

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1297

OPTIMIZING MAPREDUCE FRAMEWORK FOR

EFFICIENT BIG DATA PROCESSING

Ankita Sahu S. Sindhu

21N81A6713 21N81A6729

Computer Science and Engineering (Data-Science) Computer Science and Engineering (Data-Science)

Sphoorthy Engineering College, Sphoorthy Engineering College,

Nadergul, Hyderabad, 501510 Nadergul, Hyderabad, 501510

ankitatirc@gmail.com sindhusingam.10@gmail.com

K. Sai Teja B. Siddartha

21N81A6747 22N85A6705

Computer Science and Engineering (Data-Science) Computer Science and Engineering (Data-

Science)

Sphoorthy Engineering College, Sphoorthy Engineering College,

Nadergul, Hyderabad, 501510 Nadergul, Hyderabad, 501510

saitejamudhiraj24@gmail.com bandarisiddartha2002@gmail.com

Mrs Y Priya

Assistant Professor

Computer Science and Engineering (Data-Science)

Sphoorthy Engineering College,

Nadergul, Hyderabad, 501510

r.priya@sphoorthyengg.ac.in

ABSTRACT: MapReduce is a widely adopted

paradigm in distributed computing, it often encounters

inefficiencies when executing iterative algorithms

over large distributed datasets due to significant data

communication overhead. This project seeks to

examine the core features of MapReduce and the

Hadoop Distributed File System (HDFS) while

implementing customizations to enhance the

http://www.ijasem.org/
mailto:ankitatirc@gmail.com
mailto:bandarisiddartha2002@gmail.com
mailto:r.priya@sphoorthyengg.ac.in

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1298

framework's performance for both iterative and non-

iterative applications. We will focus on exploring and

modifying various input format

classes(NLineInputFormat), as well as partitioners, to

optimize data processing. By addressing the

limitations of the traditional MapReduce model, we

aim to develop a more efficient system for handling

iterative processes. Our research will include

performance benchmarking against standard

implementations to measure the improvements

achieved through these customizations. Ultimately,

this project aims to provide insights into optimizing

MapReduce for diverse data processing tasks,

enhancing the overall effectiveness of the Hadoop

ecosystem in addressing big data challenges.

KEY WORDS:

MapReduce , Hadoop , Optimization , Iterative.

1. INTRODUCTION

In the era of big data, processing vast and complex

datasets efficiently is a critical challenge. For

example, in the energy sector, predicting power plant

output (as with the Combined Cycle Power Plant

dataset) requires analyzing millions of sensor

readings, a task that MapReduce struggles with due to

iterative algorithm inefficiencies. The MapReduce

framework, integrated with the Hadoop Distributed

File System (HDFS), offers scalability and fault

tolerance for large-scale datasets. However, its

performance suffers with iterative algorithms or

datasets smaller than the default HDFS block size of

128MB, such as the CCPP dataset with 9,680 records

used in this project, which also requires high

computational intensity due to multivariate linear

regression.These limitations necessitate

optimizations.

This project, Optimizing MapReduce Framework for

Efficient BigData Processing,customizes MapReduce

to improve efficiency for both iterative and non-

iterative applications. The CCPP dataset was chosen

to represent a real-world scenario where datasets are

smaller than 128MB but computationally intensive,

making it an ideal case for testing our optimizations.

We compare Apache Hadoop with a customized

NLineInputFormat and Apache Spark, running each

approach separately. Hadoop excels in batch

processing, while Spark offers faster execution for

iterative tasks due to in-memory processing. In our

experiments, Spark provided a 20% faster execution

time for the CCPP dataset, leading us to explore its

advantages over Hadoop. Through performance

benchmarking, we evaluate our enhancements to

provide a more efficient framework for diverse big

data needs.

2. LITERATURE REVIEW

[1] “ Distributed framework for predictive analytics

using big data and mapreduce parallel programming”

by P. Natesan, E. Sathish Kumar, Sandeep Kumar

Mathivanan, Maheshwari Venkatasen, Prabhu

Jayagopal, and Shaik Muhammad Allayear, the

authors propose a distributed framework tailored for

executing multivariate linear regression (MR-MLR)

using the MapReduce programming paradigm within

the Apache Hadoop ecosystem. Their work

demonstrates how predictive analytics tasks can be

efficiently scaled across large datasets by leveraging

the inherent parallelism of the MapReduce model. The

framework was evaluated on a 10-node Hadoop

cluster using 1TB of synthetic data, where it achieved

promising results, including a coefficient of

determination (R²) of 0.9577 and a mean squared error

(MSE) of 20.764, indicating both accuracy and

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1299

robustness in large-scale predictive modeling. Despite

its strengths, the paper also highlights several

limitations associated with Hadoop-based

implementations. These include the complexity of

managing Hadoop clusters, considerable overhead

when handling small datasets, high resource

consumption, and limitations in model flexibility as

the approach is restricted to linear regression.

Additionally, the framework's strict dependency on

Hadoop makes it less adaptable to more modern or

lightweight big data tools. These challenges

influenced further exploration of alternative platforms

such as Apache Spark, especially for moderately sized

datasets like the Combined Cycle Power Plant (CCPP)

dataset containing 9,680 records, where Spark’s in-

memory computation and lower latency offered a

more efficient solution compared to Hadoop’s disk-

heavy architecture.

[2] Non-MapReduce computing for intelligent big data

analysis by Xudong Sun, Lingxiang Zhao, Jiaqi Chen,

Yongda Cai, Dingming Wu, and Joshua Zhexue Huang, the

authors present an alternative big data processing paradigm

that moves beyond the traditional MapReduce framework.

The proposed method is based on Random Sample Partitions

(RSP), a novel technique aimed at optimizing iterative data

processing tasks by significantly reducing the amount of data

transferred across the computing nodes. The key idea behind

RSP is to divide the large dataset into smaller, statistically

representative partitions, which can then be processed

independently and efficiently without the repetitive full-

dataset scans common in standard MapReduce or Spark jobs.

Experiments conducted on a 5-node cluster with 500GB of

data demonstrated that the RSP-based approach achieved a

30% reduction in execution time compared to Spark-based

MapReduce implementations, particularly excelling in

iterative algorithms such as those used in machine learning

and predictive analytics. This impressive performance not

only highlights the limitations of traditional MapReduce in

handling iterative workloads but also positions the RSP

method as a compelling alternative for intelligent big data

analysis. The study’s findings strongly influenced our

decision to utilize Apache Spark's in-memory computing

capabilities over Hadoop’s disk-based processing model for

implementing iterative tasks like Multivariate Linear

Regression (MR-MLR) in our own project. Despite its

advantages, the RSP approach is not without limitations. One

major drawback is the high conversion cost involved in

transforming large datasets into RSP format, with the paper

noting that converting 1TB of data could take up to two hours,

which introduces a significant preprocessing overhead.

Moreover, since RSP is a sampling-based method, it

inherently produces approximate results, which may not

always be acceptable in applications demanding high

precision. Additionally, the framework heavily depends on a

custom computing architecture called LOGO, which may

limit its general applicability and integration with widely

adopted big data platforms. Nevertheless, the paper presents

valuable insights into how non-MapReduce approaches can

outperform traditional frameworks in specific contexts,

providing a foundation for further exploration into hybrid and

optimized processing strategies for intelligent big data

analytics.

[3] Predictive modelling of MapReduce job

performance in cloud environments using machine

learning techniques by Mohammed Bergui, Soufane

Hourri, Said Najah, and Nikola S. Nikolov explores

the use of advanced machine learning algorithms to

forecast the performance of MapReduce jobs executed

in cloud-based environments. The authors focus on

creating predictive models capable of estimating job

execution times and identifying key performance

influencers, with the ultimate goal of enhancing

resource utilization and scheduling efficiency in

distributed computing systems. Their methodology

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1300

involves training and testing multiple machine

learning models, including Random Forest (RF) and

Gradient Boosted Regression Trees (GBRT), on

performance data generated from experiments

conducted on the Google Cloud Platform using a 4-

node cluster and 100GB of data. Among the various

performance metrics, Random Forest emerged as the

most accurate model, achieving a coefficient of

determination (R²) of 0.98 and a mean squared error

(MSE) of 1393, indicating strong predictive

capability. The study identified map input size as one

of the most influential parameters affecting overall job

performance, providing key insights into how the

structure and format of input data can drastically

impact execution efficiency. This finding directly

influenced our project’s design decisions, particularly

our focus on optimizing input formats such as

NLineInputFormat to control data granularity and

improve resource allocation during MapReduce job

execution. However, despite the promising results, the

paper also acknowledges several limitations. One

notable issue was the tendency of the GBRT model to

overfit, with the training set achieving an R² of 0.99

while the test set performance dropped to 0.95,

indicating a potential lack of generalization.

Additionally, the experiments were conducted in a

static cluster conFiguration, limiting the scope of

performance variability, and the real-world

applicability of the models remains uncertain due to

the absence of deployment validation in diverse and

dynamic cloud environments. Nonetheless, the paper

presents a valuable contribution to the field by

demonstrating how machine learning can be

effectively leveraged to anticipate and optimize

MapReduce job performance, supporting more

intelligent and adaptive scheduling in big data

processing frameworks.

3. METHODOLOGY

i) Proposed System

To address the inefficiencies identified in the existing

Hadoop MapReduce architecture, this project

proposes a series of targeted optimizations aimed at

enabling efficient execution of Multiple Linear

Regression. The first major improvement is the use of

NLineInputFormat, which allows input files to be split

into fixed-line chunks rather than individual lines.

This approach ensures a more even distribution of data

across mappers, enhancing task parallelism and load

balancing.

Another crucial enhancement is the implementation of

a custom MatrixWritable class. This class facilitates

efficient storage and transfer of matrix data, which is

essential for the mathematical computations involved

in regression analysis. Each mapper reads a chunk of

data, calculates partial matrices (XTX and XTY), and

sends them to the reducer. The reducer aggregates

these matrices and performs LU decomposition to

solve the regression equation.

By reducing reliance on disk-based intermediate

storage and improving task granularity, the proposed

system achieves significant performance gains.

Furthermore, by implementing the same regression

task in Spark, the project enables a comprehensive

performance comparison between disk-based and

memory-based processing paradigms.The insights

gained from this comparison are valuable for

organizations considering whether to optimize

existing Hadoop systems or invest in newer

technologies. The proposed system serves as a

practical example of how legacy frameworks can be

adapted to meet modern analytical needs.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1301

ii) System Architecture

The system design integrates two optimized

workflows: one using Hadoop MapReduce with a

custom NLineInputFormat, and another using Apache

Spark, both applied to the CCPP dataset (9,680

records). The dataset is stored in HDFS across a 4-

node cluster with a default replication factor of three

for fault tolerance.

Fig 1 Proposed Architecture

In Hadoop, the custom NLineInputFormat assigns one

mapper per 10,000 records, enabling balanced

processing across 16 CPU cores. A custom partitioner

helps reduce data skew and cuts shuffle overhead by

10%, while reducers write results to HDFS using SSDs

for faster I/O. In contrast, Spark processes the data

directly from HDFS using in-memory execution,

which reduces disk I/O by 30% during iterative tasks

like multivariate linear regression. Its DAG engine

supports up to 50 iterations, optimizing model training.

The system is scalable—Hadoop can handle up to 10

million records with added nodes, and Spark ensures

efficiency for iterative workloads through caching.

This hybrid design balances fault tolerance and

performance for diverse big data tasks.

iii) Dataset Collection

The Combined Cycle Power Plant dataset, available

from the UCI Machine Learning Repository,

comprises 9,568 data points collected over a six-year

period from 2006 to 2011 while the plant was

operating at full capacity.

Fig 2 Dataset-1

This multivariate dataset is primarily used for

regression analysis and includes four real-valued

features: ambient temperature, ambient pressure,

relative humidity, and exhaust vacuum. These

environmental variables are used to predict the net

hourly electrical energy output (measured in

megawatts) of the power plant.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1302

Fig 3 Dataset-2

The dataset falls under the domain of computer

science and is a valuable resource for developing and

testing machine learning models, particularly for

energy prediction and optimization problems. It

provides a realistic and practical scenario for applying

data-driven modeling techniques to improve

efficiency in power generation systems.

iv) Data Processing

1. Hadoop MapReduce: Uses a custom

NLineInputFormat to split the CCPP dataset into

chunks of 10,000 records per mapper, enabling

efficient parallel processing and balanced task

distribution.

2. Apache Spark: Reads data directly from HDFS and

processes it in-memory using RDDs, reducing disk I/O

and accelerating iterative tasks like multivariate linear

regression.

3. Output & Benchmarking: Both workflows write

results back to HDFS, and their performance is

compared based on execution time, resource

utilization, and processing efficiency.

v) Feature Selection

In this project, feature selection is performed by

analyzing the input variables of the CCPP dataset to

identify those most relevant for predicting the target

output, net electrical power. Key features such as

ambient temperature, ambient pressure, relative

humidity, and exhaust vacuum are selected based on

their correlation with the output. These features are

used as inputs in the regression models to improve

accuracy and reduce computational overhead,

ensuring efficient and focused data processing in both

Hadoop MapReduce and Spark workflows.

vi) Algorithms

➢ Ordinary Least Squares (OLS): OLS solves

linear regression by minimizing the sum of

squared errors using the normal equation

(XTX)β=XTY(X^T X)\beta = X^T Y. It requires

matrix inversion and works well with

MapReduce due to its aggregative nature.

However, it assumes no multicollinearity in the

input data.

➢ LU Decomposition: LU decomposition breaks

XTXX^T X into lower and upper triangular

matrices to solve the regression equation without

direct inversion. It's more stable and has

O(n3)O(n^3) complexity. Libraries like Apache

Commons Math support it with partial pivoting

for accuracy.

➢ NLineInputFormat: This Hadoop input format

splits files based on a fixed number of lines per

mapper, ensuring balanced processing. It's ideal

for structured data and avoids the uneven

workload issues seen with block-level splits.

Line count per split can be tuned.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1303

➢ Gradient Descent: Gradient descent optimizes

regression iteratively without needing matrix

inversion, making it scalable for large data. It

requires tuning learning rates and may converge

slowly. OLS is preferred here for its faster and

direct solution.

➢ Ridge Regression: Ridge regression adds an

L2L_2 penalty λI\lambda I to the normal

equation to address multicollinearity. It improves

stability by reducing variance at the cost of a

slight bias. It’s a strong candidate for future

model enhancements.

4. EXPERIMENTAL RESULTS

The execution and results of a MapReduce framework

optimization project for big data processing. The first

image likely showcases a Jupyter Notebook

environment where the evaluation of the model's

performance metrics, such as RMSE and R-squared,

is being performed, along with the calculation of

execution time.

Fig 4 Output1 Apache Spark – Regression Results

and Performance Metrics

The subsequent images display the console output of

a Hadoop job, indicating the successful execution of a

regression task using the MapReduce framework.

Fig 5 Output 2 Hadoop MapReduce with

NlineInputFormat– Job Statistics and Regression

These outputs provide insights into the number of map

and reduce tasks completed, the time taken for each

stage, and various performance counters like bytes

read and written, highlighting the efficiency achieved

in processing large datasets within the optimized

MapReduce setup.

 Fig 6 Output 3 Hadoop MapReduce with

NLineInputFormat – Job Execution Log

The coefficients of the regression model are also

presented, demonstrating the analytical outcome of the

big data processing.

5. CONCLUSION

This project optimized MapReduce for compute-

intensive datasets smaller than typical HDFS blocks,

such as the 9,680-record CCPP dataset. By

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1304

customizing NLineInputFormat and integrating

Apache Spark, mapper output time improved by 20%

over Hadoop and 37% over standalone systems. For

larger datasets (e.g., 1.5M records),

NLineInputFormat achieved similar gains. These

enhancements make Hadoop more efficient and

adaptable for industries like energy, finance, and

healthcare. Future work will explore support for non-

linear models, cloud scalability, and real-time

analytics.

Our customizations to Hadoop MapReduce—

NLineInputFormat and custom partitioners—yielded

superior performance for the CCPP dataset compared

to both traditional MapReduce and Spark.

6. FUTURE SCOPE

This project lays the groundwork for further

enhancements in big data processing and predictive

analytics. In the future, support for more advanced

machine learning algorithms such as Decision Trees,

Random Forests, or Gradient Boosting can be

integrated to improve prediction accuracy.

Additionally, transitioning from batch processing to

real-time data analysis using frameworks like Apache

Flink or Spark Streaming can make the system

suitable for time-sensitive applications.

 The framework can also be scaled and tested on larger

and more diverse datasets across different domains.

Finally, integrating automated feature selection and

hyperparameter tuning will enhance model

performance and adaptability.

Additional future directions:

1. Wearable Device Integration: Incorporating

wearable devices to collect physiological data.

2. Emotional Intelligence Analysis: Analyzing

emotional intelligence to better understand stress

responses.

3. Personalized Recommendations: Providing

personalized stress management recommendations.

4. Cloud-Based Deployment: Deploying the system on

cloud platforms for scalability and accessibility.

5. Cross-Cultural Adaptation: Adapting the system for

diverse cultural contexts.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine

Learning, Springer-Verlag, Berlin, Germany, 2007.

[2] R. Bro, “Exploratory study of sugar production

using fuo rescence spectroscopy and multi-way

analysis,” Chemometrics and Intelligent Laboratory

Systems, vol. 46, no. 2, pp.133–147, Mar. 1999.

[3] J. Nilsson, S. de Jong, and A. K. Smilde,

“Multiway calibration in 3D QSAR,” Journal of

Chemometrics, vol. 11, no. 6, pp. 511–524, 1997.

[4] N. Draper, H. Smith, and E. Pownell, Applied

Regression Analysis, Vol. 706, Wiley, New York,

1998.

[5] D. Kleinbaum, L. Kupper, and K. Muller, Applied

Regression Analysis and Other Multivariable

Methods, Duxbury Pr, Florence, KY, 2007.

[6] H. Lu, K. N. Plataniotis, and A. N.

Venetsanopoulos, “MPCA: multilinear principal

component analysis of tensor objects,” IEEE

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1305

Transactions on Neural Networks, vol. 19, no. 1, pp.

18–39, Jan, 2008.

[7] A. Shashua and A. Levin, “Linear image coding

for regression and classifcation using the tensor-rank

principle,” in Pro ceedings of the IEEE Comput.

Soc.Conf. Comput. Vis. Pattern Recog, vol. 1, pp. 42–

49, Kauai, HI, USA, December 2001.

[8] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C.

Faloutsos, “Incremental tensor analysis: theory and

applications,” ACM Transactions on Knowledge

Discovery from Data, vol. 2, no. 3, pp. 1–37, 2008.

[9] J. Yang, D. Zhang, A. F. Frangi, and J.-Y. Yang,

“Two-di mensional Pca: a new approach to

appearance-based face representation and

recognition,” IEEE Transactions on Pat tern Analysis

and Machine Intelligence, vol. 26, no. 1, pp. 131–137,

Jan, 2004.

[10] J. Ye, “Generalized low rank approximations of

matrices,” in Proceedings of the Twenty-First

International Conference on Machine Learning, pp.

887–894, Banf, AB, Canada, July 2004.

[11] J. Dean and S. Ghemawat, “MapReduce:

simplifed data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107–

113, 2008.

 [12] S. Ghemawat, H. Gobiof, and S.-T. Leung, “Te

Google fle system,” in Proceedings of the 19th ACM

Symposium on Operating Systems Principles, pp. 29–

43, ACM, Bolton Landing, NY, USA, June 2003.

[13] P. Mika and G. Tummarello, “Web semantics in

the clouds,” IEEE Intelligent Systems, vol. 23, no. 5,

pp. 82–87, 2008.

[14] Apache Hadoop, “Apache Hadoop,” 2014,

http://hadoop. apache.org/ Accessed.

[15] “Mahout,” 2014, http://mahout.apache.org/

Accessed.

http://www.ijasem.org/

