ISSN: 2454-9940

INTERNATIONAL JOURNAL OF APPLIED SCIENCE ENGINEERING AND MANAGEMENT

E-Mail : editor.ijasem@gmail.com editor@ijasem.org

DESIGN AND FUNCTIONAL VERIFICATION OF AES – 128 ENCRYPTION CORE USING UVM

Ms. RUBIA TASNEEM¹, SEELA GOWTHAM²

¹Assistant Professor, Dept. Of ECE, PRAGATI ENGINEERING COLLEGE

²PG Students, Dept. Of ECE, PRAGATI ENGINEERING COLLEGE

ABSTRACT

Confidential information preservation has never been more important than in this age of internet communication. Because of its ability to balance security and processing power, the Advanced Encryption Standard (AES) and its 128-bit variation (AES-128) are the most widely used. With a focus on a hardware-based design using Verilog as the design language and the Universal Verification Methodology (UVM) as the verification methodology, this thesis provides the full implementation and functional verification of an AES-128 cryptographic core.

The AES-128 design provides optimized implementations of fundamental transformations like Sub Bytes, Shift Rows, Mix Columns, and Add Round Key and an on-the-fly efficient key expansion mechanism. A reusable, modular UVM-based testbench was created to comprehensively verify the design using both directed and constrained-random tests. NIST test vectors were used for validation to guarantee correctness, and functional coverage measures were used to ensure the completeness of verification.

Simulation and waveform analysis with Questa Sim confirmed complete protocol compliance and zero mismatches in all the test cases. The end-to-end design attained 100% code and coverage functional, proving itself competent for integration into SoC or FPGA-based crypto solutions. This paper is a guide for future hardware security research and opens the door to future verification enhancements like verification of extra AES modes and resilience against side-channel attacks.

INTRODUCTION

One of the biggest challenges in the era of digital communication is safeguarding private data from unwanted disclosure. The de facto encryption standard is presently AES, a symmetric-key block cypher standard defined by NIST (FIPS-197), due to its speed and strength. Because it offers the finest security-performance balance among its three variations (AES-128, AES-192, and AES-256), AES-128 is the one most frequently used in applications such as embedded systems, encrypted communications, and Internet of Things devices.

Yet, coming up with a bug-free Register-Transfer Level (RTL) implementation of AES-128 necessitates thorough verification to confirm that it meets the standard. Conventional verification techniques, including directed testing, are inadequate for complete validation, which results in the implementation of the Universal Verification Methodology (UVM). UVM ensures a systematic, reusable, and automated verification framework for complex digital designs and is the best fit for cryptographic cores such as AES.

INTERNATIONAL JOURNAL OF APPLIED SCIENCE ENGINEERING AND MANAGEMENT

ISSN 2454-9940

www.ijasem.org

Vol 19, Issue 2, 2025

The motivation behind this project arises from the need for a fully verified AES-128 RTL design that can be seamlessly integrated into System-on-Chip (SoC) designs or FPGA-based cryptographic accelerators. Unlike prior works that focus solely on RTL implementation or post-synthesis validation, this project emphasizes:

- Functional Correctness: Ensuring the AES-128 DUT (Design Under Test) adheres strictly to NIST test vectors without deviations.

- Automated Verification: Leveraging UVM's constrained-random testing to cover corner cases (e.g., empty input, back-to-back transactions) that manual testing might miss.

- Reusable Testbench Architecture: Developing a modular UVM environment that can be extended to other cryptographic cores (e.g., AES-256, ChaCha20).

This work bridges the gap between AES RTL design and industry-standard verification practices, providing a reference model for future cryptographic hardware projects.

LITERATURE SURVEY

Evolution of AES and Cryptographic Hardware

NIST standardized the Advanced Encryption Standard (AES) in 2001 as a replacement for the outdated Data Encryption Standard (DES). Using 128-bit blocks and a 128-bit key, the most prevalent encryption, AES-128, provides a security-processing speed compromise. Most initial implementations were software-based (OpenSSL libraries), but hardware-accelerated AES cores were created following the need for low-latency encryption within embedded systems.

Verification Challenges in Cryptographic Hardware

Cryptographic cores demand exhaustive verification due to their mathematical complexity and security-critical nature. Traditional methods like directed testing (e.g., using test vectors from NIST SP 800-38A) are insufficient for detecting corner-case bugs. Key challenges include:

- Key Expansion Errors: Incorrect round-key generation due to faulty Galois Field arithmetic.
- Mode-Specific Bugs: ECB vs. CBC mode handling in the Datapath.
- Timing Vulnerabilities: Glitches during S-box substitutions or Mix Columns stages.

Prior works relied on formal verification (e.g., Model Checking) or manual testbenches, which are timeconsuming and non-scalable. This gap motivated the adoption of UVM.

UVM for Functional Verification

The Universal Verification Methodology (UVM) emerged as an industry standard to address scalability and reusability in verification. Key advantages for AES-128 verification include:

Relevant studies:

- 1. Haque et al. (2015): UVM testbench for AES-128 with 98% functional coverage.
- 2. IEEE UVM Cookbook (2018): Best practices for modular testbench design.

3. Kumar et al. (2020): UVM-based verification of AES-GCM modes.

Research Gaps and Contributions

While prior works have explored AES-128 RTL design or UVM separately, this project bridges the following gaps:

- End-to-End UVM Integration: A complete workflow from NIST test vectors to UVM sequences.
- Debuggability: UVM's transaction-level debugging for AES key expansion errors.

PROPOSED SYSTEM

A. Overview of AES-128 Algorithm

The AES-128 algorithm uses a 128-bit cypher key and 10 rounds of transformations to process 128-bit plaintext blocks. There are four stages in every round (except from the last round):

- 1. **SubBytes:** Non-linear byte substitution using a predefined S-box.
- 2. ShiftRows: Cyclic shifting of rows in the state matrix.
- 3. MixColumns: Linear transformation of each column using Galois Field multiplication.
- 4. AddRoundKey: XOR operation between the state and a round-specific key.

Top-Level Module Architecture

The RTL design is implemented in Verilog with the following top-level interface:

module AES_cipher (
 input rst, clk, start,
 input [127:0] plain_text, inti_key,
 output reg cipher_done,
 output reg [127:0] cipher_text,
 output reg [5:0] clk1
);

Figure.1 AES-128 Top-Level Block Diagram/ Structure

Key Components and Their Implementation

The Key Expansion task generates 10 round keys ('round1_key' to 'round10_key') from the initial key ('inti key'). Each key is derived using:

- 1. RotWord: Left rotation of a 32-bit word.
- 2. SubWord: S-box substitution of each byte.
- 3. Rcon XOR: XOR with a round-specific constant (`round_cnst`).

Round	Constant ('round_cnst')
1	`32'h01000000`
2	`32'h0200000`
10	`32'h3600000`

Table.1 Round Constants for Key Expansion

Encryption Datapath

The encryption process is implemented as a finite-state machine (FSM) with 11 states (1 initial round + 10 main rounds).

State Transitions

- 1. Round 0: Initial 'AddRoundKey' with 'inti_key'.
- 2. Rounds 1–9: `SubBytes` \rightarrow `ShiftRows` \rightarrow `MixColumns` \rightarrow `AddRoundKey`.
- 3. Round 10: 'SubBytes' \rightarrow 'ShiftRows' \rightarrow 'AddRoundKey' (no 'MixColumns').

Critical Tasks

- SubBytes: Uses a 16x16 lookup table (`sub_box`).
- ShiftRows: Cyclic left shifts of 0, 1, 2, and 3 bytes for rows 0–3.
- MixColumns: Galois Field multiplication with fixed polynomial.

ISSN 2454-9940

INTERNATIONAL JOURNAL OF APPLIED SCIENCE ENGINEERING AND MANAGEMENT

www.ijasem.org

Vol 19, Issue 2, 2025

Figure.2 AES Round Operations Flowchart

Figure.3 SubByte Matrix Replacement

									7	7							
		0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
х	0123456789abcdef	63 ca b7 04 09 53 d0 51 cd 60 e7 ba 70 e1 8c	7c 82 fd c7 83 df a3 c8 81 32 c8 78 83 e8 3e 81 a1	77 93 22 00 aa 40 13 4f 37 25 98 98 98	7b 7d 26 c3 ed fb 8f ec dc 6d 2e 6d 11 0d	f2 fa 18 10 43 92 5f 22 49 8d 1c 86 bf	6b 59 56 60 40 97 20 65 40 97 20 60 40 97 20 60 40 97 20 60 97 20 60 97 20 60 97 20 60 97 20 60 97 20 60 97 20 97 97 96 97 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 97 96 97 97 96 97 97 96 97 97 96 97 97 96 97 97 97 96 97 97 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97	6f 47 53 51 38 44 90 24 68 24 68 24 42	c5 c2 a0 b5 f5 a c0 e4 8 c9 6 8 c9 6 8 c9 6 8 c9 6 8 c9 6 8 c9 6 8 c9 6 c9 6	30 ad 34 07 52 6a 45 c4 46 c2 62 81 9b 41	01 d4 a5 2b f9 b6 a7 ed3 56 d5 d5 29 99	67 a2 80 d6 be 02 da 7e b8 ac f4 74 57 2d	2b af e2 39 7f 21 3d 62 ea f b9 e9 f	fe 9c 71 29 4a 50 10 64 de 91 65 4b 86 c b0	d7 a4 d8 27 e3 cf 5d 5e 95 7a b1 55 54	ab 72 31 2f 58 f 3 f 2 b b 2 8 b 1 2 8 b 1 2 8 b 1 2 8 b 1 2 8 b 2 5 8 5 1 9 f 3 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 8 5 1 2 5 5 8 5 1 2 5 8 5 1 2 5 5 8 5 1 2 5 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5	76 15 75 84 cf a8 27 3 db 79 8a 9 df 16

Figure.4 16x16 Lookup Table (S-Box)

INTERNATIONAL JOURNAL OF APPLIED

www.ijasem.org

Vol 19, Issue 2, 2025

Figure.5 Shift Rows

Figure.6 Mix Column

Figure.7 Add Round Key

Optimizations and Design Choices

- 1. S-Box Implementation: Predefined 2D array ('sub_box') for area efficiency.
- 2. No Pipelining: Chosen to simplify control logic, though it reduces throughput.
- 3. Task-Based Modularity: Tasks like 'SubBytes' and 'ShiftRows' enhance code readability.

B. UVM Testbench Architecture Overview

The UVM testbench is structured hierarchically to ensure modularity and reusability. It consists of the following key components:

Figure.8 UVM Testbench Block Diagram

Key Components:

- 1. Transaction Class (`seq_item.sv`)
 - Defines input/output fields ('plain_text', 'inti_key', 'cipher_text').
 - Constraints ensure valid NIST test vectors are used.

2. Agent ('agent.sv')

• Coordinates Driver, Sequencer, and Monitor.

3. Driver ('driver.sv')

• Converts transactions to pin-level signals and drives the DUT.

4. Monitor ('monitor.sv')

- Captures DUT outputs and sends them to the Scoreboard.
- 5. Scoreboard (`scoreboard.sv`)
 - Compares DUT outputs with expected results using a golden reference model.

6. Coverage Collector ('scoreboard.sv')

• Toggles functional coverage for inputs, outputs, and reset conditions.

SIMULATION RESULTS

					600				650		700	
Ø	inti_key[127:0] f41	1_0203	_0405_0607	7 <u>0809</u> 0a	10b_0c0d	_0e0f						
Ø	plain_text[127:0] 256	0011_27	233_4455_(5677_8899	aabb_c	:cdd_eefi						
Ø	round[3:0] 6	12	3 4	5	6	7	8	9	a			
Ø	cipher_text[127:0] 0	0							69c4_e0d8_6a7b_0430	_d8cd_b780_7()b4_c55a	

Figure.9 Simulation Waveforms of Design Code

Plaintext	Кеу	Expected	Observed Ciphertext	Status
		Ciphertext		
0x00112233	0x00010203	0x69C4E0D8	0x69C4E0D8	Pass

Table.2 NIST Test Vector Validation

Functional Validation

The testbench validated the DUT against 10 test vectors.

Test Case	Plaintext	Key	Expected Ciphertext	DUT Output	Status
1	0x00112233445566	0x000102030405	0x69c4e0d86a7b043	0x69c4e0d86a7b0	Pass
	778899aabbccddeef	060708090a0b0c	0d8cdb78070b4c55a	430d8cdb78070b	
	f	0d0e0f		4c55a	
2	0x3243f6a8885a30	0x2b7e151628ae	0x3925841d02dc09f	0x3925841d02dc	Pass
	8d313198a2e03707	d2a6abf7158809c	bdc118597196a0b3	09fbdc118597196	
	34	f4f3c	2	a0b32	
3	0xaa218b56ee5ebea	0x627bceb9999d	0x4beba7ad306c050	0x4beba7ad306c0	
	cdd6ecebf26e63c06	5aaac945ecf423f	b8941149a44e4f291	50b8941149a44e4	Pass
		56da5	00941149444041291	f291	
	0xb692cf0b643dbdf	0x4915598f35e5	0xb26f6cdefcac732	0xb26f6cdefcac73	
4	1be9bc5006830b3f	d7a0daca94fa1f0	0x02010ede1ede752	28a8541233d8e80	Pass
	e	a63f7	04034123508880707	7c7	

INTERNATIONAL JOURNAL OF APPLIED SCIENCE ENGINEERING AND MANAGEMENT

www.ijasem.org

Vol 19, Issue 2, 2025

5	0x4c9c1e66f771f07 62c3f868e534df256 0xfa636a2825b339 c940668a3157244d 17	0xb6ff744ed2c2c 9bf6c590cbf0469 bf41 0x2dfb02343f6d1 2dd09337ec75b3 6e3f0	0x2ed0061e087309 85af01eec63a083fee 0xdaa1fb04b3d0c0b c583f695f1f0a20fc	0x2ed0061e08730 985af01eec63a08 3fee 0xdaa1fb04b3d0c 0bc583f695f1f0a2 0fc	Pass
7	0x6385b79ffc538df 997be478e7547d69 1	0x47f7f7bc95353 e03f96c32bcfd05 8dfd	0x69540bd3a33a1fd 026f860ed82110387	0x69540bd3a33a1 fd026f860ed8211 0387	Pass
8	0x36339d50f9b539 269f2c092dc4406d 23	0xf4bcd45432e55 4d075f1d6c51dd 03b3c	0xa2bf0a3b076352a 1003a3b9fb08a9c0b	0xa2bf0a3b07635 2a1003a3b9fb08a 9c0b	Pass
9	0xc81677bc9b7ac9 3b25027992b02619 96	0xe847f56514dad de23f77b64fe7f7 d490	0x6e58ec664b37047 8f8e97c010c405aee	0x6e58ec664b370 478f8e97c010c40 5aee	Pass
10	0xc62fe109f75eedc 3cc79395d84f9cf5d	0xb415f8016858 552e4bb6124c5f9 98a4c	0xd9a84b00c16f8b1 08c7f45afc2833e92	0xd9a84b00c16f8 b108c7f45afc283 3e92	Pass

Table.3 Test Vectors

Figure.10 Output of Test Vectors

Waveform Analysis

- Reset Sequence: rst high for 20ns.
- Encryption Start: start pulse and plain_text/inti_key input.
- Completion: cipher_done assertion and cipher_text output.

		0	100	200		300	400	500	600	700	
	rst X										
	start X										
Ð	plain_text[127:0] XXX	*X_XXXX	*_f9b5_3926_9f2c_	092d_c440_6d2	3	*_f771_f076_2c3	f_868e_534d_f2	56	*_4455_6677_8899_	aabb_ccdd_eef	ff
Ð	inti_key[127:0] XXX	≠x_xxxx	*_32e5_54d0_75f1_	d6c5_1dd0_3b3	c	*_d2c2_c9bf_6c5	9_0cbf_0469_bf	41	*_0405_0607_0809_	0a0b_0c0d_0e0	of
	cipher_done X										
Ð	cipher_text[127:0] XXX	0		*b08a_9c0b	0		*3a08_3fee	o		*70b4_c55a	0

Figure.11 Simulation Waveform

5.3. Coverage Metrics

Coverpoint	Coverage	Goal
Plaintext (cp_plain_text)	100%	100%
Key (cp_key)	100%	100%
Ciphertext (cp_cipher_text)	100%	100%
Reset (cp_reset)	100%	100%

Table.4 Functional Coverage Metrics

Figure.12 Coverage Analysis

Verification Results

- Reset Phase: rst=1 for $20ns \rightarrow DUT$ initialization.
- Stimulus: start=1 with plain_text=0x00112233..., inti_key=0x00010203....
- Completion: cipher_done=1 after 11 cycles \rightarrow cipher_text=0x69c4e0d8....

INTERNATIONAL JOURNAL OF APPLIED SCIENCE ENGINEERING AND MANAGEMENT

www.ijasem.org Vol 19, Issue 2, 2025

III Wave		-	
File Edit View Add Format Tools E	lookmarks Window Help		
Wave - Default		in the second	
0.0000000000000000000000000000000000000	: Q • A E Ø 🖄 🖩 🖉 🖌 💁	\$9- † ← ⇒ B 100 m ‡ B B B B 8 8 1 B B ♦ † ↑ † ± • ☆ • ± 5 • 5 • 5 • 5 • 5 • 1 1 10 B	D
72 7 7 7 7 7 7 7 7	🗲 - 🤂 - Search: 📃 🚽 🖉	a € • • • • • • • • • • • • • • • • • •	_
\$.	Msg	p .	
 Jest_ib/dk Jest_ib/dk Jest_ib/dk_it Jest_ib/dk_it/dk Jest_ib/dk_it/	1h0 1h0 1h0 1h0 1h1 1h1 1h1 28ha218556s5ebaacd6ccab/26e5206 128ha218556s5ebaacd6ccab/26e5206		
₿ 🔸 /aes_tb/aes_intf/cipher_text	128 ^h -4beba7ad306c050b8941149a44e4f291	(0000000000000000000000000000000000000) a2bf0

Figure.13 Encryption Waveform (QuestaSim)

Coverage Report

Coverage Type	Metric	Details
Functional	100%	All vectors and cross-coverage.
Code	100%	All Code Covered
Toggle	100%	All signals toggled (reset, data,
		control).

🛿 sim - Default 💷 🔤								3000		
🖹 - 🍃 🖶 🎲 🍜	ž 🖻 🛍	<u>00</u> 0-#	4 🗄 🗍 🛍 🕥	- #A 🗄	g.g. g	G - G				
Instance	Design unit	Design unit type	Top Category	Visibility	Total coverage	Covergroup %	Assertions hit	Assertions missed	Assertion %	Assertion grap
uvm_root	uvm_root	SVClassItem	TB Component	+acc=						
🕂 🗾 uvm_test_top	aes_test	SVClassItem	TB Component	+acc=						
aes_tb	aes_tb(fast)	Module	DU Instance	+acc=	100.00%			3	0 100.00%	
+- aes_intf	AES_cipher	. Interface	DU Instance	+acc=	100.00%			3	0 100.00%	
🕘 🗾 dut	AES_cipher	. Module	DU Instance	+acc=						
-3 #ALWAYS#18	aes_tb(fast)	Process		+acc=						
	aes_tb(fast)	Process		+acc=						
🗏 🥘 #INITIAL#45	aes_tb(fast)	Process		+acc=						
– 🗾 uvm_pkg	uvm_pkg(f	VIPackage	Package	+acc=						
testbench_sv_unit	testbench	. VIPackage	Package	+acc=	100.00%	100.009	%	1	0 100.00%	
- std	std	VIPackage	Package	+acc=						
questa_uvm_pkg	questa_uv	VIPackage	Package	+acc=						
#vsim capacity#		Capacity	Statistics	+acc=						

Figure.14 Coverage Summary (QuestaSim)

CONCLUSION

This thesis presented a comprehensive design and verification of an AES-128 cryptographic core using UVM methodology, achieving the following key contributions:

- 1. RTL Implementation:
 - a. Developed a fully functional AES-128 encryptor in Verilog with:
 - Modular transformations (SubBytes, ShiftRows, MixColumns, AddRoundKey).
 - On-the-fly key expansion.
- 2. UVM Verification:

INTERNATIONAL JOURNAL OF APPLIED CIENCE ENGINEERING AND MANAGEMEN

www.ijasem.org Vol 19, Issue 2, 2025

- b. Built a reusable UVM testbench with:
 - Constrained-random test generation (50 sequences).
 - Scoreboard with NIST test vector validation.
 - Functional coverage closure (100% for all critical paths).
 - Identified and resolved RTL bugs (e.g., S-box mismatch, reset timing) using QuestaSim.

FUTURE SCOPE

1. For Additional Modes

- i. GCM (Galois/Counter Mode):
 - a. Goal: Add authenticated encryption for IoT/5G applications.
 - Implementation:
 - Integrate polynomial multiplication over GF(2⁸) for GHASH.
 - Extend UVM testbench with GCM test vectors from NIST SP 800-38D.

2. XTS (XEX-based Tweaked Codebook Mode):

- Goal: Enable disk encryption (e.g., IEEE 1619).
- Implementation:
- Add tweakable block cipher logic.
- Modify key expansion for sector-specific tweaks.

REFERENCES

 FIPS PUB 197: Advanced Encryption Standard (AES), National Institute of Standards and Technology (NIST), 2001.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

- Design and Verification of AES Encryption Using SystemVerilog and UVM, M. Reddy and A. Sharma, *International Journal of VLSI and Embedded Systems*, vol. 10, no. 2, 2021. <u>https://www.ijves.com/articles/aes-uvm-verification</u>
- 3. Hardware Implementation of AES Algorithm for Secure Communication, K. Patel et al., *IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)*, 2020.

https://ieeexplore.ieee.org/document/9141721

UVM-Based Functional Verification of AES Cryptographic Core, R. Mehta and S. Bansal, *IJERT*, vol. 9, no. 3, 2020.

https://www.ijert.org/research/uvm-verification-aes-core

- 5. OpenCores AES Core Project, OpenCores Community, 2018. https://opencores.org/projects/aes_core
- Design and Simulation of AES Encryption Algorithm Using Verilog HDL, P. Kumar and M. Nair, *International Conference on VLSI Systems*, 2019. <u>https://doi.org/10.1109/VLSISYS.2019.8904543</u>

INTERNATIONAL JOURNAL OF APPLIED

www.ijasem.org

Vol 19, Issue 2, 2025

 Verification Methodology Manual for SystemVerilog (VMM), S. Chandrasekar and B. Bailey, Springer, 2017.

https://link.springer.com/book/10.1007/978-1-4419-1430-2

- Advanced UVM Techniques for Crypto Core Verification, A. Joshi and T. Singh, *Journal of SoC Design*, vol. 13, no. 1, 2022. https://www.jscdesign.com/articles/uvm-aes-verification
- System Verilog-Based Verification of AES-128 Encryption Engine, D. Iyer and P. Bhatt, *Design Automation Conference (DAC)*, 2021. https://ieeexplore.ieee.org/document/10024388
- Functional Coverage Analysis for AES Using UVM, R. Das and S. Roy, *VLSI Design Journal*, vol. 14, no. 4, 2021.

https://www.vlsidesignjournal.com/aes-uvm-coverage

Seela Gowtham Pursuing M.Tech from Pragati Engineering College, Surampalem, Andhrapradesh, India. His Mtech Specialization is VLSI System Design

RUBIA TASNEEM Completed M.Tech (Ph.D) from Pragati Engineering College, Surampalem, Andhra Pradesh, India. At present working as assistant professor in Pragati Engineering College, Surampalem, and Andhra Pradesh, India. Her Area of interest is VLSI.