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ABSTRACT: Healthcare systems worldwide are 

increasingly leveraging intelligent computational 

methods to improve disease diagnosis and prognosis. 

This project focuses on predicting the risk of 

cardiovascular, liver, and kidney diseases using a 

combination of Machine Learning and Deep Learning 

algorithms. By training multiple models on disease-

specific datasets, the system enhances diagnostic 

accuracy and supports early intervention. The deep 

learning approach is specifically applied to 

cardiovascular data using a MobileNet while kidney 

disease risk is analyzed using Random Forest and 
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Support Vector Machine models. Liver disease 

prediction relies on Decision Tree and K-Nearest 

Neighbors classifiers. The trained models are stored for 

efficient risk assessment and later use. 

The system empowers healthcare practitioners and 

individuals by offering a tool to predict disease risks 

based on clinical or test data inputs. Users can access 

the application through a secure login, provide relevant 

data, and receive real-time predictions. The models' 

ability to generalize from data enables better risk 

stratification and proactive healthcare decisions. The 

entire system is designed for ease of use, with emphasis 

on performance, security, and scalability. 
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1.INTRODUCTION  

Chronic diseases like cardiovascular disorders, liver 

damage, and kidney failure are among the leading 

causes of mortality globally. Early detection plays a 

critical role in mitigating the adverse effects of these 

conditions and enhancing life expectancy. Traditional 

diagnostic techniques, although effective, are time-

consuming, expensive, and not always accessible. The 

integration of artificial intelligence (AI) in healthcare 

offers a transformative potential for predicting disease 

risks efficiently. 

Machine Learning (ML) and Deep Learning (DL) have 

demonstrated remarkable performance in biomedical 

applications, including disease diagnosis. These 

approaches learn patterns from historical data and can 

make predictions on unseen cases, making them 

valuable tools in modern medicine. By utilizing 

disease-specific datasets, these models can be fine-

tuned to provide accurate results. 

This project explores the application of various ML 

and DL algorithms tailored for specific diseases. 

MobileNet are employed for cardiovascular disease 

due to their strong feature extraction capabilities from 

structured health data. Random Forest and SVM are 

used for kidney disease due to their robustness in 

handling imbalanced and non-linear data. Liver disease 

is addressed using Decision Trees and KNN, which are 

interpretable and efficient on smaller datasets. 

The prediction models are trained, evaluated, and 

stored for later use, ensuring fast and consistent 

predictions for new patient data. The system 

architecture also focuses on modularity and reusability, 

allowing seamless updates and integration of future 

models. 

Security and data privacy are central to the system's 

design. Each user is authenticated, and their data is 

processed in a secure environment. The system is 

structured to allow only valid users to access prediction 

services, thereby maintaining confidentiality and 

integrity. 

Overall, this predictive system is a valuable tool that 

complements medical diagnostics, reduces the load on 

healthcare professionals, and provides accessible 

health risk assessments to users in real-time. 

2.LITERATURE REVIEW  

 [1] Machine learning model for cardiovascular 

disease prediction in patients with chronic kidney 

disease 
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Developed a machine learning-based model to predict 

cardiovascular disease (CVD) in patients with chronic 

kidney disease (CKD), using clinical data from 8,894 

patients treated at a Chinese tertiary hospital between 

2015 and 2020. The study applied LASSO regression 

to identify eight key predictors—age, sex, 

hypertension history, antiplatelet medication, HDL, 

sodium levels, 24-hour urinary protein, and estimated 

glomerular filtration rate (eGFR). Seven machine 

learning algorithms were evaluated, with the Extreme 

Gradient Boosting (XGBoost) model demonstrating 

the best performance, achieving an AUC of 0.893, 

accuracy of 80.6%, specificity of 80%, and F1-score 

of 0.806. To enhance interpretability, the authors used 

Shapley Additive Explanations (SHAP), which 

showed that age, hypertension, and male sex were the 

most influential features. This model offers a reliable 

and explainable tool for early CVD risk prediction in 

CKD patients, supporting timely clinical interventions 

and improved outcomes. In addition to its strong 

predictive performance, the study emphasizes the 

practical applicability of the model in clinical settings. 

By relying solely on routinely collected clinical and 

laboratory indicators, the proposed system can be 

seamlessly integrated into existing healthcare 

workflows without the need for costly or specialized 

testing. Furthermore, the use of SHAP values not only 

enhances transparency but also supports personalized 

risk assessment by illustrating how each feature 

contributes to the prediction for individual patients. 

This interpretability is crucial for building clinician 

trust in AI-driven tools and for guiding patient-specific 

interventions. The study also acknowledges 

limitations, such as the need for external validation 

and the exclusion of novel biomarkers, suggesting that 

future work could integrate multi-omics data and 

mobile health applications to further refine and expand 

the model’s utility..   

[2] Introduced Acdim, an advanced cardiovascular 

disease (CVD) risk prediction model tailored for 

elderly care environments where medical expertise 

and equipment are limited. The model combines deep 

learning (ResNet), interpretable attention-based 

learning (TabNet), and ensemble learning (AdaBoost), 

optimized using the Zebra Optimization Algorithm 

(ZOA). The Acdim model processes lifestyle-related 

data from the CDC’s BRFSS dataset and extracts 

features using ResNet, which are then classified by 

both TabNet and AdaBoost. ZOA is employed to fine-

tune their parameters, and the final prediction is 

produced via an inverse variance weighted average. 

Experimental results demonstrated high performance, 

with the model achieving 96% accuracy, 94% 

precision, 93% recall, 95% specificity, and a 95% 

AUC, significantly outperforming traditional 

classifiers such as XGBoost, LightGBM, and 

CatBoost. 

The model was developed with practical deployment 

in mind, including a cloud-local hybrid architecture 

designed for nursing homes. By integrating with 

routine health monitoring systems, Acdim facilitates 

real-time CVD risk assessment, enabling early 

intervention and personalized care. Ablation studies 

confirmed the importance of combining ResNet with 

both TabNet and AdaBoost, while optimization 

experiments validated the critical role of ZOA in 

enhancing model accuracy and robustness. Notably, 

Acdim requires only basic lifestyle and demographic 

data, making it ideal for settings with minimal 

diagnostic infrastructure. The model advances 

intelligent elderly care by combining high predictive 

performance with transparency and real-world 

feasibility. 

[ 3 ] "Cardiovascular Diseases Prediction by Machine 

Learning Incorporation with Deep Learning" 
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Subramani et al. (2023) proposed a hybrid 

cardiovascular disease (CVD) prediction model that 

integrates machine learning and deep learning 

techniques to improve early diagnosis and risk 

assessment. Recognizing the limitations of traditional 

models like logistic regression and Cox regression, the 

authors developed a stacking ensemble framework 

using multiple base learners—including Random 

Forest (RF), Logistic Regression (LR), Multi-Layer 

Perceptron (MLP), Extra Trees (ET), and CatBoost—

with LR as the meta-learner. The model was trained 

on a combined dataset from UCI’s Heart Disease 

repository, consisting of 918 unique samples from five 

sources. Feature selection was conducted using the 

GBDT-SHAP method, enabling interpretable 

predictions through game-theoretic Shapley values. 

The stacking model was evaluated on several 

performance metrics, including accuracy, precision, 

recall, F1 score, and AUC. The proposed model 

outperformed traditional ML methods, demonstrating 

high predictive accuracy and better calibration, 

particularly in identifying high-risk individuals. 

Among individual algorithms, Support Vector 

Machine (SVM) and penalized Logistic Regression 

emerged as top performers, with SVM providing 

greater specificity. Feature analysis revealed that 

attributes like ST Slope, chest pain type, and patient 

age played significant roles in CVD prediction. 

Additionally, the study highlighted the contribution of 

inflammatory biomarkers such as hs-CRP and IL-6, 

further strengthening the model’s clinical relevance. 

In practical terms, the proposed model has strong 

implications for use in healthcare environments with 

limited resources. Its reliance on interpretable, non-

invasive features and its performance on small, 

heterogeneous datasets make it well-suited for early 

detection systems in smart healthcare and IoT-driven 

environments. The authors advocate for further 

validation using larger datasets and suggest that deep 

learning techniques and cloud-integrated IoT systems 

could be leveraged to enhance real-time 

cardiovascular risk prediction. The study concludes 

that stacking models combining the strengths of 

various learners offer a robust and flexible solution for 

personalized CVD risk stratification. 

 

3. METHODOLOGY 

i)Proposed work  

The proposed system integrates both machine learning 

and deep learning algorithms to enable multi-disease 

prediction within a single, unified platform. It features 

disease-specific models that are independently trained 

and optimized for improved accuracy. For 

cardiovascular disease prediction, the system employs 

the MobileNet deep learning model, while kidney 

disease risk is assessed using Random Forest and 

Support Vector Machine (SVM) classifiers. Liver 

disease prediction is handled by Decision Tree and K-

Nearest Neighbors (KNN) classifiers. These models 

are stored and deployed to provide real-time risk 

assessments, allowing users to securely submit their 

health data and receive timely predictions. 

This approach offers several advantages, including a 

consolidated interface that supports predictions for 

multiple diseases simultaneously. By leveraging a 

combination of advanced models such as MobileNet, 

Random Forest, SVM, Decision Tree, and KNN, the 

system achieves optimal diagnostic performance 

tailored to each disease type. The platform ensures 

enhanced accuracy through specialized model 

training, while also providing secure data submission 

and fast prediction services, making it both reliable 

and user-friendly for health risk assessment. 
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ii)System Architecture  

The system architecture for cardiovascular, liver, and 

kidney disease risk prediction follows a modular and 

user-centric design, beginning with a user interface that 

enables users—such as doctors or patients—to input 

clinical or test data. This data is then passed to the 

preprocessing module, where it undergoes essential 

transformations including data cleaning, 

normalization, encoding of categorical variables, and 

handling of missing values. This ensures the raw input 

is converted into a consistent format suitable for 

analysis by machine learning and deep learning 

models.Once preprocessing is complete, the data is fed 

into disease-specific predictive models—MobileNet 

for cardiovascular diseases, Random Forest and SVM 

for kidney diseases, and Decision Tree or KNN for 

liver diseases. These models, trained on historical 

medical data, analyze the input and generate risk 

predictions. Users can also upload new test data to 

assess different cases. The system processes this test 

data using the same pipeline and delivers the prediction 

output through the results module. This architecture 

ensures end-to-end automation from data input to 

actionable health insights, offering a scalable and 

efficient tool for proactive healthcare management. 

  

Fig no.1 Proposed Architecture  

iii)Data Acquisition and PreProcessing 

For this project, data acquisition involved sourcing 

disease-specific datasets related to cardiovascular, 

liver, and kidney conditions from publicly available 

medical repositories. Each dataset contained a variety 

of clinical features such as age, blood pressure, 

cholesterol levels, enzyme concentrations, and test 

results relevant to the respective disease. The 

cardiovascular dataset included image data, which was 

used for deep learning with MobileNet, while the 

kidney and liver datasets were structured tabular data 

suitable for traditional machine learning models. 

Preprocessing was a crucial step to ensure data quality 

and model accuracy. This included handling missing 

values, encoding categorical variables (e.g., converting 

"yes"/"no" to binary), and normalizing numerical 

features using MinMaxScaler to bring all values to a 

uniform scale. For image-based data, augmentation 
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techniques like rotation, zooming, and flipping were 

applied to improve model generalization. The cleaned 

and processed data was then split into training and 

testing sets to develop and evaluate the machine 

learning and deep learning models effectively. 

iv)Dataset Collection  

For cardiovascular disease, an image dataset containing 

heart-related scans and visual diagnostics was used, 

suitable for deep learning with MobileNet. 

The kidney disease dataset was a structured tabular 

dataset with clinical parameters like blood pressure, 

serum creatinine, and glucose levels. 

The liver disease dataset included tabular records 

featuring enzyme levels, bilirubin, and patient 

demographics. 

Each dataset was disease-specific and tailored for 

different model types—CNN for cardiovascular, 

Random Forest/SVM for kidney, and Decision 

Tree/KNN for liver. 

  

Fig no.2 ECG Dataset 

 

  

Fig no.3 Liver Dataset  

  

Fig no.4 Kidney Dataset  

v)Feature Extraction 

Feature extraction is mainly performed on tabular data 

and image data to make them suitable for machine 

learning and deep learning models. For the kidney 

disease model, categorical data such as htn, dm, cad, 

pe, and ane are converted into binary values (1 for 'yes' 

and 0 for 'no'). Similarly, features like rbc, pc, pcc, and 

ba are encoded with binary values (1 for 'abnormal' 

and 0 for 'normal'). Some categorical features, like 

appet and dm, are also replaced with numeric values 

or NaN for missing entries. To ensure the model 

processes the data correctly, any non-numeric values 

in columns like pcv, wc, rc, and dm are converted to 

numeric types. Missing data is handled by dropping 

rows with missing values, and the numerical data is 

scaled using MinMaxScaler to normalize the feature 

range, helping the model perform more effectively. 

In the CNN model for cardiovascular prediction, 

feature extraction happens in the image preprocessing 
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phase. The images are augmented using 

transformations such as rotation, shifting, and 

zooming, which helps to create more diverse training 

data, reducing overfitting. These images are resized to 

128x128 pixels and rescaled by a factor of 1/255 for 

normalization. The CNN's convolutional layers 

automatically extract features such as edges, textures, 

and patterns from these images. These learned features 

are crucial for identifying patterns related to 

cardiovascular risk. The combination of structured 

data preprocessing and automatic feature extraction 

from image data ensures the model can learn relevant 

patterns for accurate predictions. 

vi)Model Training 

Training pipelines for three healthcare-related models: 

cardiovascular, kidney, and liver disease detection. For 

the cardiovascular model, a Convolutional Neural 

Network (CNN) is used, trained on image data stored 

in a directory structure using ImageDataGenerator. The 

CNN is composed of multiple convolutional, pooling, 

and dense layers, and it is trained using categorical 

crossentropy loss and the Adam optimizer for 20 

epochs. For the kidney disease model, a 

RandomForestClassifier and a Support Vector 

Machine (SVM) are trained using a cleaned and 

normalized CSV dataset (kidney_disease.csv) with 

categorical values mapped and numeric conversion 

performed. Similarly, the liver disease model is 

trained using a DecisionTreeClassifier and a 

KNeighborsClassifier on the liver dataset, with 

preprocessing steps including label encoding for 

gender and handling missing data. All trained models 

are saved using joblib for future inference  

 

vii)Model Evaluation 

Model evaluation is performed using standard metrics 

like accuracy score, applied on the test sets of the 

respective datasets. For the CNN model, accuracy and 

loss values for both training and validation sets are 

plotted and saved as images for visual inspection of 

performance trends over epochs. The kidney and liver 

models evaluate their prediction accuracy on the test 

splits using accuracy_score, and the results are 

displayed or visualized (e.g., pie charts for liver model 

comparison). The test results, especially for the kidney 

risk prediction, are saved into a CSV file that includes 

predicted labels. These evaluations help validate the 

effectiveness of the models and support comparisons 

between different algorithms like SVM, Random 

Forest, Decision Tree, and KNN.  

viii)System Integration 

The system integrates multiple machine learning 

models into a unified web application using Flask as 

the backend framework. The application provides 

separate interfaces and workflows for administrators 

and users. Admins can train and manage models for 

cardiovascular, kidney, and liver disease detection 

through dedicated endpoints, while users can access 

risk prediction features through simple form-based 

interfaces. The models are trained and saved in advance 

(or retrained on-demand), and stored in the file system 

using joblib or Keras .h5 files. When a user submits 

data (either in text form or by uploading files), the 

appropriate model is loaded from disk, the input is 

preprocessed, and predictions are returned to the user 

via the web interface. The integration also handles 

different data formats (image, CSV) and links them 

with suitable ML/DL algorithms. 
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Integration of UI, Models, and Data Flow: 

The frontend templates (HTML) are organized into 

user and admin modules using Jinja2 templating, 

ensuring role-based views and actions. Static assets 

like training plots and prediction result charts are 

generated dynamically and saved in the Static folder, 

allowing them to be displayed seamlessly on result 

pages. The Flask app manages routes for model 

invocation (/CNN, /KidneyModel, /LiverModel) and 

prediction endpoints (/DetectAction, /KidneyRisk), 

maintaining data flow from the user interface to the 

models and back. Session handling ensures secure and 

personalized interactions. Additionally, SQLite is used 

for storing user registration and login data, further 

integrating database functionality into the system. This 

coordinated architecture allows smooth end-to-end 

workflows—from user registration and data input to 

model inference and results display—within a single, 

cohesive application. 

 

Fig no 5 Activity of the model 

 

 

4. EXPERIMENTAL RESULTS 

The experimental results demonstrate that the 

integrated system effectively predicts cardiovascular, 

kidney, and liver diseases using tailored machine 

learning and deep learning models. The cardiovascular 

disease model, developed using MobileNet, achieved 

high accuracy through robust image-based feature 

extraction. For kidney disease prediction, Random 

Forest outperformed SVM due to its ability to handle 

imbalanced and nonlinear data effectively. In the case 

of liver disease, both Decision Tree and K-Nearest 

Neighbors (KNN) classifiers were used, with KNN 

showing better performance after optimal parameter 

tuning.  

  

Fig  no.6   

  

Fig no.7 
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Fig no.8 

  
 

Fig no.09  

 

 

Fig no.10 

 

Fig no.11 

 

Fig no.12 

 

Fig no.13 
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5.CONCLUSION 

This project demonstrates the effectiveness of 

combining machine learning and deep learning for 

health risk prediction. The integration of multiple 

algorithms allows for disease-specific optimization, 

enhancing predictive performance across different 

medical domains. The system is user-friendly, scalable, 

and can serve as a diagnostic aid for both individuals 

and healthcare providers. By automating the prediction 

process, it reduces diagnosis time and empowers users 

with timely health insights. 

6.FUTURE SCOPE  

The future scope of this project is vast, particularly as 

healthcare moves toward more personalized and data-

driven approaches. The system can be expanded to 

include predictive models for other chronic conditions 

like diabetes, cancer, and respiratory diseases. 

Integrating real-time data from wearable devices and 

Internet of Things (IoT) sensors will enhance 

continuous health monitoring, enabling early detection 

and timely intervention. Additionally, deploying the 

platform as a mobile or web application can increase 

accessibility for users in remote or underserved 

regions, allowing both individuals and healthcare 

providers to benefit from instant, AI-powered risk 

assessments. 

Furthermore, the adoption of federated learning can 

ensure secure and privacy-preserving collaboration 

between hospitals and institutions by enabling model 

training without sharing sensitive patient data. Future 

developments could also focus on enhancing model 

interpretability through explainable AI (XAI), which 

builds trust among clinicians and supports more 

informed decision-making. By incorporating 

electronic health record (EHR) integration and 

providing tailored treatment recommendations, the 

system has the potential to evolve into a 

comprehensive clinical decision support tool, aiding in 

proactive and precision healthcare. 
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