

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1459

DESIGN AND FUNCTIONAL VERIFICATION OF AES –

128 ENCRYPTION CORE USING UVM

Ms. RUBIA TASNEEM 1, SEELA GOWTHAM 2

1Assistant Professor, Dept. Of ECE, PRAGATI ENGINEERING COLLEGE

2PG Students, Dept. Of ECE, PRAGATI ENGINEERING COLLEGE

ABSTRACT

Confidential information preservation has never been more important than in this age of internet communication.

Because of its ability to balance security and processing power, the Advanced Encryption Standard (AES) and its

128-bit variation (AES-128) are the most widely used. With a focus on a hardware-based design using Verilog as

the design language and the Universal Verification Methodology (UVM) as the verification methodology, this

thesis provides the full implementation and functional verification of an AES-128 cryptographic core.

The AES-128 design provides optimized implementations of fundamental transformations like Sub Bytes, Shift

Rows, Mix Columns, and Add Round Key and an on-the-fly efficient key expansion mechanism. A reusable,

modular UVM-based testbench was created to comprehensively verify the design using both directed and

constrained-random tests. NIST test vectors were used for validation to guarantee correctness, and functional

coverage measures were used to ensure the completeness of verification.

Simulation and waveform analysis with Questa Sim confirmed complete protocol compliance and zero

mismatches in all the test cases. The end-to-end design attained 100% code and coverage functional, proving itself

competent for integration into SoC or FPGA-based crypto solutions. This paper is a guide for future hardware

security research and opens the door to future verification enhancements like verification of extra AES modes and

resilience against side-channel attacks.

INTRODUCTION

One of the biggest challenges in the era of digital communication is safeguarding private data from unwanted

disclosure. The de facto encryption standard is presently AES, a symmetric-key block cypher standard defined

by NIST (FIPS-197), due to its speed and strength. Because it offers the finest security-performance balance

among its three variations (AES-128, AES-192, and AES-256), AES-128 is the one most frequently used in

applications such as embedded systems, encrypted communications, and Internet of Things devices.

Yet, coming up with a bug-free Register-Transfer Level (RTL) implementation of AES-128 necessitates thorough

verification to confirm that it meets the standard. Conventional verification techniques, including directed testing,

are inadequate for complete validation, which results in the implementation of the Universal Verification

Methodology (UVM). UVM ensures a systematic, reusable, and automated verification framework for complex

digital designs and is the best fit for cryptographic cores such as AES.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1460

The motivation behind this project arises from the need for a fully verified AES-128 RTL design that can be

seamlessly integrated into System-on-Chip (SoC) designs or FPGA-based cryptographic accelerators. Unlike prior

works that focus solely on RTL implementation or post-synthesis validation, this project emphasizes:

- Functional Correctness: Ensuring the AES-128 DUT (Design Under Test) adheres strictly to NIST test vectors

without deviations.

- Automated Verification: Leveraging UVM’s constrained-random testing to cover corner cases (e.g., empty input,

back-to-back transactions) that manual testing might miss.

- Reusable Testbench Architecture: Developing a modular UVM environment that can be extended to other

cryptographic cores (e.g., AES-256, ChaCha20).

This work bridges the gap between AES RTL design and industry-standard verification practices, providing a

reference model for future cryptographic hardware projects.

LITERATURE SURVEY

Evolution of AES and Cryptographic Hardware

NIST standardized the Advanced Encryption Standard (AES) in 2001 as a replacement for the outdated Data

Encryption Standard (DES). Using 128-bit blocks and a 128-bit key, the most prevalent encryption, AES-128,

provides a security-processing speed compromise. Most initial implementations were software-based (OpenSSL

libraries), but hardware-accelerated AES cores were created following the need for low-latency encryption within

embedded systems.

Verification Challenges in Cryptographic Hardware

Cryptographic cores demand exhaustive verification due to their mathematical complexity and security-critical

nature. Traditional methods like directed testing (e.g., using test vectors from NIST SP 800-38A) are insufficient

for detecting corner-case bugs. Key challenges include:

• Key Expansion Errors: Incorrect round-key generation due to faulty Galois Field arithmetic.

• Mode-Specific Bugs: ECB vs. CBC mode handling in the Datapath.

• Timing Vulnerabilities: Glitches during S-box substitutions or Mix Columns stages.

Prior works relied on formal verification (e.g., Model Checking) or manual testbenches, which are time-

consuming and non-scalable. This gap motivated the adoption of UVM.

UVM for Functional Verification

The Universal Verification Methodology (UVM) emerged as an industry standard to address scalability and

reusability in verification. Key advantages for AES-128 verification include:

Relevant studies:

1. Haque et al. (2015): UVM testbench for AES-128 with 98% functional coverage.

2. IEEE UVM Cookbook (2018): Best practices for modular testbench design.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1461

3. Kumar et al. (2020): UVM-based verification of AES-GCM modes.

Research Gaps and Contributions

While prior works have explored AES-128 RTL design or UVM separately, this project bridges the following

gaps:

• End-to-End UVM Integration: A complete workflow from NIST test vectors to UVM sequences.

• Debuggability: UVM’s transaction-level debugging for AES key expansion errors.

PROPOSED SYSTEM

A. Overview of AES-128 Algorithm

The AES-128 algorithm uses a 128-bit cypher key and 10 rounds of transformations to process 128-bit plaintext

blocks. There are four stages in every round (except from the last round):

1. SubBytes: Non-linear byte substitution using a predefined S-box.

2. ShiftRows: Cyclic shifting of rows in the state matrix.

3. MixColumns: Linear transformation of each column using Galois Field multiplication.

4. AddRoundKey: XOR operation between the state and a round-specific key.

Top-Level Module Architecture

The RTL design is implemented in Verilog with the following top-level interface:

module AES_cipher (

 input rst, clk, start,

 input [127:0] plain_text, inti_key,

 output reg cipher_done,

 output reg [127:0] cipher_text,

 output reg [5:0] clk1

);

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1462

Figure.1 AES-128 Top-Level Block Diagram/ Structure

Key Components and Their Implementation

The Key Expansion task generates 10 round keys (`round1_key` to `round10_key`) from the initial key

(`inti_key`). Each key is derived using:

1. RotWord: Left rotation of a 32-bit word.

2. SubWord: S-box substitution of each byte.

3. Rcon XOR: XOR with a round-specific constant (`round_cnst`).

 Table.1 Round Constants for Key Expansion

Encryption Datapath

The encryption process is implemented as a finite-state machine (FSM) with 11 states (1 initial round + 10 main

rounds).

State Transitions

1. Round 0: Initial `AddRoundKey` with `inti_key`.

2. Rounds 1–9: `SubBytes` → `ShiftRows` → `MixColumns` → `AddRoundKey`.

3. Round 10: `SubBytes` → `ShiftRows` → `AddRoundKey` (no `MixColumns`).

Critical Tasks

- SubBytes: Uses a 16x16 lookup table (`sub_box`).

- ShiftRows: Cyclic left shifts of 0, 1, 2, and 3 bytes for rows 0–3.

- MixColumns: Galois Field multiplication with fixed polynomial.

Round Constant (`round_cnst`)

1 `32'h01000000`

2 `32'h02000000`

... ...

10 `32'h36000000`

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1463

Figure.2 AES Round Operations Flowchart

Figure.3 SubByte Matrix Replacement

Figure.4 16x16 Lookup Table (S-Box)

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1464

Figure.5 Shift Rows

Figure.6 Mix Column

Figure.7 Add Round Key

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1465

Optimizations and Design Choices

1. S-Box Implementation: Predefined 2D array (`sub_box`) for area efficiency.

2. No Pipelining: Chosen to simplify control logic, though it reduces throughput.

3. Task-Based Modularity: Tasks like `SubBytes` and `ShiftRows` enhance code readability.

B. UVM Testbench Architecture Overview

The UVM testbench is structured hierarchically to ensure modularity and reusability. It consists of the following

key components:

Figure.8 UVM Testbench Block Diagram

Key Components:

1. Transaction Class (`seq_item.sv`)

• Defines input/output fields (`plain_text`, `inti_key`, `cipher_text`).

• Constraints ensure valid NIST test vectors are used.

2. Agent (`agent.sv`)

• Coordinates Driver, Sequencer, and Monitor.

3. Driver (`driver.sv`)

• Converts transactions to pin-level signals and drives the DUT.

4. Monitor (`monitor.sv`)

• Captures DUT outputs and sends them to the Scoreboard.

5. Scoreboard (`scoreboard.sv`)

• Compares DUT outputs with expected results using a golden reference model.

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1466

6. Coverage Collector (`scoreboard.sv`)

• Toggles functional coverage for inputs, outputs, and reset conditions.

SIMULATION RESULTS

Figure.9 Simulation Waveforms of Design Code

Plaintext Key Expected

Ciphertext

Observed Ciphertext Status

0x00112233... 0x00010203... 0x69C4E0D8... 0x69C4E0D8... Pass

Table.2 NIST Test Vector Validation

Functional Validation

The testbench validated the DUT against 10 test vectors.

Test Case Plaintext Key Expected Ciphertext DUT Output Status

1 0x00112233445566

778899aabbccddeef

f

0x000102030405

060708090a0b0c

0d0e0f

0x69c4e0d86a7b043

0d8cdb78070b4c55a

0x69c4e0d86a7b0

430d8cdb78070b

4c55a

Pass

2 0x3243f6a8885a30

8d313198a2e03707

34

0x2b7e151628ae

d2a6abf7158809c

f4f3c

0x3925841d02dc09f

bdc118597196a0b3

2

0x3925841d02dc

09fbdc118597196

a0b32

Pass

3
0xaa218b56ee5ebea

cdd6ecebf26e63c06

0x627bceb9999d

5aaac945ecf423f

56da5

0x4beba7ad306c050

b8941149a44e4f291

0x4beba7ad306c0

50b8941149a44e4

f291

Pass

4

0xb692cf0b643dbdf

1be9bc5006830b3f

e

0x4915598f55e5

d7a0daca94fa1f0

a63f7

0xb26f6cdefcac732

8a8541233d8e807c7

0xb26f6cdefcac73

28a8541233d8e80

7c7

Pass

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1467

5
0x4c9c1e66f771f07

62c3f868e534df256

0xb6ff744ed2c2c

9bf6c590cbf0469

bf41

0x2ed0061e087309

85af01eec63a083fee

0x2ed0061e08730

985af01eec63a08

3fee

Pass

6

0xfa636a2825b339

c940668a3157244d

17

0x2dfb02343f6d1

2dd09337ec75b3

6e3f0

0xdaa1fb04b3d0c0b

c583f695f1f0a20fc

0xdaa1fb04b3d0c

0bc583f695f1f0a2

0fc

Pass

7

0x6385b79ffc538df

997be478e7547d69

1

0x47f7f7bc95353

e03f96c32bcfd05

8dfd

0x69540bd3a33a1fd

026f860ed82110387

0x69540bd3a33a1

fd026f860ed8211

0387

Pass

8

0x36339d50f9b539

269f2c092dc4406d

23

0xf4bcd45432e55

4d075f1d6c51dd

03b3c

0xa2bf0a3b076352a

1003a3b9fb08a9c0b

0xa2bf0a3b07635

2a1003a3b9fb08a

9c0b

Pass

9

0xc81677bc9b7ac9

3b25027992b02619

96

0xe847f56514dad

de23f77b64fe7f7

d490

0x6e58ec664b37047

8f8e97c010c405aee

0x6e58ec664b370

478f8e97c010c40

5aee

Pass

10
0xc62fe109f75eedc

3cc79395d84f9cf5d

0xb415f8016858

552e4bb6124c5f9

98a4c

0xd9a84b00c16f8b1

08c7f45afc2833e92

0xd9a84b00c16f8

b108c7f45afc283

3e92

Pass

Table.3 Test Vectors

Figure.10 Output of Test Vectors

Waveform Analysis

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1468

• Reset Sequence: rst high for 20ns.

• Encryption Start: start pulse and plain_text/inti_key input.

• Completion: cipher_done assertion and cipher_text output.

Figure.11 Simulation Waveform

5.3. Coverage Metrics

Table.4 Functional Coverage Metrics

Figure.12 Coverage Analysis

Verification Results

• Reset Phase: rst=1 for 20ns → DUT initialization.

• Stimulus: start=1 with plain_text=0x00112233..., inti_key=0x00010203....

• Completion: cipher_done=1 after 11 cycles → cipher_text=0x69c4e0d8....

Coverpoint Coverage Goal

Plaintext (cp_plain_text) 100% 100%

Key (cp_key) 100% 100%

Ciphertext (cp_cipher_text) 100% 100%

Reset (cp_reset) 100% 100%

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1469

Figure.13 Encryption Waveform (QuestaSim)

Coverage Report

Coverage Type Metric Details

Functional 100% All vectors and cross-coverage.

Code 100% All Code Covered

Toggle 100% All signals toggled (reset, data,

control).

Table.5 Coverage Summary Report

Figure.14 Coverage Summary (QuestaSim)

CONCLUSION

This thesis presented a comprehensive design and verification of an AES-128 cryptographic core using UVM

methodology, achieving the following key contributions:

1. RTL Implementation:

a. Developed a fully functional AES-128 encryptor in Verilog with:

▪ Modular transformations (SubBytes, ShiftRows, MixColumns, AddRoundKey).

▪ On-the-fly key expansion.

2. UVM Verification:

http://www.ijasem.org/

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1470

b. Built a reusable UVM testbench with:

▪ Constrained-random test generation (50 sequences).

▪ Scoreboard with NIST test vector validation.

▪ Functional coverage closure (100% for all critical paths).

▪ Identified and resolved RTL bugs (e.g., S-box mismatch, reset timing) using

QuestaSim.

FUTURE SCOPE

1. For Additional Modes

i. GCM (Galois/Counter Mode):

a. Goal: Add authenticated encryption for IoT/5G applications.

▪ Implementation:

▪ Integrate polynomial multiplication over GF(2⁸) for GHASH.

▪ Extend UVM testbench with GCM test vectors from NIST SP 800-38D.

2. XTS (XEX-based Tweaked Codebook Mode):

▪ Goal: Enable disk encryption (e.g., IEEE 1619).

▪ Implementation:

▪ Add tweakable block cipher logic.

▪ Modify key expansion for sector-specific tweaks.

REFERENCES

1. FIPS PUB 197: Advanced Encryption Standard (AES), National Institute of Standards and Technology

(NIST), 2001.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

2. Design and Verification of AES Encryption Using SystemVerilog and UVM, M. Reddy and A.

Sharma, International Journal of VLSI and Embedded Systems, vol. 10, no. 2, 2021.

https://www.ijves.com/articles/aes-uvm-verification

3. Hardware Implementation of AES Algorithm for Secure Communication, K. Patel et al., IEEE

International Conference on Electronics, Computing and Communication Technologies (CONECCT),

2020.

https://ieeexplore.ieee.org/document/9141721

4. UVM-Based Functional Verification of AES Cryptographic Core, R. Mehta and S. Bansal, IJERT, vol.

9, no. 3, 2020.

https://www.ijert.org/research/uvm-verification-aes-core

5. OpenCores AES Core Project, OpenCores Community, 2018.

https://opencores.org/projects/aes_core

6. Design and Simulation of AES Encryption Algorithm Using Verilog HDL, P. Kumar and M. Nair,

International Conference on VLSI Systems, 2019.

https://doi.org/10.1109/VLSISYS.2019.8904543

http://www.ijasem.org/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://www.ijves.com/articles/aes-uvm-verification
https://ieeexplore.ieee.org/document/9141721
https://www.ijert.org/research/uvm-verification-aes-core
https://opencores.org/projects/aes_core
https://doi.org/10.1109/VLSISYS.2019.8904543

 ISSN 2454-9940

 www.ijasem.org

 Vol 19, Issue 2, 2025

1471

7. Verification Methodology Manual for SystemVerilog (VMM), S. Chandrasekar and B. Bailey,

Springer, 2017.

https://link.springer.com/book/10.1007/978-1-4419-1430-2

8. Advanced UVM Techniques for Crypto Core Verification, A. Joshi and T. Singh, Journal of SoC

Design, vol. 13, no. 1, 2022.

https://www.jscdesign.com/articles/uvm-aes-verification

9. System Verilog-Based Verification of AES-128 Encryption Engine, D. Iyer and P. Bhatt, Design

Automation Conference (DAC), 2021.

https://ieeexplore.ieee.org/document/10024388

10. Functional Coverage Analysis for AES Using UVM, R. Das and S. Roy, VLSI Design Journal, vol. 14,

no. 4, 2021.

https://www.vlsidesignjournal.com/aes-uvm-coverage

 Seela Gowtham Pursuing M.Tech from Pragati Engineering College, Surampalem,

 Andhrapradesh, India. His Mtech Specialization is VLSI System Design

RUBIA TASNEEM Completed M.Tech (Ph.D) from Pragati Engineering College,

Surampalem, Andhra Pradesh, India. At present working as assistant professor in

Pragati Engineering College, Surampalem, and Andhra Pradesh, India. Her Area of

interest is VLSI.

http://www.ijasem.org/
https://link.springer.com/book/10.1007/978-1-4419-1430-2
https://www.jscdesign.com/articles/uvm-aes-verification
https://ieeexplore.ieee.org/document/10024388
https://www.vlsidesignjournal.com/aes-uvm-coverage

