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ABSTRACT

Distributed Denial of Service (DDoS) assaults pose a substantial threat to the stability of Internet of Things
(IoT) networks, which are rapidly developing. Traditional centralized detection methods struggle to cope adequately
in the vast and heterogeneous loT environment, prompting the investigation of decentralized options. This article
describes a Federated Learning-based approach called Federated Learning for Decentralized DDoS Attack Detection
(FL-DAD), which uses Convolutional Neural Networks (CNN) to efficiently detect DDoS attacks at their source.
Our solution prioritizes data privacy by processing data locally, eliminating the need for central data collecting and
increasing detection efficiency. FL-DAD outperforms conventional centralized detection methods when tested on
the comprehensive CICIDS2017 dataset, demonstrating the potential of federated learning to improve intrusion
detection systems in large-scale IoT networks by balancing data security and analytical effectiveness.

1. INTRODUCTION

The Internet of Things (IoT) represents the digital
landscape's evolution, expanding beyond traditional
devices such as computers and smartphones to create a
linked web of ordinary things [1]. These items,
equipped with sensors, software, and other
technologies, communicate and exchange data with
other devices and systems via the Internet. The Internet
of Things (IoT) has evolved as a cornerstone of the
twenty-first century digital revolution. From smart
thermostats and wearable health monitors to intelligent
traffic systems and enhanced production equipment,
IoT integration has grown across a variety of industries
[2]. Gartner predicts that by 2025, the world's connected
things will exceed 30 billion [3]. This rapidly
expanding network presents unprecedented prospects
for personal, industrial, and societal applications.
Enhanced data collecting, real-time communication,
and a greatly better user experience are just a few of the
many benefits IoT provides.

However, the growth of IoT devices creates a
variety of dangers. The very characteristics that make
IoT devices versatile—their connectivity, ease of
access, and ubiquity—also make them vulnerable to
threats. Of these dangers, Distributed Denial of Service
(DDoS) assaults are especially dangerous [4]. These
attacks include flooding a certain system, such as a
website or an [oT device, with Internet traffic, rendering
it inoperable. Given the decentralized nature of IoT
networks, a successful DDoS attack can have
catastrophic ramifications, disrupting service delivery,

compromising user experience, and potentially causing
significant economic losses [5], [6]. The inherent
characteristics of IoT devices further exacerbate their
vulnerability. These devices, often manufactured with
cost-effectiveness in mind, may lack sophisticated
security features [7]. Moreover, their widespread
deployment across various environments, each with its
unique security posture, makes establishing a unified
protective framework challenging.

Traditional security techniques, particularly
centralized intrusion detection systems, are well-
equipped to tackle the complexities of IoT. These
centralized systems frequently experience scalability
challenges, failing to manage the huge data flows
generated by the profusion of IoT devices. Furthermore,
centralized systems create a single point of failure,
making them prime targets for enemies [8].
Furthermore, sending data to a central place for analysis
violates user privacy because sensitive information may
be exposed during transit or storage. To solve these
problems, there is an increasing interest in dispersed
learning approaches, particularly Federated Learning
[9]. In federated frameworks, devices, or nodes, are
taught on their own data. Only the model updates, not
the raw data, are transmitted to a central server for
aggregation. This technique has the twin advantage of
decreasing data transmission overhead while also
addressing data privacy concerns. Given the
decentralization of IoT networks, federated learning
appears to be an excellent fit [10], [11]. Federated
learning can provide real-time insights by processing
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data locally on IoT devices, which is critical for rapid
threat identification and mitigation, such as DDoS
attacks [12].

To this purpose, we present the Federated
Learning for Decentralized DDoS Attack Detection
(FL-DAD) technique in IoT Networks. In the suggested
technique, we use Convolutional Neural Networks
(CNNs) to take advantage of their ability to extract
features and recognize patterns. This makes them very
adept in identifying complicated patterns in network
traffic, which is critical for detecting DDoS attacks in
IoT contexts. Our technique attempts to detect DDoS
attacks effectively by training the model at the edge,
near to where the data originates, while adhering to data
privacy and operational efficiency considerations.
Using the CICIDS2017 dataset, a comprehensive
intrusion detection benchmark, we compare the
performance of the FL-DAD technique to standard
centralized methods, demonstrating the benefits of our
decentralized approach. The paper's key contributions
include the following:

» We present a federated learning-based technique to
detect decentralized DDoS attacks in IoT networks
using CNN.

» Our evaluation of the FL-DAD approach on the
CICIDS2017 dataset compares it to classic
centralized detection methods, confirming its
effectiveness and efficiency.

2. RELATED WORK

In today's digital age, IoT networks have emerged
as a cornerstone, driving innovation across a wide range
of industries. As these networks grow, so do the
challenges of protecting them. A critical challenge to
overcome is the rise of DDoS attacks, which undermine
the entire foundation of IoT networks. The quest for
sophisticated and adaptive DDoS detection strategies is
at the heart of this part, which begins with an
examination of classic techniques and concludes with
the promise of federated learning to revolutionize
detection. Figure 1 depicts a danger to the traditional
centralized and distributed approaches as opposed to the
federated learning approach.

Traditional Approach (Distributed) Federated Learning Approach

Traditional Approach (Centralized) ‘

E Threat Aﬁk_k‘
Bo & E’n,.,[ :
L L
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FIGURE 1. Comparison between threats in
traditional and federated learning approaches.

A. Traditional DDoS Attack Detection Methods
Distributed Denial of Service (DDoS) assaults, which
overwhelm targeted systems with traffic from various
sources, remain one of the most serious cyber dangers.
Several methodologies for countering these risks have
been developed over time [13].

Signature-based Detection: Signature-based detection,
one of the earliest and most straightforward ways,
works by keeping a database of previously detected
attack patterns, or'signatures'. As traffic enters a system,
it is continuously inspected for these signatures. If a
match is found, the system marks it as a possible
assault. While this strategy provides rapid identification
of known threats, it is fundamentally reactive. Its
effectiveness is reduced against novel attack tactics that
are not included in the existing database [14].

Anomaly-based Detection: Moving beyond the
signature-based strategy, anomaly-based detection does
not require prior knowledge of assaults. Instead, it
creates a baseline for 'typical' network behavior.
Network traffic is continuously monitored, and any
variation from the baseline is considered suspicious.
While this strategy is adaptable, it is not without
limitations [15]. The dynamic nature of network
behavior can occasionally cause genuine traffic to be
misclassified as an attack, resulting in a greater number
of false positives.

Rate-based Detection: Recognizing that many DDoS
attacks overwhelm systems with an unusually large
number of requests, rate-based detection was proposed
[16]. This technique detects when incoming traffic
exceeds a predetermined threshold. While it is adept at
detecting volumetric attacks, it may miss subtler, low-
volume threats.

Table 1 presents a complete description of the key focus
and approaches from existing literature relevant to our
research area.

B. EVOLUTION AND
FEDERATED LEARNING

PRINCIPLES OF

In the field of machine learning, a revolutionary

technique gained traction, proposing a major shift from

traditional centralized federated learning models.

> Historical Context: The emergence of federated
learning was largely motivated by growing
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concerns about data privacy and the inefficiencies
of transmitting huge datasets to centralized
servers[28]. It proposed an alternative: why not
bring the model to the data, rather than the other
way around?

» Operational Dynamics: In federated learning,
local devices (or 'modes') are given the power to
train machine-learning models on their data. These
local models are then combined into a global
model, which contains insights from all
participating nodes without exposing their raw data
[29]. This protects data privacy and reduces the
need for data transportation, which saves
bandwidth [30].

» Advantages Over Centralized Models: Aside
from the obvious advantages in data privacy and
bandwidth savings, federated learning provides
resilience to network faults [31], [32]. In a
centralized setup, if the central server fails, the
entire system fails.

» Federated learning's distributed nature makes it less
vulnerable to single points of failure.

C. 10T SECURITY AND MACHINE LEARNING

CONVERGENCE
The combination of IoT with machine learning is

not new, but the perspective from which it is

approached has shifted.

» Earlier paradigms: Historically, projects typically
used centralized machine learning models.
Although they partially improved IoT security, they
created worries. Centralized approaches required
that data from several loT devices be transmitted to
a single place for processing [33]. This raised
worries about both data privacy and scalability in
IoT networks (34).

» The IoT ecosystem generates massive amounts of
data from billions of devices, leading to a trend
towards decentralization. Processing this centrally
proved increasingly unsustainable [35]. This forced
a shift toward decentralized techniques, prompting
academics to investigate federated learning's
potential for improving IoT security.

Consider the confluence of IoT and machine learning as

a journey rather than an endpoint. As attacks evolve, so

must defenses, ensuring that IoT networks stay secure

and robust in the face of a constantly evolving
cybersecurity landscape.

3. METHODOLOGIES

Federated Learning: Concepts and Principles
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A. Workings of Federated Learning:

Federated Learning (FL) is a collaborative machine
learning technique in which several devices (or nodes)
train on local data but only model changes, not raw
data, are exchanged centrally [39]. This represents a
paradigm shift away from traditional centralized
learning.

The formal process can be described as follows:

Let N be the number of nodes participating in FL, each
node i having a dataset Di with ni samples. Each node
computes an update from its local dataset:

Aw=Train(D;, w) 1)

where w represents the global model parameters and
Aw; represents the update from node 1.

The global model is then updated by aggregating local
updates:

g
Whew = W+ — Aw; 2
ny — (2)
. . — N . -
where 1 is a learning rate and ™ — 2251 M s the total

number of samples across nodes. The whole process of
federated learning is depicted in Figure 2.

Cloud Server

.- )

Global Model Apprepator
L= L
Local Model Global Model
Upload Local Update Dowiload

FIGURE 2. The federated learning process in IoT networks.

B. Advantages Over Centralized Models
In the context of IoT, FL brings several advantages
[40]:

» Data Privacy: Raw data remains on the local
device, reducing exposure risks.
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» Bandwidth Efficiency: Transmitting only model
updates rather than vast amounts of raw data
optimizes bandwidth usage.

» Real-time Adaptation: Local updates allow for

real-time model improvement.

Moreover, the global model is refined with diverse data,
enhancing its generalization capabilities:

Generalizationerror < Averagelocalerror +
Divergenceterm 3)

C. Challenges in Implementing Federated Learning
Despite its benefits, implementing FL, especially in the
complex IoT landscape, is not devoid of hallenges [41]:

Heterogeneity: Devices might have non-IID
(Independent and Identically Distributed) data, leading
to a skewed learning process. This skewness can be
quantified as:

Z?r:]{ﬂf — )
N
where pi is the local mean and p is the global mean.

4)

Skewness =

» Communication Overheads: Frequent model
updates can strain limited IoT communication
capabilities.

» Security Concerns: External threats might try to
compromise the model’s integrity through

malicious updates.

4. OUR PROPOSED MODEL

A. Design of the Federated Learning-Based DDOS
Detection System

Our overarching design incorporates a federated
learning architecture that allows multiple IoT nodes to
train localized models without centralizing data. This
not only ensures data privacy but also leverages local
data peculiarities to enhance detection performance.

where L(w) is the global loss, Fi(w) is the local loss at
node i, and fi(w; xj;, yij) is the training example at node i.

B. Data Collection, Preprocessing, and Distribution
Data plays a pivotal role in training robust models. In a
federated environment, data remains local to each node.
For our IoT-based DDoS detection:

» Data Collection: Data generated from network
traffic at each IoT node is collected locally.
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» Preprocessing: Data is normalized, outliers are
identified and removed, and relevant features are
selected to feed into the model.

» Distribution: While data remains at each node, the

model updates will be communicated across the
network.

C. Model Architecture and Training Strategies

We propose using a CNN model due to its
proficiency in identifying patterns, which is essential
for DDoS detection.

A wligli—11 il
alll = gl iy

(6)
(7

where alllis the activation at layer 1, W! and bl!! are the
weights and biases, and gl is the activation function.
The training process in the federated environment is
given in Algorithm 1:

D. MODEL AGGREGATION MECHANISMS

Post-training, model aggregation is vital to consolidate
knowledge from all nodes. We use weighted averaging
based on the number of samples at each node.

" N
Zf=| Wi
"M

i=1 i

(8)

Wolahal =

where n; is the number of samples at node i and wj is the
local model weight.

Algorithm 1 Federated Learning Training Procedure
Require: Initial global model weights wy
Ensure: Updated global model weights w
1: Input: Initial global model weights wp
- Output: Updated global model weights w
: Initialize global model weights w < wy
T do

for each node i in parallel do
Compute model update Awy; using local data D;
end for
8: Aggregate updates: w «— w + 1 > ; Aw;
9: end for

2
3
4
5
&
-
T

E. COMMUNICATION PROTOCOLS
MODEL UPDATES

Ensuring efficient and fault-tolerant communication is
paramount. Model updates are packaged and
transmitted to a central server which then broadcasts the
global model to all nodes [42]. During this, nodes
utilize a protocol ensuring that if updates aren’t
received within a specified window, they’ll request
them again.

FOR
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Algorithm 2 Model Update Communication Protocol

Require: Local model updates Aw; from each node ¢
Ensure: Successful transmission of updates to central server
1: Input: Model updates Aw; for each node ¢
2: Output: Acknowledgement of successful update trans-
mission
3: for each node n do

4: Transmit model updates Awy to the central server
5: if Acknowledgement not received within timeout
then
6: Re-transmit model updates Aw,
T: end if
8: end for
F. EXECUTION OF FL-DAD
The intricate FL-DAD execution process is

meticulously designed to integrate seamlessly with
existing IoT infrastructures, thus bolstering their
resilience against DDoS assaults whilst ensuring the
sanctity of data privacy. The sequential stages of this
methodical approach encompass:

1) Initialization: Let Mgiobal be the global model. We
initialize:

M (o

par < InitModel()

(9)
where InitModel() represents the initialization function.
2) Local Model Training: For each node i, using its

local dataset Dj, the node updates its local model M.
The model is trained by optimizing a loss function L:

M — TrainM ", D)) (10)

where t is the current iteration. This step enables each
node to independently detect potential DDoS threats
based on its local data, prior to participating in the
global model aggregation. However, during this phase,
privacy risks emerge from the potential for sensitive
information  inference  from  model  updates,
necessitating the implementation of techniques such as
differential privacy or homomorphic encryption to
safeguard data.

3) Model Update Communication: The model update
from node i can be computed as:

M =M — MY (11

. AMM .
Nodes transmit i to the centralized server. The
pseudocode of the model update communication
process is mentioned in Algorithm 2.
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4) Global Model Aggregation: Aggregation at the
central server is performed using the weighted sum of
local model updates:

> wiangl

¢ M :é:'a_blaln' -+

where w; is the weight assigned to node i, reflecting its
reliability or the size of its local dataset. During
aggregation, privacy risks are accentuated as aggregated
data might inadvertently reveal information about
individual nodes’ data. To mitigate this, secure multi-
party computation (SMPC) or federated averaging with
secure aggregation protocols can be employed to ensure
that the aggregated model does not expose any node’s
data.

(12)

5) Global Model Broadcast: Post-aggregation, M®giopal
is broadcasted to all nodes:

M — M)

clabal (13)

for all nodes i.

6) Evaluation: Every node i evaluates MWgjop, against
potential DDoS patterns using the evaluation metric E:

SCOTE'; = ‘E;{]w,é.;r]n"ﬂf' th.'xl} ( M']

where Ditest is the testing dataset at node 1.

7) Iteration: Based on the evaluations, the process is
iteratively continued:
Fe—t+1 (15)

until a stopping criterion, such as a predetermined
number of rounds or a desired accuracy level, is
reached.

The Algorithm 3 elegantly encapsulates the FL-DAD
execution process. By meticulously adhering to its
procedures, IoT networks can not only fortify their
defenses against DDoS threats but also ensure an
unwavering commitment to data privacy.

5. RESULT
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6. CONCLUSION AND FUTURE

ENHANCEMENT
In this study, we investigated the potential of
Federated Learning (FL) in improving the security
landscape of Internet of Things (IoT) networks, with a
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specific focus on the detection of Distributed Denial of
Service (DDoS) assaults. Our suggested FL-DAD
methodology  demonstrated the effectiveness of
decentralizing the learning process, which ensures data
privacy while maintaining detection accuracy. The
numerical results showed that our FL-DAD approach
consistently achieved an accuracy rate of more than
98% across multiple DDoS attack classes, exceeding
previous centralized models. Notable findings included
the system's durability in terms of accuracy even when
exposed to diverse data properties among nodes, as well
as its competitive advantage over centralized versions.
Furthermore, the difficulties and complexities
faced, ranging from synchronization with older systems
to dealing with abnormal data intricacy, cleared the path
for future study possibilities. The exhibited outstanding
performance, notably in terms of precision and recall,
supports FL-DAD's practical application in real-world
IoT security scenarios. These directions, which range
from extending convergence algorithms to developing
efficient aggregation protocols, will serve as the
foundation for further refinement of FL-DAD.
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