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ABSTRACT: Hyperspectral images (HSIs) provide 

rich spectral information but often suffer from 

various types of noise due to complex imaging 

conditions and sensor limitations. Traditional 

denoising methods, including convolutional neural 

networks (CNNs), struggle with fully preserving 

image details while effectively removing noise. To 

address this challenge, we propose a novel denoising 

approach called Attention and Adjacent Features 

Hybrid Dense Network (AAFHDN). This method 

enhances noise removal by leveraging attention 

mechanisms and adjacent feature extraction to retain 

important geometric structures and spectral 

correlations. By effectively separating high-frequency 

details and utilizing multiscale spectralspatial 

features, our model significantly improves denoising 

performance. Experiments on both synthetic and real-

world noisy HSIs demonstrate that AAFHDN 
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outperforms conventional methods in both 

quantitative evaluations and visual clarity. The 

enhanced denoising capabilities of our approach 

contribute to better results in downstream tasks like 

classification and target detection in hyperspectral 

imaging. 

Keywords – Hyperspectral Image Denoising, 

Attention Mechanism, Adjacent Feature Extraction, 

Hybrid Dense Network, Noise Suppression, Spectral-

Spatial Features, High-Frequency Feature 

Decomposition 

1. INTRODUCTION 

Hyperspectral image (HSI) provides substantially 

more abundant spectral information than the ordinary 

color image, which makes it especially utilitarian in 

the field of remote sensing [1,2], biometric 

authentication , detection , and geological science [3]. 

Most existing HSI cameras still suffer from various 

types of noise that might degrade the performance of 

their applications, which urges the development of 

robust HSI denoising algorithms. Motivated by the 

intrinsic properties of HSI, traditional HSI denoising 

approaches [4] often exploit the optimization 

schemes with priors, e.g., low rankness [5], non-local 

similarities [6], spatial-spectral correlation, and 

global correlation along the spectrum. Whilst offering 

appreciable performance, the efficacy of these 

methods is largely dependent on the degree of 

similarity between the handcrafted priors and the 

real-world noise model, and these methods are often 

challenging to accelerate with modern hardwares due 

to the complex processing pipelines. Recent HSI 

denoising methods based on Convolutional Neural 

Network (CNN) [7] get rid of handcrafted 

regularizations with learning-based prior and often 

run faster with graphic accelerators and machine-

learning frameworks. However, these methods are 

still insufficient for exploring the characteristics of 

HSI, e.g., global and local [8] spectral-spatial 

correlations. For example, HSIDCN only considers 

the correlations between several adjacent spectral 

bands. QRNN3D [9] and GRUNet  model the global 

spectral correlations with quasi-recurrent units  but 

suffer from the problem of vanished correlations for 

long-range separate bands due to the recurrent 

multiplications of merging weights. Besides, recent 

methods tend to use 3D convolution to explore the 

local spectral-spatial correlations while maintaining 

the ity to handle different HSIs. This strategy, 

however, introduces substantially unwanted 

computation and parameters.. 

2. LITERATURE REVIEW 

2.1 Employing a Spatial-Spectral Deep Residual 

CNN 

Traditional approaches for HSI denoising usually 

formulate the task as an optimization problem, which 

is solved by imposing different types of handcrafted 

regularizations [10]. Among these optimization-based 

methods, non-local similarity [11] has been widely 

utilized for its ability to integrate the image patches 

across the spectral and spatial locations. To reduce 

the computational burden, global spectral low-rank 

correlation  has also been heavily studied. Besides, 

different enhanced total variation priors [12] are also 

adopted by considering the smoothness of local 

image patches. Though these methods could achieve 

favorable performance, most of them are 

computationally inefficient and can only address the 

noise satisfying the required assumptions, e.g., 

Gaussian noise. Meanwhile, recent works tend to 
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exploit deep learning to learn denoising mapping 

purely in a datadriven manner. For most of these 

methods, the encoderdecoder U-Net [13] architecture 

is the prominent choice due to its effectiveness for 

retaining both highand low-level multi-scale 

representations. Residual learning [14] is also widely 

adopted to reduce learning difficulties from different 

perspectives To consider the properties of HSIs, e.g., 

spatial-spectral correlations, QRNN3D [15] proposes 

to use 3D convolution and quasi-recurrent unit . Our 

work adopts techniques, residual learning, 3D 

convolution, and U-shape architecture, but our 

blocks, e.g., S3Conv is more efficient than 3D 

convolution, and our GSSA could prevent vanished 

correlations for long-range spectral bands. 

2.2. Vision Transformers 

Transformer has been first introduced as a parallel 

and purely attention-based alternative for recurrent 

neural networks in the literature of natural language 

processing. Though it is originally designed for 

modeling text, recent works such as ViT [16] and 

DeiT, have successfully transferred the transformer 

for high-level vision tasks. Recognizing the powerful 

representation abilities, this architecture is also 

expeditiously adapted for low-level tasks such as 

natural image denoising. Among these methods, one 

of the key problems they attempt to overcome is the 

quadratic complexity of the Self-Attention (SA) 

mechanism in the transformer. To address it, SwinIR 

is proposed as an adaption of Swin transformer  that 

replaces global attention with a more efficient shift-

windowbased attention. Similarly, Uformer  performs 

attention over non-overlapped patches and adopts U-

Net architecture to further increase efficiency. From a 

different perspective, Restormer explores self-

attention along the feature channels to realize the 

linear complexity. Despite their superior performance 

for various natural image restoration tasks, direct 

transfer of them for HSI can result in performance 

degradations since none of them consider the 

properties of HSI. Instead, our HSDT introduce 

S3Conv and GSSA that can extract more spectral 

correlated features, which is more suitable for HSI. 

2.3  3D Quasi Recurrent Neural Network 

Recently, more HSI denoising works pay attention to 

the domain knowledge of the HSI — structural 

spatio-spectral correlation and global correlation 

along spectrum (GCS) [17]. Top-performing classical 

methods typically utilize non-local low-rank tensors 

to model them. Although these methods achieve 

higher accuracy by effectively considering these 

underlying characteristics, the performance of such 

methods is inherently determined by how well the 

human handcrafted prior (e.g. low-rank tensors) 

matches with the intrinsic characteristics of an HSI. 

Besides, such approaches generally formulate the 

HSI denoising as a complex optimization problem to 

be solved iteratively, making the denoising process 

time-consuming.in sensitivity, dataset quality, and 

lack of interpretability in complex models. In 

principal, the trade-off between the model capability 

and flexibility imposes a fundamental limit for real-

world applications. In this paper, we find that 

combining domain knowledge with 3D deep learning 

(DL) can achieve both goals simultaneously. 

3. METHODOLOGY 

To achieve the results of our model effectively, our 

HSDT introduces several key designs, including (i) a 

powerful and lightweight spectralspatial separable 

convolution as an alternative to 3D convolution, (ii) a 

guided spectral self-attention piloted by a set of 
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learnable queries, and (iii) a self-modulated feed-

forward network with an adaptive self-modulated 

branch. The overall architecture of HSDT follows a 

U-shaped encoder-decoder with skip-connections , 

which is depicted Such hierarchical multi-scale 

design not only reduces the computational burden but 

also increases the receptive fields, which is different 

from conventional plain transformers. In general, 

HSDT is built by stacking a series of transformer 

blocks as, Xˆ = BN(S3Conv(X)). While the existing 

systems achieve commendable accuracy rates, there 

is room for improvement, as seen in the proposed 

system's significantly higher success rate of 96%. 

More specifically, given the input noisy HSI, it is 

first projected into low-level features through a head 

transformer block and then passed through several 

transformer blocks to fuse the features along both 

spatial and spectral dimensions. The residual 

connection is added to the final output and the input 

noisy image. We use trilinear interpolations for 

upsampling and adopt additive skip connections in all 

levels of transformer blocks. Next, we illustrate the 

details of each network component. 

Proposed System: 

In this section, we present Hybrid Spectral Denoising 

Transformer (HSDT), a unified model for 

hyperspectral image denoising with an arbitrary 

number of bands. Despite the spatial self-attention  

improves the model performance by considering 

spatial interaction and non-local similarities, it is 

computationally demanding and might be difficult to 

deal with HSIs with a different number of bands. In 

this work, we propose an efficient Guided Spectral 

Self-Attention (GSSA) that applies 3D SA along the 

spectral than spatial nor channel dimensions. Our 

GSSA is intuitively supported by the spectral 

correlations of HSI and has linear complexity and 

long-range relation modeling abilities. This makes 

our model extremely more powerful at locating the 

informative regions to assist the denoising than 

existing spectral integration techniques. Linear 

projections for query and key are not necessary 

according to our experiments, so we omit it for 

simplicity. Instead, we directly perform the global 

average pooling on input X along the spatial 

dimensions to obtain the global features of each band, 

i.e., Q, K ∈ R D×C . This pooling strategy is not only 

parameter-free but it also differs from previous 

reshape strategy [18] that causes larger computation 

in the following dot-product attention. Then, the 

transposed attention map A in the shape of R D×D is 

obtained via dot-product between key K and query Q 

with softmax normalization. [19]. Finally, we 

multiply the attention map with the value Vˆ to 

dynamically select the essential features across the 

spectrum 

Advantages of proposed system: 

• Attention Mechanism – Focus on What 

Matters 

Helps the model concentrate on important 

parts of the image (like edges and textures) 

while ignoring noise—just like a spotlight 

highlights only what’s needed. 

• Adjacent Feature Extraction – Use the 

targeted pixels’ Neighboring/adjacent  Clues 

Combines information from nearby pixels 

and spectral bands to better detect patterns 

and clean noise without losing structure. 

• Preservation – Keep Fine Details Sharp 

http://www.ijasem.org/
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Separates high-frequency details (like edges 

and textures) from noise to avoid blurring, 

ensuring the image stays sharp and clear 

after denoising. 

 

Fig.1: System architecture 

MODULES: 

To implement this project we have designed 

following modules. 

▪ Initial Input: This acts a gateway to spatial 

attention modules, nurturing profound 

spatial sample information.  

▪ Upgraded Input: The Upgraded Input 

seamlessly follows the trail of the Initial 

Input, inheriting the responsibility of data 

transformation. This component carries 

updated samples of the Initial Input for each 

iteration, continuing its journey. In this 

phase, the input is directed towards the ASC 

(Adaptive Spatial Correlation) module, 

diligently amalgamating the output of 

Spatial Attention with Initial Input features. 

▪ ASC Module (Adaptive Spatial Correlation): 

The ASC module stands as a central element 

in the AAFEHDN block, where data 

evolution takes on novel dimensions. Input 

from the Upgraded Input undergoes s 

processing, and its output is transmitted to 

both Spectral Attention and the PSCA 

(Pixel-Wise Spatial Channel Attention) 

▪ Pixel-Wise Spatial Channel Attention 

(PSCA) Module: The PSCA module, 

intricately linked with the ASC module, 

takes input from both ASC and Spectral 

Modules. In this stage, data undergoes 

detailed processing [20], and the output 

becomes intertwined with the Spectral 

Attention element. 

▪ Spatial Attention: In the final phase of the 

AAFEHDN block, the Spatial Attention 

component refines hyperspectral data. It 

takes input from multiple features, adding 

spatial finesse by incorporating samples 

from Spectral Attention and Manual Input. 

4. IMPLEMENTATION 

Decompose Frequency (Architecture) Network:  

The architecture of Decompose Frequency assumes a 

pivotal role in our quest to denoise hyperspectral 

datasets. It encapsulates the core of AAFEHDN, a 

complex mechanism that guides the conversion of 

Spatial-Spectral (SS) data, culminating in a clear and 

denoised hyperspectral image. 

Geometrical Characteristics: Feature Extraction: 

 (a). Module for Extracting Spatial Features: At the 

core of Geometrical Characteristics lies the Spatial 

Features Extraction Module. This unit is dedicated to 

capturing the subtleties of spatial data, delving into 

the spatial arrangement, patterns, and relationships 

that characterize the hyperspectral landscape. 
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(b) Module for Extracting Multiscale Separable 

Spectral Features: Spectral features, often present in 

the frequency domain, play a pivotal role in 

hyperspectral data analysis. The Multiscale Separable 

Spectral Features Extraction Module is a dynamic 

component that unveils the mysteries of spectral data 

across different scales. 

Spatial and Spectral: Attention Module 

(a) Spatial Focus Unit: An integral element of 

the Frequency Decomposition Focus Unit, 

this module is committed to amplifying 

spatial attributes in hyperspectral images. 

Spatial attributes encompass the spatial 

organization of elements in the data, critical 

for precise analysis. 

(b) Spectral (Channel) Attention Module: 

Complementing the Spatial Attention 

Module, the Spectral Attention Module 

focuses on enhancing features in the spectral 

or channel domain within hyperspectral 

images. 

ASC and PSCA: Network Modules 

The Attentive Skip Connection (ASC) utilizes 

high-frequency elements for detailed intricacies, 

and low-frequency components for broader 

patterns, enhancing contextual understanding and 

nuanced predictions. 

The Progressive Spectral Channel Attention 

(PSCA) dynamically focuses on specific spectral 

channels, facilitating adaptation to diverse 

frequency patterns for optimal task performance. 

 

Quantitative Evaluation: Evaluating Metrics 

Measurement 

Each metric crafts a distinct narrative about the 

visual data it assesses, offering a holistic view of 

the components that define image excellence. 

PSNR serves as the virtuoso in evaluating image 

quality, expressing itself through ratios. 

5. EXPERIMENTAL RESULTS 

 

 

Fig.2: Graph 

 

Fig 3: Gaussian Benchmark Experiments 

 

Fig 3: Additional Resuts on RealHSI and CAVE 
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Fig.4: Output screen 

 

Fig.5: Output screen 

 

       Fig.6: Output screen 

6. CONCLUSION 

In this project, we implemented and analyzed the 

performance of the AAFEHDN (Attention-

Augmented Feature Extraction Hyperspectral 

Denoising Network) model for denoising 

hyperspectral images. The model leverages deep 

convolutional networks with attention mechanisms to 

enhance spatial-spectral feature extraction while 

effectively suppressing various types of noise. 

By applying AAFEHDN to real-world datasets such 

as Indian Pines, the results demonstrated that the 

model successfully preserved critical spatial and 

spectral information even in the presence of Gaussian 

and mixed noise. It outperformed traditional 

denoising methods in both visual quality and 

quantitative metrics such as PSNR (Peak Signal-to-

Noise Ratio) and SSIM (Structural Similarity Index). 

Overall, this project highlights the strength of deep 

learning—especially attention-based architectures—

in handling high-dimensional, noise-sensitive data 

like hyperspectral images. The successful denoising 
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results confirm the potential of AAFEHDN for 

improving the reliability of hyperspectral imaging in 

real-world applications such as remote sensing, 

agriculture, and environmental monitoring. 
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