nineteen. The three services we chose are typical 

of the cloud services we looked at in terms of size 

and complexity. Section V summarizes our overall 

experience with various additional services, and we 

have conducted comparable studies with around a 

dozen of them. There is a publicly published Swagger 

standard for every service we are considering [15]. 

Following previous work, we assemble the 

specification of each service to generate a test-

generation language [5]. There is executable Python 

code for every grammar rule. All of the tests 

mentioned here utilized the same syntax and fuzzy 

dictionary for the provided service and API. The 

results are consistently accurate. Using an internet-

connected PC and a single-threaded fuzzer, we 

conducted our fuzzing tests. the proper subscription 

to each service that grants access to its API. We 

didn't need any more service expertise or unique test 

setup. As mentioned in [5], our fuzzy logic contains a 

garbage collector that removes dynamic objects and 

other resources that are no longer required to prevent 

service quota limitations from being exceeded. No 

one can see what goes on in the background of the 

services we test, even though our fuzz production 

services are up and available to everyone with a 

subscription. When it gets a response, our fuzzy logic 

system just looks at the HTTP status code. The client 

sends all queries to the target services across the 

internet, and the services parse the answers. The 

experiments presented in this section are not totally 

controlled since we do not control the distribution of 

these services. Having said that, we ran these tests 

many times and found no significant differences. B. 

Analyzing Search Approaches With the use of 

security checkers, we have compared our new search 

technique, BFS-Cheap, against BFS and BFS-Fast in 

order to fuzz genuine services. The findings of our 

trials with Azure A, Azure B, and Office 365 C are 

shown here. Each service was tested independently 

with three different search tactics over the course of 

an hour, as shown in Table I. We reported the total 

number of API requests (Total Req.), the maximum 

sequence length (MaxLen.), the number of tests, the 

percentage of requests sent by the main driver 

(Main.) and the active checkers (Checkers.) We also 

reported the individual contribution of each checker 

for each experiment. Table I clearly demonstrates 

that, across all services, BFS achieves the lowest 

depth, BFS-Fast the highest, and BFS-Cheap, which 

is closer to BFS than BFS-Fast, offers a compromise 

between these two extremes. The overall number of 

tests created varies among services, influenced by 

how quickly each service responds. The overall 

number of tests grows dramatically for BFS FAST 

with Azure Band O-365C, but otherwise this amount 

stays nearly the same for any given service. With O-

365C, this boost seems to 

 

EXAMPLESOFRESTAPISECURITY 

VULNERABILITIES  
 

Nearly a dozen production Azure and Office 365 

cloud services, comparable in size and complexity to 

the three services mentioned above, have been fuzzy-

zed as of this writing. Every one of these services has 

a couple of new problems discovered by our fuzz 

testing. Roughly two-thirds of these issues are "500 

Internal Server Errors," and our new security 

checkers have identified rule breaches in one-third. 

All of these issues have been resolved once we 

notified the service owners. We stress that reliability 

of the rules 394 is enhanced even when security 

checks do not detect any defects. This license is only 

valid for usage at Middlesex University. This 

document was downloaded from IEEE Xplore on 

August 31, 2020, at 16:21:28 UTC. Limitations are in 

place. They make sure the service is reliable and 

secure by checking that it cannot be breached. To 

illustrate the security implications of these issues, this 

section provides instances of actual defects 

discovered in Azure and Office 365 services that 

have been deployed. So that we don't single out any 

one service, we mask the names and other identifying 

information of those services. Use-after-free violation 

in Azure. This use-after-free violation was discovered 

in Microsoft Azure service. Initiate the creation of 

resource R by submitting a PUT request. 2) Use a 

DELETE request to remove resource R. Step three: 

Make a new PUT request to create a specific-type 

child resource of the removed resource R. A "500 

Internal Server Error" is the outcome of these request 

sequences. Because (1) it tries to re-use the deleted 

resource in Step 3 and (2) the result of Step 3 differs 

from the anticipated "404 Not Found" response, the 

Use-after-free checker finds this. Resource-hierarchy 

violation in Office365. The following issue was 

found by the resource-hierarchy checker in an Office 

365 messaging service that allows users to compose, 

respond, and modify messages. First, create a new 

message called msg-1 by sending a POST request to 

/api/posts/msg-1. 2) Make a second message called 

msg-2 and send it using the POST method to: 

/api/posts/msg-2. (3) Make a reply-1 to the first 

message (using the POST request to /api/posts/msg-

1/replies/reply-1). 4) Make changes to the reply-1 by 

submitting a PUT request to /api/posts/msg-

2/replies/reply-1, using msg-2 as the message 

http://www.ijasem.org/


        ISSN 2454-9940 

      www.ijasem.org 

     Vol 19, Issue 2, 2025 

 
 

1102 

identifier. Despite expecting a "404 Not Found" error, 

the last request in Step 4 unexpectedly gets a "200 

Allowed" answer.  

 

This infraction of the rule shows that the reply-

posting API implementation does not examine the 

whole hierarchy when verifying the reply's rights. An 

attacker might potentially exploit security flaws in a 

system if validation checks for the hierarchy are 

missing. This would allow them to circumvent the 

parent hierarchy and access child items. Azure 

resource leak occurred. The same issue occurred in 

another Azure service due to the resource-leak 

checker. 1) Use a PUT request to generate a new CM 

resource with the given name and a specified 

deformity in its body. As it stands, this produces the 

bugged "500 Internal Server Error" message. 2) If 

you want a list of all CM resources, you'll get an 

empty list. Third, using a PUT request, create a new 

CM resource with the same name X as in Step 1, but 

in a different area (e.g., US-West instead of US-

Central). The resource should have a well-formed 

body. Surprisingly, rather than the anticipated "200 

Created," the last request in Step 3 yields a 4009 

Conflict. The service has entered an inconsistent state 

due to this behavior, which was caused by the 

undesired side effects of the unsuccessful request in 

Step 1. The user is accurate; the CM resource X that 

was tried to be created in Step 1 has not been 

generated, as shown by the GET request in Step 2. 

Step 3's second PUT request, however, demonstrates 

that the service retains memory of the previous PUT 

request's unsuccessful attempt to create the CM 

resource X. An attacker may possibly harm the 

system by creating an infinite number of these 

"zombie" resources by repeating Step 1 with new 

names. This would allow them to surpass their 

official limit, since unsuccessful resource creations 

are (correctly) not tallied against the user's quota. 

Still, the backend service obviously remembers them 

(incorrectly). Eager Resource-Accounting Denial of 

Service Attack is another example. During our five 

hours of fuzzing another Azure service, we 

unintentionally caused a significant decline in its 

health. The results about its origin are summed up 

here. To avoid going over our cloud resource limits, 

our fuzzing program employs a trash collector. For 

example, if resource type Y has a default quota of 

100, then no more than 100 of that type may be 

generated at any one time. To prevent the number of 

live resources from exceeding limits, our garbage 

collector deletes (via a DELETE request) resources 

that are no longer in use. Our fuzzing tool usually 

reaches quota restrictions in minutes and can't 

continue exploring state space without trash 

collection. The backend processes for this Azure 

service might take minutes to finish, yet the response 

time is lightning fast for every PUT request to create 

a resource of a certain type—let's call it IM—. 

Similarly, deleting an IM resource causes a deletion 

job that takes minutes to finish but also returns fast. 

Nevertheless, these PUT and DELETE requests for 

IM resources update counts towards quotas hastily, 

without waiting the many minutes really required to 

perform the jobs in their entirety. Therefore, a 

malicious actor might easily flood the backend 

service by creating and deleting a large number of IM 

resources rapidly without going over their limit. We 

unintentionally set off a Denial-of-Service attack 

using our fuzzing tool. Until all remove backend 

operations are finished, which might take a few 

minutes for IM resources, the consumption counts for 

remove requests should not be updated towards 

quotas. This would address the problem. This ensures 

that the official quota for backend tasks is still 

linearly limited, as requests to create new IM 

resources (PUT) will not be allowed until all requests 

to delete resources (DELETE) have been processed. 

 

RELATED WORK  
 

Our work extends stateful REST API fuzzing [5]. 

Given a Swagger specification of a REST API, this a 

fuzzing language is constructed from the 

specification and used to automatically produce 

request sequences that meet the standard. Unlike 

conventional grammar-based fuzzing, in which the 

user manually develops a grammar, stateful REST 

API fuzzing automates the generation of a fuzzing 

grammar [20], [22], [24]. In model-based testing, test 

generation algorithms serve as an inspiration for the 

BFS and BFS-Fast search techniques [27].  

 

using methods described in [12], [28] to create 

minimum test suites that include a full finite-state 

machine model of the investigated system. In order to 

improve upon stateful REST API fuzzing, this paper 

does two things: first, it introduces a set of security 

rules for REST APIs and matching checkers to 

efficiently test and detect violations of these rules; 

and second, it introduces BFS-Cheap, a new search 

strategy that offers a compromise between BFS and 

BFS-Fast when using active checkers. Requests and 

answers to REST APIs go across the HTTP protocol, 

making them amenable to HTTP-fuzzers. Fuzzers can 
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capture and replay HTTP traffic, parse the contents of 

HTTP requests and responses (such as embedded 

JSON data), and then fuzz them using either pre-

defined heuristics or user-defined rules. Examples of 

such fuzzers are Burp [7], Sulley [23], BooFuzz [6], 

the commercial AppSpider [4], and Qualys's WAS 

[21]. Recent extensions to tools that record, parse, 

fuzz, and replay HTTP traffic have made use of 

Swagger standards to guide the fuzzing of HTTP 

requests via REST APIs and to parse them [4, 21, 26, 

3]. Their fuzzing is stateless, meaning it can only 

fuzze the parameter values of individual requests; 

nevertheless, these tools can't construct new request 

sequences since they don't do any global analysis of 

Swagger specifications. Consequently, stateless 

fuzzers become troublesome when active checks are 

added to them. To the contrary, we have developed 

active checks that target particular REST API rule 

breaches, expanding the scope of stateful REST API 

fuzzing. Since the majority of HTTP-fuzzers are 

actually extensions of more conventional web-page 

crawlers and scanners, they typically have a long list 

of properties that are specific to HTTP that they can 

check. For example, they can verify that responses 

use HTTP correctly and even look for cross-site 

scripting attacks or SQL injections if completely 

rendered web pages with HTML and Javascript code 

are returned. Unfortunately, the majority of REST 

APIs do not offer web-pages in their answers, 

rendering most of the previously listed testing 

capabilities useless. New security criteria tailored to 

RESTAPI use are introduced in our study, 

distinguishing it from HTTP-fuzzers and web 

scanners. A security risk exists when an attacker 

might potentially utilize a rule's violation to 

compromise a service's integrity or gain unauthorized 

access to sensitive data or resources. Unlike other 

non-"exploitable" REST API use guidelines, we do 

not include how to verify request idempotence in this 

work [9]. This means that sending the same request, 

such as GET or PATCH, twice would not change the 

result. It is surprising that there is so little information 

available on how to utilize REST APIs securely, 

considering how popular they are. The majority of 

the security recommendations in books on REST 

APIs [1] or micro-services [17] or from organizations 

like OWASP [19] (Open Web Application Security 

Project) focus on how to handle authentication tokens 

and API keys. The documentation for the REST API 

is lacking in specifics when it comes to managing 

resources and validating user input. The four security 

rules presented in this work are novel, as far as we 

are aware. Our checkers create new tests to trigger 

rule violations, in addition to monitoring API request 

and response sequences as in conventional runtime 

verification [8], [11]. We utilized the term "active 

checker" from [10] to describe this in Section III. We 

use a number of separate security checks all at once, 

much as in [10]. However, in contrast to [10], we do 

not produce additional tests via symbolic execution, 

constraint formation, or solution. Our fuzzing tool 

and its checkers can only view requests and answers 

from REST APIs; they have no idea how the services 

we test really function. Cloud services are often 

dispersed, complicated systems with components 

written in various languages. Therefore, broad 

symbolic-execution-based approaches may not be the 

best choice. However, this is something that might be 

addressed in future research. Penetration testing, 

sometimes known as pen testing, is the current gold 

standard for protecting cloud services. This method 

involves having security professionals examine the 

cloud service's code, design, and architecture from a 

security standpoint. Since pen testing requires a lot of 

manual effort, it is not only costly but also has 

limited coverage and depth. Fuzzing tools and 

security checkers, such as those covered in this 

article, may supplement pen testing by partially 

automating the detection of certain types of security 

flaws.  

CONCLUSION  

 
To capture the best features of REST APIs and 

services, we laid down four security criteria. We 

proceeded to demonstrate how active property 

checkers may be integrated into a stateful REST API 

fuzzer to automatically test and identify rule 

violations. Using the fuzzer and checkers outlined in 

this work, we have successfully fuzzed about a dozen 

production Azure and Office-365 cloud services. 

Nearly every one of these services has a couple of 

new problems discovered by our fuzzing. The 

majority of these issues are "500 Internal Server 

Errors," but our new security checkers have identified 

rule violations as accounting for around one third of 

the flaws. All of these issues have been resolved once 

we notified the service owners. It is rather evident 

that security vulnerabilities might arise from 
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disobeying the four security principles presented in 

this study. Our current bug "fixed/found" ratio is 

approximately 100%, indicating that all of the issues 

we detected have been thoroughly addressed by the 

service owners. Fixing these issues is preferable than 

risking a live event, which might be purposefully or 

accidentally caused by an attacker and could have 

unforeseen effects. Lastly, the fact that our fuzzing 

method does not disclose any false alarms and that 

these problems can be readily reproduced is helpful. 

On what scale do these findings apply? In order to 

discover the answer, we must inspect further 

characteristics and fuzz more services via their REST 

APIs in order to identify various types of 

vulnerabilities and problems. Surprisingly, there is a 

lack of security-related guidelines about the use of 

REST APIs, despite the recent expansion of these 

APIs for use in cloud and online services. In this 

regard, our study contributes four rules whose 

infractions are security-relevant and which are not 

easy to verify and fulfill. 
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