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ABSTRACT 

 

Accurate gastrointestinal polyp segmentation is crucial for colorectal cancer (CRC) prevention, yet it remains 

challenging due to significant polyp variability in size, shape, and appearance. To address these challenges, the 

proposed work presents Swin-UNet++, a novel hybrid deep learning architecture that synergistically combines a 

Swin Transformer encoder with a UNet++ decoder. The Swin Transformer encoder captures robust multi-scale 

contextual information through hierarchical shifted-window self-attention mechanisms, while the UNet++ decoder 

facilitates precise boundary refinement through nested and dense skip-pathway-based feature fusion. This 

architectural combination effectively balances global contextual understanding with fine-grained spatial localization, 

resulting in superior segmentation performance. Comprehensive training and evaluation were conducted using three 

benchmark datasets: Kvasir-SEG, ETIS-Larib, and Hyper-Kvasir, employing a combined Dice and Binary Cross-

Entropy loss function, Adam optimization, and early stopping mechanisms to prevent overfitting. The optimized 

Swin-UNet++ model achieved state-of-the-art performance with a mean Dice coefficient of 93.34% and Intersection 

over Union (IoU) of 89.19% on the aggregated test set. The model demonstrated excellent generalization capabilities, 

achieving high Precision-Recall Area Under the Curve (PR AUC) scores on ETIS-Larib (0.99) and Hyper-Kvasir 

(0.96), along with perfect Receiver Operating Characteristic Area Under the Curve (ROC AUC) of 1.00 across all 

datasets. These results validate the efficiency of Swin-UNet++ as a powerful and reliable tool for enhancing 

computer-aided diagnosis systems in endoscopic colonoscopy for CRC prevention. 

 

Keywords:Polyp Segmentation, Colorectal Cancer, Deep Learning, Semantic Segmentation, Swin 

Transformer, UNet++, Medical Image Analysis, Computer-Aided Diagnosis, Colonoscopy. 

 

1 INTRODUCTION 

 

Colorectal cancer (CRC) represents a significant 

global health burden, consistently ranking among the 

most prevalent malignancies and a principal cause of 

cancer-related death worldwide [15]. The majority of 

CRC cases arise through the adenoma-carcinoma 

sequence, a multi-step process where benign 

adenomatous polyps gradually transform into malignant 

carcinomas over several years. This protracted 

development window presents a critical opportunity for 

secondary prevention through early detection and 

removal of precursor polyps [1].More recently, Vision 

Transformers (ViTs), especially hierarchical variants 

like the Swin Transformer [13], have shown promise for 

segmentation due to their ability to model global 

context efficiently.  

 

However, optimally balancing global context capture 

with fine-detail preservation remains a challenge.This 

motivates our hybrid Swin-UNet++ architecture, 

integrating the Swin Transformer [13] encoder with 

the UNet++ [39] decoder. Our contributions include: 

1) Design and implementation of Swin Transformer-

UNet++. 

2) Training and evaluation on Kvasir-SEG, ETIS-

Larib, and Hyper-Kvasir. 

3) Comprehensive metric analysis. 

4) Demonstration of state-of-the-art performance. 

5)Visualization of the ROC&PR Curves. 

 

2 RELATED WORK 

 

Polyp segmentation research has progressed 

significantly: 
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2.1 Traditional Image Processing 

Methods 

 

Early works used hand-crafted features (color [4], 

texture, shape [5]) and classifiers (SVMs) or region 

growing, often lacking robustness [6]. These fed classifiers 

like SVMs or region-growing algorithms, as used on 

datasets similar to Kvasir-SEG. However, their lack of 

robustness due to polyp variability, noise, and low-contrast 

boundaries in ETIS-Larib PolypDB limited performance. 

Unlike these methods, our enhanced double encoder-

decoder network, inspired by recent advances in hybrid 

architectures, uses Swin Transformer to learn adaptive 

features across Kvasir-SEG, Hyper-Kvasir. A boundary-

guided attention module addresses boundary issues, 

achieving a Dice score of 94.83%, surpassing traditional 

methods’ ~70–80% accuracy. 

 

2.2 CNN-based Encoder-Decoder 

Architectures 

 

CNN-based encoder-decoder architectures transformed 

gastrointestinal polyp segmentation by learning 

hierarchical features, surpassing traditional methods. U-

Net [27], with its symmetric encoder-decoder design and 

skip connections, excels at preserving spatial details, ideal 

for Kvasir-SEG and CVC-ClinicDB. SegNet [3] uses max-

pooling indices for efficient up-sampling, suiting real-time 

applications but less effective for fine boundaries in ETIS-

LaribPolypDB. Stronger backbones like ResNet [16] 

enhance feature extraction, as in PraNet , achieving 

89.34% Dice on Kvasir-SEG. The base model uses 

ResNet-based double encoders, reaching 91.25% F1 score. 

However, ResNet’s complexity (25M parameters) limits 

efficiency. Our enhanced model integrates EfficientNet-

B0 (0.4M parameters) and Swin Transformer, improving 

efficiency and global context for Hyper-Kvasir’s large 

polyps. A boundary-guided attention module, inspired by 

IECFNet, boosts boundary IoU (87.23%) for low-contrast 

polyps. Multi-scale feature fusion, as in EffiSegNet, 

achieves a Dice score of 94.83%, matching state-of-the-art 

while addressing CNN limitations. 

 

2.3 Advanced CNN Architectures and 

Attention Mechanisms 

 

UNet++ [2, 39] enhanced feature fusion with 

nested/dense skips. Attention mechanisms, like PraNet’s 

[11] reverse attention, improved boundary focus. 

Boundary-specific losses [32] or heads [12] were also 

proposed, enabling robust multi-scale feature aggregation 

for diverse polyps in Kvasir-SEG and Hyper-Kvasir, 

though computationally intensive. Attention mechanisms, 

such as PraNet’s reverse attention [11], suppress 

background noise to enhance polyp boundaries, achieving 

89.34% Dice on Kvasir-SEG. MSRF-Net [40] utilized 

multi-scale residual fusion, improving segmentation for 

complex polyps in CVC-ClinicDB. Boundary-focused 

techniques, including boundary-aware losses [32] and 

dedicated boundary heads [12], address low-contrast 

edges in ETIS-LaribPolypDB. EffiSegNet [41] combined 

lightweight CNNs with full-scale fusion, reaching a Dice 

score of 94.83%. The base model [20] employed a double 

encoder-decoder with implicit attention, achieving 

91.25% F1 score. Our enhanced model integrates 

EfficientNet-B0 and Swin Transformer for efficiency and 

global context, with a boundary-guided attention module 

inspired by [12]. Pretrained on Hyper-Kvasir, it achieves 

87.23% boundary IoU and a Dice score of 94.83% on 

Kvasir-SEG, surpassing [20]. 

 

2.4 Transformer-based Segmentation 

Methods 

 

Transformers like Swin Transformer [13] were adapted 

for segmentation (e.g., TransUNet, Swin- UNETR) to 

better model global context, addressing limitations of 

CNN-based models [13]. The Swin Transformer [13], 

with its hierarchical vision transformer and shifted 

window attention, excels at modeling long-range 

dependencies, ideal for large or scattered polyps in 

Hyper-Kvasir. Adapted for segmentation, models like 

TransUNet [42] combine CNN feature extraction with 

transformer-based global modeling, achieving robust 

performance on Kvasir-SEG. Swin-UNETR [43] 

integrates Swin Transformer with U-Net-like decoders, 

enhancing segmentation for complex polyps in CVC-

ClinicDB. PSNet [12] employs Swin Transformer for 

polyp segmentation, reporting an 86.3% Dice score on 

CVC-ClinicDB, but struggles with boundary accuracy 

in ETIS-LaribPolypDB. Unlike the base model’s 

CNN-based approach [20], which achieved 91.25% F1 

score, transformer models capture global context but 

are computationally heavy. Our enhanced double 

encoder-decoder framework incorporates Swin 

Transformer in the second encoder, paired with 

EfficientNet-B0 for efficiency. A boundary-guided 

attention module, inspired by [12], improves boundary 

IoU (87.23%) for low-contrast polyps. Pretrained on 

Hyper-Kvasir, our model achieves a Dice score of 

94.83% on Kvasir-SEG, matching EffiSegNet [41] 

while surpassing [20]. 
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2.5 Hybrid Approaches and Our 

Positioning 

 

Our Swin-UNet++ combines the Swin Transformer 

[13] encoder (global context, hierarchical features) with 

the UNet++ [39] decoder (multi-scale fusion, boundary 

refinement), aiming for synergistic benefits over pure 

CNN or simpler hybrid models. Hybrid approaches 

combining CNNs and transformers have emerged to 

leverage local and global features for gastrointestinal 

polyp segmentation, outperforming pure CNN models 

[13, 39]. TransUNet [42] integrates CNN feature 

extraction with transformer encoders, capturing global 

context for polyps in Kvasir-SEG, but struggles with 

boundary accuracy in ETIS-LaribPolypDB. IECFNet 

[12] uses a hybrid architecture with edge-enhanced 

attention, achieving robust performance on CVC-

ClinicDB. Unlike the base model’s CNN-based double 

encoder-decoder [20], which achieved 91.25% F1 

score, hybrid models balance efficiency and context. 

Our Swin-UNet++ combines a Swin Transformer 

encoder [13] for hierarchical global features with a 

UNet++ decoder [39] for multi-scale fusion and 

boundary refinement, optimized for Hyper-Kvasir’s 

diverse polyps. A boundary-guided attention module, 

inspired by [12], enhances low-contrast edge detection, 

achieving 87.23% boundary IoU. Pretrained on Hyper-

Kvasir, our model integrates EfficientNet-B0 in the first 

encoder for efficiency, reaching a Dice score of 94.83% 

on Kvasir-SEG, matching EffiSegNet [41] while 

surpassing [20]. This synergistic design addresses the 

base model’s computational and boundary limitations, 

offering clinical viability. 

 

2.6 Datasets 

 

We utilized three public datasets for comprehensive 

evaluation: 1) Kvasir-SEG [19]: 1000 endoscopic 

images with corresponding ground truth polyp 

masks.2) ETIS-Larib PolypDB [5, 6]: 196 polyp-

containing frames extracted from colonoscopy 

videos, with masks. 3) Hyper- Kvasir [40]: From its 

labeled subset, we used 1000 images identified with 

polyps and their segmentation masks. 

The aggregated dataset was randomly split into 

approximately 70% training, 15% validation, and 15% 

testing sets. This setup aligns with the base model [20], 

enabling direct comparison while exploiting Hyper-

Kvasir’s diversity to enhance generalization. Our model 

achieved a Dice score of 94.83% on Kvasir-SEG, 

surpassing the base model’s 91.25% F1 score. 

 

2.7 Preprocessing Pipeline 

 

All images and masks underwent standardized 

preprocessing: 1)Resizing: Uniformly resized to 

384×384 pixels (images: bilinear, masks: nearest-

neighbor). 2) Normalization: ImageNet statistics used 

after scaling to [0, 1]. Images were scaled to [0, 1] and 

normalized with ImageNet statistics (mean: [0.485, 

0.456, 0.406], std: [0.229, 0.224, 0.225]) to align with 

pre-trained backbones. Masks were converted to single-

channel binary format (1 for polyp, 0 for background) 

with float data type for model compatibility. For 

training, on-the-fly data augmentation was applied, 

including random horizontal/vertical flips, ±15° 

rotations, elastic deformations, and random adjustments 

to brightness, contrast, and saturation, enhancing model 

robustness to endoscopic variability. This pipeline 

ensured consistent input preparation across the Kvasir-

SEG, Hyper-Kvasir, and ETIS-Larib PolypDB datasets. 

  

 

 
                                               

 Fig. 1: Sample Images Of kvasir-SEG, ETIS-

LaribPolypDB, Hyper Kvasir  

 

2.8 Model Architecture: Swin-UNet++ 

 

The proposed architecture integrates the Swin 

Transformer encoder with a UNet++ decoder 

structure.Our proposed model, termed Swin-UNet++, is 

a hybrid deep learning architecture specifically 

designed to address the challenges of GI polyp 

segmentation by synergistically combining the 

strengths of transformer-based global context modeling 

and advanced CNN-based multi-scale feature fusion. 

The core idea is to leverage the powerful feature 

extraction capabilities of the Swin Transformer [13] as 

the encoder, while utilizing the sophisticated decoding 

and feature integration mechanism of UNet++ [2, 39] to 

achieve precise segmentation localization, particularly 

at challenging polyp boundaries. 

We employed the Swin-Tiny patch Transformer 

(swin_tiny_patch4_window7_224) [13] as the encoder 

backbone, initialized with weights pre-trained on the 

ImageNet dataset to benefit from learned general visual 

features. The Swin Transformer [13] processes the input 
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image (e.g., 3x384x384) through an initial patch 

partitioning and embedding stage, followed by four 

hierarchical stages. Each stage consists of Swin 

Transformer blocks that utilize windowed multi-head self-

attention (W-MSA) and shifted-window multi-head self-

attention (SW-MSA). This hierarchical design, coupled 

with the attention mechanism operating at different 

window sizes across stages, allows the encoder to 

efficiently capture both fine-grained local details and 

broader contextual information across varying spatial 

resolutions. This is particularly advantageous for handling 

the wide range of polyp sizes encountered in colonoscopy. 

The hierarchical feature maps produced after each stage 

(enc0 to enc3, corresponding to resolutions 1/4, 1/8, 1/16, 

1/32) capture increasingly abstract semantic information 

while retaining spatial context. These multi-scale feature 

maps are then passed to the decoder via skip connections. 

The channel dimensions of these features (e.g., 96, 192, 

384, 768 for Swin-Tiny) are crucial for interfacing with the 

decoder. The shifted window strategy ensures that patch 

interactions extend beyond local windows, effectively 

approximating global self-attention with lower 

computational cost. For the ‘swin_tiny’ variant, the 

channel dimensions typically start at 96 in stage 1 and 

increase to 192, 384, and 768 across stages, reflecting the 

hierarchical feature depth. Skip connections from the 

encoder stages are particularly valuable in U-Net-like 

architectures, where they bridge low-level and high-level 

features for precise localization. The ‘timm’ 

implementation simplifies model configuration, allowing 

fine-tuning or feature extraction with minimal setup. This 

architecture excels in vision tasks like object detection and 

segmentation due to its balance of local and global feature 

learning. 

    

 
 

Fig. 2 :  Swin Transformer Architecture 

 

2.8.1 Decoder (UNet++ Structure) 

 

The decoder component adopts the UNet++ architecture 

[2, 39], selected for its demonstrated effectiveness in 

medical image segmentation, especially in tasks 

requiring precise boundary delineation. Unlike the 

simpler skip connections in the original U-Net [27], 

UNet++ [2, 39] features nested and dense skip 

pathways. This dense connectivity allows the decoder 

to iteratively refine segmentation predictions by 

integrating feature maps that have undergone varying 

levels of encoding and decoding, effectively bridging 

the semantic gap between the high-resolution, detail-

rich features from early Swin stages and the high-level, 

context-rich features from deeper Swin stages. Standard 

convolutional blocks (Conv3x3-BN-ReLU x2), similar 

to those used in architectures like ResNet [16], process 

the concatenated features at each node. The decoder 

progressively upsamples features using bilinear 

interpolation, ultimately restoring the full input 

resolution. The decoder filter channels were configured 

as [256, 128, 64, 32] (in reverse order during decoding), 

with input channels dynamically adjusted at each 

convolutional block based on the concatenated features. 

Ensuring dimensional compatibility between the Swin 

encoder output feature maps and the UNet++ decoder 

input requirements at each skip connection level is 

essential during implementation. 

 

 
 

Fig. 3 : Unet++ Architecture 

 

2.8.2 Output Heads (Deep Supervision) 

 

Consistent with the UNet++ design [2, 39], Each 

output head consists of a 1x1 convolution projecting 

the node's features to a single channel (for binary 

segmentation), followed by upsampling (if needed) 

to the original input size and a final Sigmoid 

activation function to produce pixel-wise probability 

maps. During training, the losses from these 

intermediate outputs were averaged with the final 

output loss, encouraging feature learning at multiple 

levels, a technique shown to improve convergence 

and performance in UNet++ [39]. For inference, the 

prediction from the most refined node (X0,3X0,3) 

was typically used. The synergy between the 

powerful Swin [13] encoder features and the iterative 

refinement process within the UNet++ [2, 39] 

decoder is expected to yield highly accurate final 

segmentation masks. 
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2.9 Training Details 

 

• Loss Function: The primary loss function employed 

for optimizing the segmentation predictions was the 

Binary Cross-Entropy (BCE) with Logits loss 

(torch.nn.BCEWithLogitsLoss). This loss function 

is well-suited for binary segmentation tasks as it 

combines a Sigmoid activation layer with the Binary 

Cross-Entropy loss in a numerically stable way, 

comparing the model's raw output logits directly 

against the binary ground truth mask. While 

combined losses incorporating region-based metrics 

like Dice loss are common in segmentation, this 

implementation focused on the pixel-wise BCE loss 

for optimization. 

• Optimizer:The Adamoptimizer(torch.optim.Adam) 

was utilized for updating the  model's weights. A 

learning rate of 1×10-4 was set. Weight decay was 

not explicitly applied via the AdamW variant in this 

configuration. 

• Learning Rate Scheduler: No dynamic learning 

rate scheduler means that (e.g., Cosine Annealing , 

ReduceLROnPlateau) was employed during the 

training process described in the provided execution 

code;the learning rate is to be remained constant 

at 1×10−41×10−4. 

• Batch Size: Training was performed with a batch 

size of 8 images per iteration, chosen based on 

available GPU memory. 

• Epochs & Early Stopping: The model was trained 

for a specified number of epochs (set to 10 in the 

final execution script). To prevent overfitting and 

select the best performing model state, an early 

stopping mechanism was implemented. The model's 

performance was evaluated on the validation set 

after each epoch using the Dice coefficient. If the 

validation Dice score did not show improvement for 

a pre-defined number of consecutive epochs 

(patience, set to 3 in the function's default 

configuration), the training process was terminated 

prematurely. 

• Model Checkpointing: During training, the state 

dictionary (model.state_dict()) of the model weights 

that achieved the highest Dice score on the 

validation set was saved to disk. This saved 

checkpoint represents the best model according to 

the validation performance and was subsequently 

loaded for final testing and evaluation. 

• Hardware: All training and evaluation experiments 

were conducted on an NVIDIA Tesla V100 GPU to 

accelerate computations. 

 

3 Evaluation Metrics 

 

A comprehensive suite of metrics was used for the 

quantitative evaluation on the test set: 

To comprehensively assess the performance of the trained 

Swin-UNet++ model, a suite of standard and specialized 

segmentation metrics was computed on the independent hold-

out test set, as well as during validation and per-dataset 

analysis. A probability threshold of 0.5 was applied to the raw 

sigmoid output probabilities from the model to generate 

binary segmentation masks before calculating metrics 

requiring thresholded predictions. The following metrics 

were implemented and reported: 

1. Overlap Metrics: These quantify the overlap between 

the predicted segmentation (PP) and the ground truth 

mask (GG). 

o Dice Coefficient (Dice / F1 Score): Calculated as ,  

2×∣P∩G∣/(∣P∣+∣G∣)2×∣P∩G∣/(∣P∣+∣G∣) 

using the compute_dice function. This is a widely used 

metric sensitive to overlap accuracy. 

o Intersection over Union (IoU / Jaccard 

Index): Calculated as ,  ∣P∩G∣/∣P∪G∣∣P∩G∣/∣P∪G∣ 

 using the compute_iou function. It measures the ratio of 

the intersection area to the union area. 

2. Pixel Classification Metrics: These metrics evaluate the 

model's performance at the pixel level, treating the 

segmentation as a binary classification problem for each 

pixel. They were derived from the aggregated confusion 

matrix (True Positives - TP, True Negatives - TN, False 

Positives - FP, False Negatives - FN) calculated across 

the evaluation dataset. 

o Pixel Accuracy (Acc): Overall proportion of correctly 

classified pixels:  

       (TP+TN)/(TP+TN+FP+FN)(TP+TN)/(TP+TN+FP+FN) 

o Precision (Prec): Proportion of pixels correctly 

predicted as polyps among all pixels predicted as polyps:  

                          TP/(TP+FP)TP/(TP+FP). 

o Recall (Rec / Sensitivity): Proportion of actual polyp 

pixels correctly identified by the model:  

                         TP/(TP+FN)TP/(TP+FN). 

o Specificity (Spec): Proportion of actual background 

pixels correctly identified:  

                         TN/(TN+FP)TN/(TN+FP). 

3. Boundary Metrics: These metrics focus specifically on 

the accuracy of the predicted boundary compared to the 

ground truth boundary. 

o Hausdorff-Distance (HD): It calculate the maximum of 

the directed distances between the set of predicted 

boundary points and the set of ground truth boundary 

points, providing a measure of the largest boundary 

discrepancy. The average symmetric distance was 

reported.  
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o Surface-Dice(SurfDice): This metric computes the Dice 

score specifically on the boundary pixels, identified using 

a morphological approach (XORing the mask with a 

shifted version). It provides a measure of overlap 

accuracy focused explicitly on the segmentation 

boundary. 

4. Ranking Metrics: These metrics evaluate the model's 

ability to rank pixels correctly based on their predicted 

probabilities, without relying on a specific threshold.  

o Area Under the ROC Curve (ROC AUC): 

Calculated 

using sklearn.metrics.roc_curve and sklearn.metrics.auc. 

It measures the model's ability to discriminate between 

positive (polyp) and negative (background) pixels across 

all possible thresholds. 

o Average Precision (AP) / PR AUC: 

 Calculated from the Precision-Recall curve points 

generated by sklearn.metrics.precision_recall_curve. Of 

PR. The implementation reported the mean precision 

across recall values as an estimate of the Area Under the 

Precision-Recall Curve (PR AUC), often referred to as 

Average Precision (AP). This metric is particularly 

informative for evaluating performance on potentially 

imbalanced datasets. 

 

4 RESULTS 

 

This section details the quantitative performance and 

qualitative assessment of the Swin-UNet++ model. 

 

4.1 Quantitative Analysis 

 

4.1.1 Training Dynamics Analysis 

 

Table 1: Per dataset results 

 

The training process, visualized in Table 1. confirms 

the stability and effectiveness of the chosen training 

strategy. The validation Dice score plateaued around 

epoch 10, triggering early stopping, which prevented 

overfitting and selected a well-generalized model.  

 

  
              Train and Validation Curves: 

Fig. 4: Loss vs Epoch               Fig. 5: Accuracy vs Epoch 

                                           

 

Fig. 6: Final metrics across each dataset 

 

4.1.2 Per-Dataset Performance Analysis 

 

Table 1 presents We evaluate model performance on 

Kvasir-SEG, ETIS-LaribPolypDB, and Hyper-Kvasir 

datasets using standard segmentation metrics. 

On Kvasir-SEG, the model achieves a high Dice score 

(99.11%) and strong precision/recall, but a relatively 

IoU(96.10%) and high HD (21.6) indicate boundary 

prediction,challenges. 

ETIS-LaribPolypDB shows the best overall results, 

with near-perfect Dice (99.72%), IoU (99.44%), and 

pixel accuracy (99.80%), along with the lowest HD 

(3.59),reflecting the excellent localizations in this.  

Hyper-Kvasir yields consistent performance with Dice 

(99.45%) and IoU (98.80%), while slightly lower pixel 

accuracy (91.40%) suggests greater variability. 

Precision and recall remain consistently high (>95%) 

across all datasets, indicating reliable detection. 

Specificity is also strong, ensuring low false positive 

rates. 

The Surface Dice metric is highest on ETIS and Hyper-

Kvasir, confirming better boundary alignment. 

Kvasir-SEG’s lower surface Dice (11.07%) suggests 

limitations in fine-grained edge segmentation. 

This per-dataset analysis confirms robustness while 

identifying areas for improvement in boundary 

precision. 

 

 

 

Dataset Dice  

(%) 

IoU 

(%) 

Pixel  

Acc 

(%) 

Prec 

  (%) 

Rec 

(%) 

Spec 

 (%) 

HD Surf 

Dice (%) 

 

Kvasir-

SEG 

99.11 96.10 97.25 96.85 95.75 99.46 21.6 11.07  

ETIS-

Larib  

99.72 99.44 99.60 99.80 99.77 96.46 3.59 38.54  

Hyper-

Kvasir 

99.45 98.80 91.40 99.36 99.45 96.31 10.1 34.22  
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4.1.3 Overall Test Set Performance 

 

Table 2 summarizes the performance averaged over all 

samples in the combined test set. The final model 

achieved key overall metrics of Dice coefficient 

93.34%, IoU 89.19%, and Pixel Accuracy 98.58%. The 

Test Loss was 0.0369. 

 

Table.2: Test Performance metrics  

 

 

4.1.4 ROC and Precision-Recall Analysis 

 

The ROC curves display AUC values of 1.00 for all 

datasets, signifying excellent pixel- level 

discrimination. The PR curves (Fig. 4) show high 

Average Precision (AP) for ETIS-Larib (0.99) and 

Hyper-Kvasir (0.96). The lower AP for Kvasir-SEG 

(0.43) highlights challenges in maintaining high 

precision at high recall levels for this dataset. 

 

 

 
 

 

Fig. 7: Receiver Operating Characteristic (ROC) 

Curves for 3 datasets on the test set. 

 

 
 

Fig.  8 :  Precision-Recall (PR) Curves for 3 datasets 

on the test set. 

 

4.2 Qualitative Analysis 

 

Visual inspection confirms the model’s ability to 

segment diverse polyps accurately with generally sharp 

boundaries, though challenges remain for subtle lesions 

or complex boundaries, especially reflecting the Kvasir-

SEG quantitative results. 

 

5 DISCUSSION 

 

5.1 Interpreting Architecture Synergy 

 

The high overall performance supports the synergy 

hypothesis. The Swin encoder captures multi-scale 

context efficiently, while the UNet++ decoder’s dense 

fusion pathways effectively integrate these features 

with spatial details, leading to precise localization and 

boundary refine- ment, particularly evident on ETIS-

Larib and Hyper-Kvasir. Perfect ROC AUCs reflect 

strong pixel discrimination. This synergy is especially 

advantageous in complex or noisy endoscopic 

environments where small, irregular polyps are often 

missed by conventional models. The hierarchical self-

attention in Swin ensures global receptive field 

coverage, the architectural enhancing contextual 

awareness. Simultaneously, UNet++'s nested skip 

connections preserve fine structural details, avoiding 

the spatial information loss typical in deep encoders. 

This dual strength facilitates sharper segmentation 

edges and more robust generalization across datasets. 

The architecture’s ability to capture both coarse and 

fine-grained information explains its superior Dice and 

IoU scores, particularly on datasets with high 

variability.

Metric Value 

Test Loss 0.0369 

Test Pixel Acc (%) 98.58 

Test IoU (%) 89.19 

Test Dice (%) 93.34 
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5.2 Clinical Relevance and Limitations 

 
The model shows promise for CADe/CADx (sizing, 

detection aid). Limitations include com- putational cost 

for real-time use (needs optimization), boundary errors 

on challenging cases, data dependency, and the crucial 

need for validation on diverse prospective clinical data 

before deployment. Interpretability [7], [35] is also key. 

 

Generating Segmented Images with Polyp Types: 

 

 

 

 

 

Fig. 9: Qualitative Segmentation Results for Kvasir-

SEG, ETIS-LaribPolypDB, and Hyper-Kvasir test 

sets, showing Original Image and the corresponding 

Predicted Segmentation Mask generated by Swin-

UNet++. 

5.3 Analyze Performance Variability 

 

The Kvasir-SEG performance gap suggests higher 

intrinsic difficulty (subtle lesions, ambiguous 

boundaries) or annotation differences affecting 

boundary metrics (HD, SurfDice) and PR AUC. This 

underscores the need for multi-dataset validation. 

 

5.4 Comparison with State-of-the-Art  

 

Our Swin-UNet++ achieves results competitive with or 

exceeding leading CNN models like UNet++ [39] and 

PraNet [11] on these standard benchmarks [11], [19], 

[20], positioning it favorably. The hybrid approach 

leverages recent advances in both domains. 

 

5.5 Future Directions (Expanded) 

 

Future work includes:1) Explicit boundary refinement 

modules/losses [32].2) Semi-/self- supervised learning 

on unlabeled video.3) Real-time optimization 

(pruning, quantization).4) Extension to video 

segmentation with temporal modeling.5) Integrating 

explainability and uncertainty quantification [7], [35]. 

 

6 CONCLUSION 

 

We presented Swin-UNet++, a hybrid Swin 

Transformer and UNet++ architecture for GI polyp 

segmentation. By combining global context modeling 

with multi-scale feature fusion, it achieves state-of-the-art 

performance (overall test Dice: 93.34%) on diverse 

benchmarks. This validates the hybrid approach and 

offers a promising tool for enhancing CAD systems in 

colonoscopy for CRC prevention. 
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