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Abstract: This study addresses the challenge of 

accurately identifying bird species using sound 

recognition technology in ecological and conservation 

research. Traditional Convolutional Neural Network 

(CNN) models struggle with the complex relationships 

within spectrograms, hindering their deployment in 

field environments due to computational demands. To 

overcome this, we propose a lightweight model 

employing Frequency Dynamic Convolution, 

preserving the nuanced features of bird sounds across 

different frequency bands. Integrating Coordinate 

Attention enhances global information capture, 

improving model performance. By employing a 

variety of deep learning architectures including 

ResNet50 and lightweight MobileNet variants, we 

achieved promising results, notably a 96% accuracy 

with MobileNetV3 Large. Building upon this success, 

an ensemble approach further boosted accuracy. Our 

ensemble model, combining MobileNetV3 Large with 

Random Forest, achieved a perfect 100% accuracy, 

showcasing the potential of combining deep learning 

with classical machine learning techniques. This study 

demonstrates the efficacy of our compact model for 

bird species identification, offering a scalable solution 

for field deployment and contributing to population 

ecology and conservation biology research. 

“Index Terms: Deep learning, bird species 

identification, bird sounds recognition, frequency 

dynamic convolution, attention mechanism”. 

1. INTRODUCTION 

Birds play a crucial role in ecosystems, serving as 

indicators of environmental health and contributing to 

various ecological processes. Monitoring changes in 

bird populations is essential for understanding 

ecosystem dynamics and informing conservation 

efforts [1]. However, traditional methods of bird 

population monitoring, such as manual observation or 

infrared camera monitoring, are often limited in their 

efficiency and effectiveness [2]. In recent years, the 

use of bird sound recognition technology has emerged 

as a promising approach to overcome these challenges 

[3]. 

The recognition of bird sounds offers several 

advantages over traditional monitoring methods. Birds 

are widespread and often difficult to observe directly 

in their natural habitats due to their fast flight and 

elusive behavior [10]. Bird sound recognition provides 

an efficient and stable alternative, allowing 

researchers to monitor bird populations remotely and 

non-invasively [12]. With the rapid advancements in 

artificial intelligence, particularly in the field of deep 

learning, the application of machine learning 

techniques for bird sound recognition has become 

increasingly prevalent [14]. 

Early approaches to bird sound recognition relied on 

signal processing techniques to extract acoustic 
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features from bird sounds and match them with 

predefined templates [19]. However, these methods 

were computationally expensive, complex, and often 

lacked accuracy [20]. The emergence of deep learning, 

particularly convolutional neural networks (CNNs), 

revolutionized bird sound recognition by enabling the 

direct classification of spectrograms, resulting in 

higher accuracy rates [19]. For instance, Incze [19] 

demonstrated the effectiveness of CNNs in classifying 

bird sounds by converting spectrograms into acoustic 

features and employing convolutional neural networks 

for classification. 

Various techniques have been proposed to enhance the 

processing of bird sound features and improve the 

performance of classification models. Permana [21] 

introduced the Constant-Q Transform (CQT) to 

convert bird sounds into spectrograms, which were 

then classified using CNNs. Knight [22] proposed 

preprocessing techniques to improve the classification 

accuracy of CNNs by enhancing the quality of 

spectrograms. Additionally, feature fusion approaches 

have been explored to selectively combine different 

bird sound features, demonstrating the feasibility of 

improving classification accuracy [23]. 

CNNs have shown promising performance in 

processing time-frequency representations of non-

stationary signals in noisy environments [24]. These 

advancements have led to the development of 

specialized algorithms and architectures tailored for 

specific applications, such as the automated 

identification of medical conditions [25] or the 

detection of wildlife in forest environments [26]. 

To address the challenges of deploying bird sound 

recognition systems in resource-constrained 

environments, researchers have proposed lightweight 

models and algorithms optimized for low power 

consumption and computational efficiency [27]. For 

example, Solomes [26] introduced an automatic 

detection algorithm for embedded devices used in 

wildlife monitoring, while Kojima [27] developed a 

lightweight application for single-board computers. 

In recent years, novel convolutional techniques, such 

as dynamic convolution, have been proposed to 

enhance the representation capacity of lightweight 

CNNs without increasing model complexity [28]. 

Frequency dynamic convolution, introduced by Nam 

[29], has shown promise in processing spectrograms 

for acoustic event detection. These advancements, 

along with other algorithmic designs like depth 

separable convolution and architecture search, have 

contributed to improving model recognition rates, 

reducing complexity, and enhancing computational 

efficiency [30]-[34]. 

This introduction provides a comprehensive overview 

of the advancements in bird sound recognition 

technology, highlighting the importance of this field 

for ecosystem monitoring and conservation efforts. 

The subsequent sections will delve deeper into specific 

methodologies, experimental results, and the 

implications of these advancements for ecological 

research and conservation biology. 

2. LITERATURE SURVEY 

Bird sound recognition has emerged as a powerful tool 

for ecological research, enabling efficient monitoring 

of bird populations and their habitats. This literature 

survey explores recent advancements in bird sound 

recognition technology, highlighting key studies, 

methodologies, and applications in the field. 
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Wang et al. [1] investigated the functional importance 

of bird-dispersed habitats for the early recruitment of 

Taxus chinensis in fragmented forests. Their study 

underscored the ecological significance of bird 

habitats in facilitating plant dispersal and regeneration 

processes, emphasizing the interconnectedness of bird 

communities and forest ecosystems. 

Automated bird counting has gained traction as a 

valuable method for mapping regional bird 

distributions. Akçay et al. [10] proposed a deep 

learning approach for automated bird counting, 

demonstrating its efficacy in regional bird distribution 

mapping. Their study showcased the potential of deep 

learning techniques to streamline data collection 

processes and provide valuable insights into avian 

population dynamics. 

The relationship between vegetation habitats and bird 

communities in urban mountain parks was explored by 

Xu et al. [11]. Their findings shed light on the complex 

interactions between habitat characteristics and bird 

diversity, highlighting the importance of conservation 

efforts in urban green spaces to support avian 

biodiversity. 

Understanding the effect of forest structure on bird 

behavior is crucial for habitat management and 

conservation planning. Dagan and Izhaki [12] 

investigated the effect of pine forest structure on bird 

mobbing behavior, revealing insights into how habitat 

structure influences avian interactions and community 

dynamics. Their study emphasized the importance of 

habitat heterogeneity in maintaining diverse bird 

assemblages. 

In the realm of signal processing, Zhang et al. [13] 

proposed an efficient time-domain end-to-end single-

channel bird sound separation network. Their study 

addressed the challenge of separating overlapping bird 

vocalizations from audio recordings, offering a novel 

approach for extracting individual bird sounds from 

complex acoustic environments. 

Machine learning techniques have been increasingly 

applied to bird sound recognition tasks, offering 

improved accuracy and efficiency. Cinkler et al. [16] 

introduced a two-phase sensor decision approach for 

bird sound recognition and vineyard protection. Their 

study demonstrated the utility of machine learning 

algorithms in detecting bird presence and mitigating 

potential crop damage. 

Deep learning models have shown promise in fine-

grained bird species recognition. Yang and Song [17] 

proposed improvements to object detection algorithms 

for fine-grained bird recognition, enhancing the ability 

to identify specific bird species from images. 

Similarly, Huang and Basanta [18] utilized deep 

learning models for the recognition of endemic bird 

species, highlighting the potential of artificial 

intelligence in biodiversity conservation efforts. 

Early applications of deep learning in bird sound 

recognition focused on spectrogram classification 

using convolutional neural networks (CNNs). Incze et 

al. [19] pioneered the use of CNNs for bird sound 

recognition, demonstrating the effectiveness of deep 

learning techniques in classifying spectrograms and 

identifying bird species. Their study laid the 

foundation for subsequent research in the field of 

automated bird sound analysis. 

In summary, recent advancements in bird sound 

recognition technology have revolutionized ecological 

research by providing efficient tools for monitoring 

bird populations and their habitats. From automated 

bird counting algorithms to deep learning-based 
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species recognition models, these developments hold 

promise for enhancing our understanding of avian 

ecology and informing conservation strategies in a 

rapidly changing world. 

3. METHODOLOGY 

a) Proposed Work: 

The proposed work aims to develop a lightweight 

model for bird species identification in real-world field 

environments, leveraging frequency dynamic 

convolution and the Coordinate Attention (CA) 

mechanism. This model effectively captures feature 

differences in bird sounds, ensuring not-shift 

invariance of spectrograms, which is critical for 

accurate classification. By integrating frequency 

dynamic convolution, the model can adapt to the 

varying frequencies present in bird vocalizations, 

enhancing its ability to discriminate between different 

species. Furthermore, the incorporation of the CA 

mechanism improves the perception of non-stationary 

sound signals, enabling the model to better handle 

complex acoustic environments commonly 

encountered in field settings. 

Compared to existing lightweight CNN models, the 

proposed approach offers superior accuracy and 

generalization ability, making it well-suited for 

practical deployment in ecological research and 

conservation efforts. By harnessing the power of deep 

learning and innovative attention mechanisms, this 

work represents a significant advancement in the field 

of bird sound recognition, providing researchers with 

a robust tool for monitoring and studying avian 

populations in their natural habitats. 

b) System Architecture: 

 

Fig 1 Proposed Architecture 

The system architecture for wild bird species 

identification involves several key components, 

beginning with the exploration and acquisition of a 

suitable dataset comprising audio recordings of bird 

sounds. These recordings undergo data processing to 

extract relevant features, preparing them for model 

training.  

The training set is then used to train both the proposed 

lightweight model, leveraging frequency dynamic 

convolution and Coordinate Attention (CA) 

mechanism, and the existing ResNet50 model for 

comparison purposes. This step involves iterative 

optimization of model parameters to enhance 

performance. Once trained, the models are tested using 

a separate testing set to evaluate their performance in 

accurately identifying wild bird species. Performance 

evaluation metrics such as accuracy, precision, recall, 

and F1 score are calculated to assess the efficacy of 

each model In the wild bird species identification 

phase, the trained models are deployed to analyze 

audio recordings of bird sounds captured in real-world 

field environments. The models classify the sounds 

into different bird species, providing valuable insights 

into avian biodiversity and population dynamics. 

Overall, this system architecture integrates data 

exploration, processing, model training, testing, and 

performance evaluation to enable robust and accurate 
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wild bird species identification, contributing to 

ecological research and conservation efforts. 

c) Dataset Collection: 

The dataset used for wild bird species identification 

comprises audio recordings collected from three 

distinct locations: Nanjing Baguazhou area, Nanjing 

Zijin Mountain area, and the publicly available 

BirdCLEF dataset. BirdCLEF stands out as the 

primary source of labeled bird sound data, offering a 

comprehensive repository of annotated recordings for 

research purposes.  

In total, the dataset encompasses recordings from 160 

species of birds, providing a diverse and representative 

sample of avian biodiversity. Each audio recording is 

processed to generate its corresponding Log-Mel 

Spectrogram, a visual representation that captures the 

frequency content of the bird's vocalizations over time.  

The inclusion of recordings from different 

geographical regions adds variability to the dataset, 

reflecting the unique acoustic characteristics of birds 

across various habitats. This diversity enhances the 

model's ability to generalize to new environments and 

species, contributing to its robustness and 

effectiveness in real-world field applications. 

Overall, the dataset serves as a valuable resource for 

training and testing wild bird species identification 

models, facilitating research in ecological monitoring, 

biodiversity conservation, and avian ecology. 

d) Data processing: 

Pandas DataFrame: 

Utilize the pandas library to organize and manage the 

data. Create a DataFrame to store the extracted 

features and corresponding labels for each audio 

sample. 

Librosa Feature Extraction: 

Employ the librosa library to extract audio features 

from the recordings. 

Extract Sample Rate: Retrieve the sample rate from 

the audio files to ensure consistency in processing. 

Spectrogram Feature Extraction: Generate 

spectrogram features from the audio signals, capturing 

frequency content over time. Extract the label from the 

filename to associate with each spectrogram. 

Log Mel Feature Extraction: Compute the log mel 

features from the spectrograms, converting them into 

a logarithmic scale that mimics human auditory 

perception. 

Append Spectrogram Audio Features: Store the 

spectrogram audio features in an array for further 

processing and model training. 

Labeling: Obtain bird species names from the 

filenames and assign them as labels to the 

corresponding spectrogram features. 

By following these steps, the data processing pipeline 

ensures that the audio recordings are effectively 

transformed into structured data representations 

suitable for model training and evaluation. The pandas 

DataFrame facilitates easy manipulation and analysis 

of the extracted features, while librosa enables 

efficient extraction of essential audio characteristics 

for accurate bird species identification. 

e) Visualization: 
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Utilize the Seaborn and Matplotlib libraries to create 

visualizations for exploring the dataset and 

understanding the distribution of features. 

Histograms: Plot histograms to visualize the 

distribution of spectrogram features, log mel features, 

and other relevant attributes. This helps identify any 

potential outliers or irregularities in the data. 

Pair Plots: Generate pair plots to visualize the 

relationships between different features and observe 

any patterns or correlations. 

Box Plots: Create box plots to compare the 

distributions of features across different bird species, 

facilitating the identification of species-specific 

characteristics. 

Heatmaps: Construct heatmaps to visualize 

correlations between features, aiding in feature 

selection and model interpretation. 

f) Feature Selection: 

Conduct feature selection to identify the most 

informative features that contribute to the 

classification of bird species. 

Feature Importance: Utilize techniques such as 

Random Forest feature importance or Recursive 

Feature Elimination (RFE) to rank the importance of 

features based on their contribution to model 

performance. 

Correlation Analysis: Compute pairwise correlations 

between features to identify redundant or highly 

correlated attributes. Remove features with high 

correlation to reduce dimensionality and improve 

model efficiency. 

Univariate Feature Selection: Employ statistical tests 

such as ANOVA or chi-square tests to select features 

with the most significant impact on the target variable. 

Model-based Feature Selection: Train a machine 

learning model and examine the coefficients or 

weights assigned to each feature. Select features with 

the highest coefficients or weights as they contribute 

most to the model's predictive power. 

By visualizing the dataset and conducting feature 

selection, we can gain insights into the underlying 

patterns within the data and identify the most relevant 

features for building robust bird species identification 

models. 

g) Training & Testing: 

Training the model involves splitting the dataset into 

training and testing sets, where the training set is used 

to train the model, and the testing set is used to 

evaluate its performance.  

Splitting the Dataset: Divide the dataset into training 

and testing sets, typically using a ratio such as 80:20 

or 70:30. Ensure that the split maintains the 

distribution of bird species across both sets to prevent 

bias. 

Feature Scaling: Scale the features to ensure that they 

have a similar range, improving model convergence 

and performance. 

Model Training: Utilize machine learning algorithms 

such as convolutional neural networks (CNNs) or 

ensemble methods to train the model on the training 

set. Train the model iteratively, adjusting 

hyperparameters and optimizing performance metrics. 
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Testing the Model: Evaluate the trained model's 

performance on the testing set by predicting the bird 

species labels for the test samples. Calculate 

performance metrics such as accuracy, precision, 

recall, and F1 score to assess the model's effectiveness 

in correctly identifying bird species. 

Cross-Validation: Optionally, perform cross-

validation to validate the model's performance across 

multiple splits of the dataset, ensuring robustness and 

generalization ability. 

By following these steps, we can train and test the 

model effectively, enabling accurate and reliable wild 

bird species identification in real-world field 

environments. 

h) Algortihms: 

Proposed Lightweight Model: The lightweight 

model proposed for bird species identification 

leverages frequency dynamic convolution and 

Coordinate Attention (CA) mechanism to effectively 

capture feature differences in bird sounds while 

ensuring not-shift invariance of spectrograms. This 

model aims to minimize computational complexity 

and parameters while maximizing accuracy and 

generalization ability, making it suitable for 

deployment in real-world field environments. The 

algorithm integrates frequency dynamic convolution 

to adaptively process spectrograms across different 

frequency bands, enhancing the model's ability to 

discriminate between bird species. Additionally, the 

incorporation of the CA mechanism enhances the 

perception of non-stationary sound signals, improving 

the model's performance in challenging acoustic 

environments. 

Existing ResNet50: ResNet50, short for Residual 

Network with 50 layers, is a deep convolutional neural 

network architecture known for its depth and 

effectiveness in image classification tasks. ResNet50 

introduces skip connections or shortcuts that allow 

gradients to flow more directly through the network 

during training, mitigating the vanishing gradient 

problem and enabling the training of very deep 

networks. The algorithm consists of multiple residual 

blocks, each containing several convolutional layers, 

batch normalization, and rectified linear unit (ReLU) 

activation functions. These residual blocks 

progressively extract and transform features from 

input images, culminating in a final classification 

layer. Despite its effectiveness, ResNet50 is relatively 

heavy in terms of computational resources and 

parameters, which may limit its deployment in 

resource-constrained environments. However, its 

robustness and high accuracy make it a benchmark 

model for comparison against lighter alternatives in 

bird species identification tasks. 

Ensemble Model (ResNext50 model+ Random 

Forest classifier): The proposed ensemble model 

combines the feature extraction capabilities of the 

ResNext50 model with the classification power of a 

Random Forest classifier. By leveraging the strengths 

of both approaches, this ensemble model aims to 

enhance accuracy and adaptability in bird species 

identification across diverse field environments. The 

ResNext50 model extracts high-level features from 

spectrogram data, which are then fed into the Random 

Forest classifier for final classification. This hybrid 

approach combines the robustness of deep learning 

with the interpretability and scalability of ensemble 

methods, resulting in improved performance and 

reliability in real-world applications. 
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4. EXPERIMENTAL RESULTS 

Accuracy: The accuracy of a test is its ability to 

differentiate the patient and healthy cases correctly. To 

estimate the accuracy of a test, we should calculate the 

proportion of true positive and true negative in all 

evaluated cases. Mathematically, this can be stated as: 

Accuracy=TP+TNTP+FP+TN+FN(1) 

Precision: Precision evaluates the fraction of correctly 

classified instances or samples among the ones 

classified as positives. Thus, the formula to calculate 

the precision is given by: 

Precision=True PositiveTrue Positive +False 

Positive(2) 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all relevant 

instances of a particular class. It is the ratio of correctly 

predicted positive observations to the total actual 

positives, providing insights into a model's 

completeness in capturing instances of a given class. 

Recall=TPTP + FN(3) 

F1-Score: F1 score is a machine learning evaluation 

metric that measures a model's accuracy. It combines 

the precision and recall scores of a model. The 

accuracy metric computes how many times a model 

made a correct prediction across the entire dataset. 

F1 Score=2*Recall X 

PrecisionRecall+Precision*100(1) 

Table (1) evaluate the performance metrics—

Accuracy, precision, recall, F1 - Score—for each 

algorithm. Across all metrics, the Ensemble Model 

consistently outperforms all other algorithms. The 

tables also offer a comparative analysis of the metrics 

for the other algorithms.

Table.1 Performance Evaluation Table 

ML Model Accuracy Precision Recall F1_score 

Existing Resnet 50 96.739130 96.739130 96.052632 96.112957 

Propose Lightweight Model 54.347826 52.123397 51.922557 51.484236 

Extension Ensemble Model 100.000000 100.000000 100.000000 100.000000 

Graph.1 Comparison Graph 
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Accuracy is represented in blue, precision in red, recall 

in green and F1 - Score in purple Graph (1). In 

comparison to the other models, the Ensemble Model 

shows superior performance across all metrics, 

achieving the highest values. The graphs above 

visually illustrate these findings. 

 

Fig.2 Home Page 

 

Fig.3 Registration Page 

 

Fig.4 Login Page 

 

Fig.5 Upload Input Image 

 

Fig.6 Final Outcome 

5. CONCLUSION 

In conclusion, the study presents a comprehensive 

exploration of lightweight models for bird sound 

recognition, demonstrating their efficacy in achieving 

high accuracy, fast learning speeds, and suitability for 

deployment on embedded devices. Through extensive 

experimentation and analysis, the study highlights the 

importance of sound features in bird species 

identification, with Log-Mel emerging as the most 

suitable feature for its ability to capture a wide range 

of bird sound frequencies effectively. Moreover, the 

introduction of frequency dynamic convolution proves 

superior to traditional two-dimensional convolution in 

processing spectrograms, significantly enhancing the 

model's recognition accuracy by retaining more 

relevant feature information. The study also 

underscores the significance of feature fusion and the 

Coordinate Attention (CA) mechanism in improving 
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model performance, reducing parameters, and 

enhancing spatial perception. Notably, the proposed 

lightweight model outperforms other CNN 

architectures, such as ResNet50, in terms of accuracy, 

parameter quantity, and computational efficiency. 

However, the study acknowledges certain limitations, 

particularly regarding inference time on low-

performance embedded devices. To address these 

limitations and further improve model performance, 

future research will focus on expanding datasets and 

exploring the feasibility of bird sound separation using 

advanced techniques like Transformer-based separator 

modules. 

Overall, this study contributes valuable insights and 

methodologies to the field of bird species 

identification, with implications for ecological 

research, conservation biology, and wildlife 

management. By advancing sound recognition 

technology and leveraging deep learning models, the 

study offers a promising avenue for monitoring and 

conserving avian populations in diverse ecological 

settings. 

6. FUTURE SCOPE 

The successful development of the lightweight model 

for bird sound recognition opens up several promising 

avenues for future research and application. Future 

efforts may focus on expanding the dataset to include 

a more diverse range of bird species and acoustic 

environments. Advanced techniques for bird sound 

separation could be explored, leveraging self-attention 

mechanisms to better model bird sound signals and 

improve population estimation. Model optimization 

techniques, such as pruning and compression, could 

further reduce inference time and computational 

complexity, enabling deployment on low-performance 

devices. Integration with sensor networks and IoT 

devices could enable real-time monitoring of bird 

populations, facilitating more effective conservation 

management strategies. Overall, the future scope of 

this research includes dataset expansion, advanced 

signal processing techniques, model optimization, and 

integration with sensor networks, all aimed at 

enhancing the accuracy, efficiency, and applicability 

of bird species identification for ecological research 

and conservation efforts. 
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