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ABSTRACT: MapReduce is a widely adopted 

paradigm in distributed computing, it often encounters 

inefficiencies when executing iterative algorithms 

over large distributed datasets due to significant data 

communication overhead. This project seeks to 

examine the core features of MapReduce and the 

Hadoop Distributed File System (HDFS) while 

implementing customizations to enhance the 
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framework's performance for both iterative and non-

iterative applications. We will focus on exploring and 

modifying various input format 

classes(NLineInputFormat), as well as partitioners, to 

optimize data processing. By addressing the 

limitations of the traditional MapReduce model, we 

aim to develop a more efficient system for handling 

iterative processes. Our research will include 

performance benchmarking against standard 

implementations to measure the improvements 

achieved through these customizations. Ultimately, 

this project aims to provide insights into optimizing 

MapReduce for diverse data processing tasks, 

enhancing the overall effectiveness of the Hadoop 

ecosystem in addressing big data challenges. 
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MapReduce , Hadoop , Optimization , Iterative. 

1. INTRODUCTION 

In the era of big data, processing vast and complex 

datasets efficiently is a critical challenge. For 

example, in the energy sector, predicting power plant 

output (as with the Combined Cycle Power Plant 

dataset) requires analyzing millions of sensor 

readings, a task that MapReduce struggles with due to 

iterative algorithm inefficiencies. The MapReduce 

framework, integrated with the Hadoop Distributed 

File System (HDFS), offers scalability and fault 

tolerance for large-scale datasets. However, its 

performance suffers with iterative algorithms or 

datasets smaller than the default HDFS block size of 

128MB, such as the CCPP dataset with 9,680 records 

used in this project, which also requires high 

computational intensity due to multivariate linear 

regression.These limitations necessitate 

optimizations. 

This project, Optimizing MapReduce Framework for 

Efficient BigData Processing,customizes MapReduce 

to improve efficiency for both iterative and non-

iterative applications. The CCPP dataset was chosen 

to represent a real-world scenario where datasets are 

smaller than 128MB but computationally intensive, 

making it an ideal case for testing our optimizations. 

We compare Apache Hadoop with a customized 

NLineInputFormat and Apache Spark, running each 

approach separately. Hadoop excels in batch 

processing, while Spark offers faster execution for 

iterative tasks due to in-memory processing. In our 

experiments, Spark provided a 20% faster execution 

time for the CCPP dataset, leading us to explore its 

advantages over Hadoop. Through performance 

benchmarking, we evaluate our enhancements to 

provide a more efficient framework for diverse big 

data needs. 

2. LITERATURE REVIEW 

[1] “  Distributed framework for predictive analytics 

using big data and mapreduce parallel programming” 

by P. Natesan, E. Sathish Kumar, Sandeep Kumar 

Mathivanan, Maheshwari Venkatasen, Prabhu 

Jayagopal, and Shaik Muhammad Allayear, the 

authors propose a distributed framework tailored for 

executing multivariate linear regression (MR-MLR) 

using the MapReduce programming paradigm within 

the Apache Hadoop ecosystem. Their work 

demonstrates how predictive analytics tasks can be 

efficiently scaled across large datasets by leveraging 

the inherent parallelism of the MapReduce model. The 

framework was evaluated on a 10-node Hadoop 

cluster using 1TB of synthetic data, where it achieved 

promising results, including a coefficient of 

determination (R²) of 0.9577 and a mean squared error 

(MSE) of 20.764, indicating both accuracy and 
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robustness in large-scale predictive modeling. Despite 

its strengths, the paper also highlights several 

limitations associated with Hadoop-based 

implementations. These include the complexity of 

managing Hadoop clusters, considerable overhead 

when handling small datasets, high resource 

consumption, and limitations in model flexibility as 

the approach is restricted to linear regression. 

Additionally, the framework's strict dependency on 

Hadoop makes it less adaptable to more modern or 

lightweight big data tools. These challenges 

influenced further exploration of alternative platforms 

such as Apache Spark, especially for moderately sized 

datasets like the Combined Cycle Power Plant (CCPP) 

dataset containing 9,680 records, where Spark’s in-

memory computation and lower latency offered a 

more efficient solution compared to Hadoop’s disk-

heavy architecture.  

[2] Non-MapReduce computing for intelligent big data 

analysis by Xudong Sun, Lingxiang Zhao, Jiaqi Chen, 

Yongda Cai, Dingming Wu, and Joshua Zhexue Huang, the 

authors present an alternative big data processing paradigm 

that moves beyond the traditional MapReduce framework. 

The proposed method is based on Random Sample Partitions 

(RSP), a novel technique aimed at optimizing iterative data 

processing tasks by significantly reducing the amount of data 

transferred across the computing nodes. The key idea behind 

RSP is to divide the large dataset into smaller, statistically 

representative partitions, which can then be processed 

independently and efficiently without the repetitive full-

dataset scans common in standard MapReduce or Spark jobs. 

Experiments conducted on a 5-node cluster with 500GB of 

data demonstrated that the RSP-based approach achieved a 

30% reduction in execution time compared to Spark-based 

MapReduce implementations, particularly excelling in 

iterative algorithms such as those used in machine learning 

and predictive analytics. This impressive performance not 

only highlights the limitations of traditional MapReduce in 

handling iterative workloads but also positions the RSP 

method as a compelling alternative for intelligent big data 

analysis. The study’s findings strongly influenced our 

decision to utilize Apache Spark's in-memory computing 

capabilities over Hadoop’s disk-based processing model for 

implementing iterative tasks like Multivariate Linear 

Regression (MR-MLR) in our own project. Despite its 

advantages, the RSP approach is not without limitations. One 

major drawback is the high conversion cost involved in 

transforming large datasets into RSP format, with the paper 

noting that converting 1TB of data could take up to two hours, 

which introduces a significant preprocessing overhead. 

Moreover, since RSP is a sampling-based method, it 

inherently produces approximate results, which may not 

always be acceptable in applications demanding high 

precision. Additionally, the framework heavily depends on a 

custom computing architecture called LOGO, which may 

limit its general applicability and integration with widely 

adopted big data platforms. Nevertheless, the paper presents 

valuable insights into how non-MapReduce approaches can 

outperform traditional frameworks in specific contexts, 

providing a foundation for further exploration into hybrid and 

optimized processing strategies for intelligent big data 

analytics. 

[3] Predictive modelling of MapReduce job 

performance in cloud environments using machine 

learning techniques by Mohammed Bergui, Soufane 

Hourri, Said Najah, and Nikola S. Nikolov explores 

the use of advanced machine learning algorithms to 

forecast the performance of MapReduce jobs executed 

in cloud-based environments. The authors focus on 

creating predictive models capable of estimating job 

execution times and identifying key performance 

influencers, with the ultimate goal of enhancing 

resource utilization and scheduling efficiency in 

distributed computing systems. Their methodology 
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involves training and testing multiple machine 

learning models, including Random Forest (RF) and 

Gradient Boosted Regression Trees (GBRT), on 

performance data generated from experiments 

conducted on the Google Cloud Platform using a 4-

node cluster and 100GB of data. Among the various 

performance metrics, Random Forest emerged as the 

most accurate model, achieving a coefficient of 

determination (R²) of 0.98 and a mean squared error 

(MSE) of 1393, indicating strong predictive 

capability. The study identified map input size as one 

of the most influential parameters affecting overall job 

performance, providing key insights into how the 

structure and format of input data can drastically 

impact execution efficiency. This finding directly 

influenced our project’s design decisions, particularly 

our focus on optimizing input formats such as 

NLineInputFormat to control data granularity and 

improve resource allocation during MapReduce job 

execution. However, despite the promising results, the 

paper also acknowledges several limitations. One 

notable issue was the tendency of the GBRT model to 

overfit, with the training set achieving an R² of 0.99 

while the test set performance dropped to 0.95, 

indicating a potential lack of generalization. 

Additionally, the experiments were conducted in a 

static cluster conFiguration, limiting the scope of 

performance variability, and the real-world 

applicability of the models remains uncertain due to 

the absence of deployment validation in diverse and 

dynamic cloud environments. Nonetheless, the paper 

presents a valuable contribution to the field by 

demonstrating how machine learning can be 

effectively leveraged to anticipate and optimize 

MapReduce job performance, supporting more 

intelligent and adaptive scheduling in big data 

processing frameworks. 

3. METHODOLOGY 

i) Proposed System 

To address the inefficiencies identified in the existing 

Hadoop MapReduce architecture, this project 

proposes a series of targeted optimizations aimed at 

enabling efficient execution of Multiple Linear 

Regression. The first major improvement is the use of 

NLineInputFormat, which allows input files to be split 

into fixed-line chunks rather than individual lines. 

This approach ensures a more even distribution of data 

across mappers, enhancing task parallelism and load 

balancing. 

Another crucial enhancement is the implementation of 

a custom MatrixWritable class. This class facilitates 

efficient storage and transfer of matrix data, which is 

essential for the mathematical computations involved 

in regression analysis. Each mapper reads a chunk of 

data, calculates partial matrices (XTX and XTY), and 

sends them to the reducer. The reducer aggregates 

these matrices and performs LU decomposition to 

solve the regression equation. 

By reducing reliance on disk-based intermediate 

storage and improving task granularity, the proposed 

system achieves significant performance gains. 

Furthermore, by implementing the same regression 

task in Spark, the project enables a comprehensive 

performance comparison between disk-based and 

memory-based processing paradigms.The insights 

gained from this comparison are valuable for 

organizations considering whether to optimize 

existing Hadoop systems or invest in newer 

technologies. The proposed system serves as a 

practical example of how legacy frameworks can be 

adapted to meet modern analytical needs. 
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ii) System Architecture 

The system design integrates two optimized 

workflows: one using Hadoop MapReduce with a 

custom NLineInputFormat, and another using Apache 

Spark, both applied to the CCPP dataset (9,680 

records). The dataset is stored in HDFS across a 4-

node cluster with a default replication factor of three 

for fault tolerance. 

 

 

Fig 1 Proposed Architecture 

In Hadoop, the custom NLineInputFormat assigns one 

mapper per 10,000 records, enabling balanced 

processing across 16 CPU cores. A custom partitioner 

helps reduce data skew and cuts shuffle overhead by 

10%, while reducers write results to HDFS using SSDs 

for faster I/O. In contrast, Spark processes the data 

directly from HDFS using in-memory execution, 

which reduces disk I/O by 30% during iterative tasks 

like multivariate linear regression. Its DAG engine 

supports up to 50 iterations, optimizing model training. 

The system is scalable—Hadoop can handle up to 10 

million records with added nodes, and Spark ensures 

efficiency for iterative workloads through caching. 

This hybrid design balances fault tolerance and 

performance for diverse big data tasks. 

iii) Dataset Collection 

The Combined Cycle Power Plant dataset, available 

from the UCI Machine Learning Repository, 

comprises 9,568 data points collected over a six-year 

period from 2006 to 2011 while the plant was 

operating at full capacity.  

 

Fig 2 Dataset-1 

This multivariate dataset is primarily used for 

regression analysis and includes four real-valued 

features: ambient temperature, ambient pressure, 

relative humidity, and exhaust vacuum. These 

environmental variables are used to predict the net 

hourly electrical energy output (measured in 

megawatts) of the power plant. 
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Fig 3 Dataset-2 

The dataset falls under the domain of computer 

science and is a valuable resource for developing and 

testing machine learning models, particularly for 

energy prediction and optimization problems. It 

provides a realistic and practical scenario for applying 

data-driven modeling techniques to improve 

efficiency in power generation systems. 

iv) Data Processing 

1. Hadoop MapReduce: Uses a custom 

NLineInputFormat to split the CCPP dataset into 

chunks of 10,000 records per mapper, enabling 

efficient parallel processing and balanced task 

distribution. 

2.  Apache Spark: Reads data directly from HDFS and 

processes it in-memory using RDDs, reducing disk I/O 

and accelerating iterative tasks like multivariate linear 

regression. 

3.  Output & Benchmarking: Both workflows write 

results back to HDFS, and their performance is 

compared based on execution time, resource 

utilization, and processing efficiency. 

v) Feature Selection 

In this project, feature selection is performed by 

analyzing the input variables of the CCPP dataset to 

identify those most relevant for predicting the target 

output, net electrical power. Key features such as 

ambient temperature, ambient pressure, relative 

humidity, and exhaust vacuum are selected based on 

their correlation with the output. These features are 

used as inputs in the regression models to improve 

accuracy and reduce computational overhead, 

ensuring efficient and focused data processing in both 

Hadoop MapReduce and Spark workflows.  

vi ) Algorithms 

➢ Ordinary Least Squares (OLS): OLS solves 

linear regression by minimizing the sum of 

squared errors using the normal equation 

(XTX)β=XTY(X^T X)\beta = X^T Y. It requires 

matrix inversion and works well with 

MapReduce due to its aggregative nature. 

However, it assumes no multicollinearity in the 

input data. 

➢ LU Decomposition: LU decomposition breaks 

XTXX^T X into lower and upper triangular 

matrices to solve the regression equation without 

direct inversion. It's more stable and has 

O(n3)O(n^3) complexity. Libraries like Apache 

Commons Math support it with partial pivoting 

for accuracy. 

➢ NLineInputFormat: This Hadoop input format 

splits files based on a fixed number of lines per 

mapper, ensuring balanced processing. It's ideal 

for structured data and avoids the uneven 

workload issues seen with block-level splits. 

Line count per split can be tuned. 

http://www.ijasem.org/


      ISSN 2454-9940 

     www.ijasem.org 

    Vol 19, Issue 2, 2025 

 

 

1303 

➢ Gradient Descent: Gradient descent optimizes 

regression iteratively without needing matrix 

inversion, making it scalable for large data. It 

requires tuning learning rates and may converge 

slowly. OLS is preferred here for its faster and 

direct solution. 

➢ Ridge Regression: Ridge regression adds an 

L2L_2 penalty λI\lambda I to the normal 

equation to address multicollinearity. It improves 

stability by reducing variance at the cost of a 

slight bias. It’s a strong candidate for future 

model enhancements. 

4. EXPERIMENTAL RESULTS 

The  execution and results of a MapReduce framework 

optimization project for big data processing. The first 

image  likely showcases a Jupyter  Notebook   

environment where the evaluation  of the model's 

performance metrics, such as RMSE  and  R-squared,  

is  being performed, along with the calculation of 

execution  time. 

 

Fig 4 Output1  Apache Spark – Regression Results 

and Performance Metrics 

The subsequent images  display the console output of 

a Hadoop job, indicating the successful execution of a 

regression task using the MapReduce framework.  

 

Fig  5   Output 2 Hadoop MapReduce with      

NlineInputFormat– Job Statistics and Regression  

These outputs provide insights into the number of map 

and reduce tasks completed, the time taken for each 

stage, and various performance counters like bytes 

read and written, highlighting the efficiency achieved 

in processing large datasets within the optimized 

MapReduce setup. 

 

 Fig 6  Output 3 Hadoop MapReduce with 

NLineInputFormat – Job Execution Log 

The coefficients of the regression model are also 

presented, demonstrating the analytical outcome of the 

big data processing. 

5. CONCLUSION 

This project optimized MapReduce for compute-

intensive datasets smaller than typical HDFS blocks, 

such as the 9,680-record CCPP dataset. By 
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customizing NLineInputFormat and integrating 

Apache Spark, mapper output time improved by 20% 

over Hadoop and 37% over standalone systems. For 

larger datasets (e.g., 1.5M records), 

NLineInputFormat achieved similar gains. These 

enhancements make Hadoop more efficient and 

adaptable for industries like energy, finance, and 

healthcare. Future work will explore support for non-

linear models, cloud scalability, and real-time 

analytics. 

Our customizations to Hadoop MapReduce—

NLineInputFormat and custom partitioners—yielded 

superior performance for the CCPP dataset compared 

to both traditional MapReduce and Spark. 

6.  FUTURE SCOPE 

This project lays the groundwork for further 

enhancements in big data processing and predictive 

analytics. In the future, support for more advanced 

machine learning algorithms such as Decision Trees, 

Random Forests, or Gradient Boosting can be 

integrated to improve prediction accuracy.  

Additionally, transitioning from batch processing to 

real-time data analysis using frameworks like Apache 

Flink or Spark Streaming can make the system 

suitable for time-sensitive applications. 

 The framework can also be scaled and tested on larger 

and more diverse datasets across different domains.  

Finally, integrating automated feature selection and 

hyperparameter tuning will enhance model 

performance and adaptability.  

Additional future directions: 

1. Wearable Device Integration: Incorporating 

wearable devices to collect physiological data. 

2. Emotional Intelligence Analysis: Analyzing 

emotional intelligence to better understand stress 

responses. 

3. Personalized Recommendations: Providing 

personalized stress management recommendations. 

4. Cloud-Based Deployment: Deploying the system on 

cloud platforms for scalability and accessibility. 

5. Cross-Cultural Adaptation: Adapting the system for 

diverse cultural contexts. 
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